Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport

Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the questio...

Full description

Saved in:
Bibliographic Details
Published in:Current biology Vol. 30; no. 6; pp. 1160 - 1166.e5
Main Authors: Sonar, Punam, Youyen, Wiphu, Cleetus, Augustine, Wisanpitayakorn, Pattipong, Mousavi, Sayed I., Stepp, Willi L., Hancock, William O., Tüzel, Erkan, Ökten, Zeynep
Format: Journal Article
Language:English
Published: England Elsevier Inc 23-03-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties. •FLA8/10/KAP is necessary and sufficient for the anterograde IFT in C. reinhardtii•Heterotrimerization with KAP fully activates the auto-inhibited FLA8/10 motor•Coupled kinesin-2 motors work mostly independently during co-transport Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven intraflagellar transport in the unicellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multicellular organisms, which turn out to be remarkably similar.
AbstractList Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties. •FLA8/10/KAP is necessary and sufficient for the anterograde IFT in C. reinhardtii•Heterotrimerization with KAP fully activates the auto-inhibited FLA8/10 motor•Coupled kinesin-2 motors work mostly independently during co-transport Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven intraflagellar transport in the unicellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multicellular organisms, which turn out to be remarkably similar.
Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
Construction and function of virtually all cilia require the universally conserved process of Intraflagellar Transport (IFT) [ 1 , 2 ]. During the atypically fast IFT in the green alga C. reinhardtii , on average ten kinesin-2 motors ‘line up’ in a tight assembly on the trains [ 3 ], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii . Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [ 4 ], but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit in fully activating FLA8/10 for IFT in vivo . Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA-tether to understand the molecular underpinnings of motor coordination during IFT in vivo . For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties. Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven Intraflagellar Transport in the uni-cellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multi-cellular organisms, which turns out to be remarkably similar.
Author Wisanpitayakorn, Pattipong
Hancock, William O.
Ökten, Zeynep
Stepp, Willi L.
Tüzel, Erkan
Mousavi, Sayed I.
Youyen, Wiphu
Sonar, Punam
Cleetus, Augustine
AuthorAffiliation 1 Physik Department E22, Technische Universität München, Garching, 85748,Germany
3 Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122
2 Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609
4 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
AuthorAffiliation_xml – name: 2 Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609
– name: 4 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
– name: 1 Physik Department E22, Technische Universität München, Garching, 85748,Germany
– name: 3 Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122
Author_xml – sequence: 1
  givenname: Punam
  surname: Sonar
  fullname: Sonar, Punam
  organization: Physik Department E22, Technische Universität München, Garching 85748, Germany
– sequence: 2
  givenname: Wiphu
  surname: Youyen
  fullname: Youyen, Wiphu
  organization: Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
– sequence: 3
  givenname: Augustine
  surname: Cleetus
  fullname: Cleetus, Augustine
  organization: Physik Department E22, Technische Universität München, Garching 85748, Germany
– sequence: 4
  givenname: Pattipong
  surname: Wisanpitayakorn
  fullname: Wisanpitayakorn, Pattipong
  organization: Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
– sequence: 5
  givenname: Sayed I.
  surname: Mousavi
  fullname: Mousavi, Sayed I.
  organization: Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
– sequence: 6
  givenname: Willi L.
  surname: Stepp
  fullname: Stepp, Willi L.
  organization: Physik Department E22, Technische Universität München, Garching 85748, Germany
– sequence: 7
  givenname: William O.
  surname: Hancock
  fullname: Hancock, William O.
  organization: Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 8
  givenname: Erkan
  surname: Tüzel
  fullname: Tüzel, Erkan
  organization: Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
– sequence: 9
  givenname: Zeynep
  surname: Ökten
  fullname: Ökten, Zeynep
  email: zoekten@ph.tum.de
  organization: Physik Department E22, Technische Universität München, Garching 85748, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32142698$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uEzEQxi1URNPCA3BBPnLZxfZ6_1hISFFE24giLuVs2d7ZxtHGDrY3UvoavADPwpPVq5QKLpwszfzm8zfzXaAz5x0g9JaSkhLafNiWZtIlI4yUhJaENy_QgnatKAjn9RlaENGQQnSMnaOLGLeEUNaJ5hU6rxjlrBHdAv38Yh1E6wqGh-B3eFX-_hXAuo0KfbIWryNWDi_TcW-NGscjvlIx5VKPl1PyRQattgl6_NUnH3DaqDTPLE2yBzXX9RHfQILgU7A7CPZBJesdHjK8dimoYVT3MI4q4LugXNz7kF6jl4MaI7x5ei_R96vPd6ub4vbb9Xq1vC0Mr2kqmB6YmBep2rrnBlinudC90IPmbWM0mBq4EU3VDl1bNS1lCkDwrqtyy1SsukSfTrr7Se-gNzD7GeU-G1XhKL2y8t-Osxt57w-yFaSuRJcF3j8JBP9jgpjkzkYzb-PAT1FmZ7zKgTRtRukJNcHHGGB4_oYSOYcptzKHKecwJaEyh5ln3v3t73niT3oZ-HgCIF_pYCHIaCw4A70NYJLsvf2P_CPDmrX3
CitedBy_id crossref_primary_10_1126_sciadv_abp9660
crossref_primary_10_7554_eLife_58868
crossref_primary_10_1146_annurev_cellbio_121420_100107
crossref_primary_10_15252_embj_2020105781
crossref_primary_10_1016_j_cub_2020_02_005
crossref_primary_10_1016_j_semcdb_2020_05_021
crossref_primary_10_3390_cells11172737
crossref_primary_10_1073_pnas_2109378119
crossref_primary_10_1080_10409238_2020_1768206
Cites_doi 10.1083/jcb.201001057
10.1038/s41586-018-0105-3
10.1021/acs.bioconjchem.5b00191
10.1083/jcb.147.3.519
10.1007/s000180050423
10.1146/annurev.genom.7.080505.115610
10.2217/fmb.10.167
10.1038/13001
10.1016/j.cub.2015.03.013
10.1007/978-0-387-74021-8_11
10.1126/science.aaf4594
10.1016/j.cub.2003.09.025
10.1242/jcs.117069
10.1038/13008
10.1016/j.cell.2009.10.036
10.1038/ncb1186
10.1006/meth.2000.1084
10.1074/jbc.274.21.14617
10.7554/eLife.28606
10.1016/S0962-8924(02)02410-8
10.1083/jcb.131.6.1517
10.1083/jcb.200605179
10.1083/jcb.200606003
10.1146/annurev.cellbio.19.111401.091318
10.1038/nature03818
10.1016/j.bpj.2019.01.036
10.1038/nrm952
10.1083/jcb.130.6.1387
10.1073/pnas.1005177107
10.15252/embr.201744097
10.1038/366268a0
10.1091/mbc.10.3.693
10.2174/1875397301206010072
10.1083/jcb.144.3.473
10.1038/nrm2782
10.1136/bmj.286.6376.1489
10.1038/s41581-019-0116-9
10.1016/j.cell.2006.04.013
10.1073/pnas.1708157114
10.1073/pnas.90.12.5519
10.1091/mbc.10.2.345
10.1242/dev.02595
10.1083/jcb.141.4.993
10.1126/science.1204824
10.1007/s00018-006-6180-x
10.1083/jcb.153.1.13
10.1083/jcb.143.6.1547
10.1038/ncb3263
10.26508/lsa.201900456
10.1146/annurev-cellbio-101512-122335
10.1073/pnas.0809849106
10.1038/labinvest.3700253
10.1091/mbc.e04-10-0931
10.1038/s41556-018-0213-1
10.1083/jcb.132.3.371
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.cub.2020.01.046
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 1166.e5
ExternalDocumentID 10_1016_j_cub_2020_01_046
32142698
S0960982220300907
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM121679
– fundername: NIGMS NIH HHS
  grantid: R01 GM100076
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAEDT
AAMRU
ADVLN
AKAPO
AKRWK
NPM
RIG
29F
5VS
6I.
AAIKJ
AAQFI
AAQXK
AAYXX
ADMUD
AGHFR
ASPBG
AVWKF
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NCXOZ
OZT
R2-
SEW
UHS
XIH
XPP
Y6R
ZGI
7X8
5PM
ID FETCH-LOGICAL-c451t-2bf292142375d4ce28b49bd9bfb476cbec5e4c9637f8736712aee94883becc323
ISSN 0960-9822
IngestDate Tue Sep 17 21:25:07 EDT 2024
Sat Oct 05 06:11:28 EDT 2024
Thu Sep 26 19:59:24 EDT 2024
Wed Oct 16 00:43:11 EDT 2024
Fri Feb 23 02:48:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords flagella
C. elegans
cilia
C. reinhardtii
motor cooperation
kinesin-2
intraflagellar transport
auto-inhibition
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-2bf292142375d4ce28b49bd9bfb476cbec5e4c9637f8736712aee94883becc323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06516
Author contributions
P.S. and Z.Ö. designed the experiments. P.S. and A.C. performed experiments and analyzed the data. W.L.S. wrote all customized MATLAB routines. W.Y. developed the model, performed the simulations, analyzed data, prepared the figures; P.W. analyzed data, prepared figures; S.I.M. developed the Monte Carlo simulations for calculating the landing distributions; E.T. supervised all the modeling work. Z.Ö., P. S., W. O. H., W.Y., P.W. and E.T. contributed to the manuscript writing.
OpenAccessLink http://www.cell.com/article/S0960982220300907/pdf
PMID 32142698
PQID 2374318767
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7905398
proquest_miscellaneous_2374318767
crossref_primary_10_1016_j_cub_2020_01_046
pubmed_primary_32142698
elsevier_sciencedirect_doi_10_1016_j_cub_2020_01_046
PublicationCentury 2000
PublicationDate 2020-03-23
PublicationDateYYYYMMDD 2020-03-23
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pazour, Dickert, Witman (bib15) 1999; 144
Scholey (bib22) 2013; 29
Imanishi, Endres, Gennerich, Vale (bib39) 2006; 174
Mohamed, Stepp, Ökten (bib38) 2018; 557
Mitchell (bib21) 2007; 607
Stepp, Merck, Mueller-Planitz, Ökten (bib33) 2017; 18
Hammond, Blasius, Soppina, Cai, Verhey (bib45) 2010; 189
Snow, Ou, Gunnarson, Walker, Zhou, Brust-Mascher, Scholey (bib26) 2004; 6
Brunnbauer (bib56) 2012
Kozminski, Beech, Rosenbaum (bib14) 1995; 131
Verhey, Hammond (bib44) 2009; 10
Iomini, Babaev-Khaimov, Sassaroli, Piperno (bib34) 2001; 153
Pan, Wang, Snell (bib7) 2005; 85
Buisson, Chenouard, Lagache, Blisnick, Olivo-Marin, Bastin (bib31) 2013; 126
Pan, Ou, Civelekoglu-Scholey, Blacque, Endres, Tao, Mogilner, Leroux, Vale, Scholey (bib27) 2006; 174
Nigg, Raff (bib6) 2009; 139
Signor, Wedaman, Orozco, Dwyer, Bargmann, Rose, Scholey (bib20) 1999; 147
Mueller, Perrone, Bower, Cole, Porter (bib24) 2005; 16
Sarpal, Todi, Sivan-Loukianova, Shirolikar, Subramanian, Raff, Erickson, Ray, Eberl (bib25) 2003; 13
Jordan, Diener, Stepanek, Pigino (bib37) 2018; 20
Signor, Wedaman, Rose, Scholey (bib18) 1999; 10
Friedman, Vale (bib43) 1999; 1
Milic, Andreasson, Hogan, Block (bib50) 2017; 114
Wedaman, Meyer, Rashid, Cole, Scholey (bib19) 1996; 132
Rosenbaum, Witman (bib1) 2002; 3
Coy, Hancock, Wagenbach, Howard (bib42) 1999; 1
Marande, Kohl (bib49) 2011; 6
Stock, Guerrero, Cobb, Eggers, Huang, Li, Hackney (bib41) 1999; 274
Prevo, Mangeol, Oswald, Scholey, Peterman (bib35) 2015; 17
England, Luo, Cai (bib53) 2015; 26
Urh, Rosenberg (bib54) 2012; 6
Ou, Blacque, Snow, Leroux, Scholey (bib48) 2005; 436
Laib, Marin, Bloodgood, Guilford (bib3) 2009; 106
Badano, Mitsuma, Beales, Katsanis (bib5) 2006; 7
Cole, Diener, Himelblau, Beech, Fuster, Rosenbaum (bib23) 1998; 141
Scholey (bib2) 2003; 19
Bisgrove, Yost (bib10) 2006; 133
Blacque, Leroux (bib11) 2006; 63
Pazour, Rosenbaum (bib12) 2002; 12
Kaan, Hackney, Kozielski (bib47) 2011; 333
Porter, Bower, Knott, Byrd, Dentler (bib16) 1999; 10
Cole, Chinn, Wedaman, Hall, Vuong, Scholey (bib13) 1993; 366
Yamazaki, Nakata, Okada, Hirokawa (bib30) 1995; 130
Kozminski, Johnson, Forscher, Rosenbaum (bib4) 1993; 90
Signor, Rose, Scholey (bib17) 2000; 22
Brunnbauer, Mueller-Planitz, Kösem, Ho, Dombi, Gebhardt, Rief, Okten (bib28) 2010; 107
Anvarian, Mykytyn, Mukhopadhyay, Pedersen, Christensen (bib9) 2019; 15
Stepp, Ökten (bib46) 2019; 2
Scholey, Anderson (bib8) 2006; 125
Chien, Shih, Bower, Tritschler, Porter, Yildiz (bib36) 2017; 6
Pan, Ou, Civelekoglu-Scholey, Blacque, Endres, Tao, Mogilner, Leroux, Vale, Scholey (bib51) 2006; 174
Arpağ, Norris, Mousavi, Soppina, Verhey, Hancock, Tüzel (bib55) 2019; 116
Tuma, Zill, Le Bot, Vernos, Gelfand (bib29) 1998; 143
Stepanek, Pigino (bib32) 2016; 352
Altman, Gore, Gardner, Pocock (bib57) 1983; 286
Cole (bib40) 1999; 56
Andreasson, Shastry, Hancock, Block (bib52) 2015; 25
32208157 - Curr Biol. 2020 Mar 23;30(6):R282-R285
Signor (10.1016/j.cub.2020.01.046_bib18) 1999; 10
Tuma (10.1016/j.cub.2020.01.046_bib29) 1998; 143
Hammond (10.1016/j.cub.2020.01.046_bib45) 2010; 189
Altman (10.1016/j.cub.2020.01.046_bib57) 1983; 286
Kozminski (10.1016/j.cub.2020.01.046_bib14) 1995; 131
Badano (10.1016/j.cub.2020.01.046_bib5) 2006; 7
Pazour (10.1016/j.cub.2020.01.046_bib12) 2002; 12
Cole (10.1016/j.cub.2020.01.046_bib13) 1993; 366
Chien (10.1016/j.cub.2020.01.046_bib36) 2017; 6
Imanishi (10.1016/j.cub.2020.01.046_bib39) 2006; 174
Signor (10.1016/j.cub.2020.01.046_bib20) 1999; 147
Buisson (10.1016/j.cub.2020.01.046_bib31) 2013; 126
Friedman (10.1016/j.cub.2020.01.046_bib43) 1999; 1
Signor (10.1016/j.cub.2020.01.046_bib17) 2000; 22
England (10.1016/j.cub.2020.01.046_bib53) 2015; 26
Pan (10.1016/j.cub.2020.01.046_bib27) 2006; 174
Coy (10.1016/j.cub.2020.01.046_bib42) 1999; 1
Scholey (10.1016/j.cub.2020.01.046_bib2) 2003; 19
Porter (10.1016/j.cub.2020.01.046_bib16) 1999; 10
Stepp (10.1016/j.cub.2020.01.046_bib33) 2017; 18
Nigg (10.1016/j.cub.2020.01.046_bib6) 2009; 139
Scholey (10.1016/j.cub.2020.01.046_bib8) 2006; 125
Kozminski (10.1016/j.cub.2020.01.046_bib4) 1993; 90
Stock (10.1016/j.cub.2020.01.046_bib41) 1999; 274
Stepp (10.1016/j.cub.2020.01.046_bib46) 2019; 2
Verhey (10.1016/j.cub.2020.01.046_bib44) 2009; 10
Mohamed (10.1016/j.cub.2020.01.046_bib38) 2018; 557
Arpağ (10.1016/j.cub.2020.01.046_bib55) 2019; 116
Laib (10.1016/j.cub.2020.01.046_bib3) 2009; 106
Sarpal (10.1016/j.cub.2020.01.046_bib25) 2003; 13
Prevo (10.1016/j.cub.2020.01.046_bib35) 2015; 17
Stepanek (10.1016/j.cub.2020.01.046_bib32) 2016; 352
Ou (10.1016/j.cub.2020.01.046_bib48) 2005; 436
Wedaman (10.1016/j.cub.2020.01.046_bib19) 1996; 132
Milic (10.1016/j.cub.2020.01.046_bib50) 2017; 114
Pan (10.1016/j.cub.2020.01.046_bib7) 2005; 85
Bisgrove (10.1016/j.cub.2020.01.046_bib10) 2006; 133
Scholey (10.1016/j.cub.2020.01.046_bib22) 2013; 29
Mueller (10.1016/j.cub.2020.01.046_bib24) 2005; 16
Pazour (10.1016/j.cub.2020.01.046_bib15) 1999; 144
Mitchell (10.1016/j.cub.2020.01.046_bib21) 2007; 607
Jordan (10.1016/j.cub.2020.01.046_bib37) 2018; 20
Kaan (10.1016/j.cub.2020.01.046_bib47) 2011; 333
Pan (10.1016/j.cub.2020.01.046_bib51) 2006; 174
Snow (10.1016/j.cub.2020.01.046_bib26) 2004; 6
Brunnbauer (10.1016/j.cub.2020.01.046_bib28) 2010; 107
Andreasson (10.1016/j.cub.2020.01.046_bib52) 2015; 25
Yamazaki (10.1016/j.cub.2020.01.046_bib30) 1995; 130
Brunnbauer (10.1016/j.cub.2020.01.046_bib56) 2012
Anvarian (10.1016/j.cub.2020.01.046_bib9) 2019; 15
Cole (10.1016/j.cub.2020.01.046_bib23) 1998; 141
Cole (10.1016/j.cub.2020.01.046_bib40) 1999; 56
Blacque (10.1016/j.cub.2020.01.046_bib11) 2006; 63
Rosenbaum (10.1016/j.cub.2020.01.046_bib1) 2002; 3
Marande (10.1016/j.cub.2020.01.046_bib49) 2011; 6
Iomini (10.1016/j.cub.2020.01.046_bib34) 2001; 153
Urh (10.1016/j.cub.2020.01.046_bib54) 2012; 6
References_xml – volume: 10
  start-page: 345
  year: 1999
  end-page: 360
  ident: bib18
  article-title: Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Scholey
– volume: 6
  start-page: 231
  year: 2011
  end-page: 246
  ident: bib49
  article-title: Flagellar kinesins in protists
  publication-title: Future Microbiol.
  contributor:
    fullname: Kohl
– volume: 607
  start-page: 130
  year: 2007
  end-page: 140
  ident: bib21
  article-title: The evolution of eukaryotic cilia and flagella as motile and sensory organelles
  publication-title: Adv. Exp. Med. Biol.
  contributor:
    fullname: Mitchell
– volume: 10
  start-page: 693
  year: 1999
  end-page: 712
  ident: bib16
  article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Dentler
– volume: 174
  start-page: 1035
  year: 2006
  end-page: 1045
  ident: bib51
  article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors
  publication-title: J. Cell Biol.
  contributor:
    fullname: Scholey
– volume: 19
  start-page: 423
  year: 2003
  end-page: 443
  ident: bib2
  article-title: Intraflagellar transport
  publication-title: Annu. Rev. Cell Dev. Biol.
  contributor:
    fullname: Scholey
– volume: 436
  start-page: 583
  year: 2005
  end-page: 587
  ident: bib48
  article-title: Functional coordination of intraflagellar transport motors
  publication-title: Nature
  contributor:
    fullname: Scholey
– volume: 557
  start-page: 387
  year: 2018
  end-page: 391
  ident: bib38
  article-title: Reconstitution reveals motor activation for intraflagellar transport
  publication-title: Nature
  contributor:
    fullname: Ökten
– volume: 1
  start-page: 293
  year: 1999
  end-page: 297
  ident: bib43
  article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Vale
– volume: 6
  start-page: 72
  year: 2012
  end-page: 78
  ident: bib54
  article-title: HaloTag, a platform technology for protein analysis
  publication-title: Curr. Chem. Genomics
  contributor:
    fullname: Rosenberg
– volume: 131
  start-page: 1517
  year: 1995
  end-page: 1527
  ident: bib14
  article-title: The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane
  publication-title: J. Cell Biol.
  contributor:
    fullname: Rosenbaum
– volume: 90
  start-page: 5519
  year: 1993
  end-page: 5523
  ident: bib4
  article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Rosenbaum
– volume: 130
  start-page: 1387
  year: 1995
  end-page: 1399
  ident: bib30
  article-title: KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport
  publication-title: J. Cell Biol.
  contributor:
    fullname: Hirokawa
– volume: 126
  start-page: 327
  year: 2013
  end-page: 338
  ident: bib31
  article-title: Intraflagellar transport proteins cycle between the flagellum and its base
  publication-title: J. Cell Sci.
  contributor:
    fullname: Bastin
– volume: 153
  start-page: 13
  year: 2001
  end-page: 24
  ident: bib34
  article-title: Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases
  publication-title: J. Cell Biol.
  contributor:
    fullname: Piperno
– volume: 333
  start-page: 883
  year: 2011
  end-page: 885
  ident: bib47
  article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
  publication-title: Science
  contributor:
    fullname: Kozielski
– volume: 7
  start-page: 125
  year: 2006
  end-page: 148
  ident: bib5
  article-title: The ciliopathies: an emerging class of human genetic disorders
  publication-title: Annu. Rev. Genomics Hum. Genet.
  contributor:
    fullname: Katsanis
– volume: 132
  start-page: 371
  year: 1996
  end-page: 380
  ident: bib19
  article-title: Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex
  publication-title: J. Cell Biol.
  contributor:
    fullname: Scholey
– volume: 143
  start-page: 1547
  year: 1998
  end-page: 1558
  ident: bib29
  article-title: Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores
  publication-title: J. Cell Biol.
  contributor:
    fullname: Gelfand
– volume: 139
  start-page: 663
  year: 2009
  end-page: 678
  ident: bib6
  article-title: Centrioles, centrosomes, and cilia in health and disease
  publication-title: Cell
  contributor:
    fullname: Raff
– volume: 116
  start-page: 1115
  year: 2019
  end-page: 1126
  ident: bib55
  article-title: Motor dynamics underlying cargo transport by pairs of kinesin-1 and kinesin-3 motors
  publication-title: Biophys. J.
  contributor:
    fullname: Tüzel
– volume: 174
  start-page: 931
  year: 2006
  end-page: 937
  ident: bib39
  article-title: Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3
  publication-title: J. Cell Biol.
  contributor:
    fullname: Vale
– year: 2012
  ident: bib56
  article-title: Mechanische Untersuchungen heterodimerer Kinesin-2 Motoren. PhD thesis
  contributor:
    fullname: Brunnbauer
– volume: 12
  start-page: 551
  year: 2002
  end-page: 555
  ident: bib12
  article-title: Intraflagellar transport and cilia-dependent diseases
  publication-title: Trends Cell Biol.
  contributor:
    fullname: Rosenbaum
– volume: 63
  start-page: 2145
  year: 2006
  end-page: 2161
  ident: bib11
  article-title: Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport
  publication-title: Cell. Mol. Life Sci.
  contributor:
    fullname: Leroux
– volume: 147
  start-page: 519
  year: 1999
  end-page: 530
  ident: bib20
  article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans
  publication-title: J. Cell Biol.
  contributor:
    fullname: Scholey
– volume: 189
  start-page: 1013
  year: 2010
  end-page: 1025
  ident: bib45
  article-title: Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms
  publication-title: J. Cell Biol.
  contributor:
    fullname: Verhey
– volume: 16
  start-page: 1341
  year: 2005
  end-page: 1354
  ident: bib24
  article-title: The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Porter
– volume: 6
  start-page: e28606
  year: 2017
  ident: bib36
  article-title: Dynamics of the IFT machinery at the ciliary tip
  publication-title: eLife
  contributor:
    fullname: Yildiz
– volume: 25
  start-page: 1166
  year: 2015
  end-page: 1175
  ident: bib52
  article-title: The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load
  publication-title: Curr. Biol.
  contributor:
    fullname: Block
– volume: 141
  start-page: 993
  year: 1998
  end-page: 1008
  ident: bib23
  article-title: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
  publication-title: J. Cell Biol.
  contributor:
    fullname: Rosenbaum
– volume: 22
  start-page: 317
  year: 2000
  end-page: 325
  ident: bib17
  article-title: Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system
  publication-title: Methods
  contributor:
    fullname: Scholey
– volume: 17
  start-page: 1536
  year: 2015
  end-page: 1545
  ident: bib35
  article-title: Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Peterman
– volume: 29
  start-page: 443
  year: 2013
  end-page: 469
  ident: bib22
  article-title: Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions
  publication-title: Annu. Rev. Cell Dev. Biol.
  contributor:
    fullname: Scholey
– volume: 20
  start-page: 1250
  year: 2018
  end-page: 1255
  ident: bib37
  article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Pigino
– volume: 3
  start-page: 813
  year: 2002
  end-page: 825
  ident: bib1
  article-title: Intraflagellar transport
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Witman
– volume: 144
  start-page: 473
  year: 1999
  end-page: 481
  ident: bib15
  article-title: The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly
  publication-title: J. Cell Biol.
  contributor:
    fullname: Witman
– volume: 15
  start-page: 199
  year: 2019
  end-page: 219
  ident: bib9
  article-title: Cellular signalling by primary cilia in development, organ function and disease
  publication-title: Nat. Rev. Nephrol.
  contributor:
    fullname: Christensen
– volume: 125
  start-page: 439
  year: 2006
  end-page: 442
  ident: bib8
  article-title: Intraflagellar transport and cilium-based signaling
  publication-title: Cell
  contributor:
    fullname: Anderson
– volume: 10
  start-page: 765
  year: 2009
  end-page: 777
  ident: bib44
  article-title: Traffic control: regulation of kinesin motors
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Hammond
– volume: 286
  start-page: 1489
  year: 1983
  end-page: 1493
  ident: bib57
  article-title: Statistical guidelines for contributors to medical journals
  publication-title: Br. Med. J. (Clin. Res. Ed.)
  contributor:
    fullname: Pocock
– volume: 107
  start-page: 10460
  year: 2010
  end-page: 10465
  ident: bib28
  article-title: Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Okten
– volume: 274
  start-page: 14617
  year: 1999
  end-page: 14623
  ident: bib41
  article-title: Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Hackney
– volume: 1
  start-page: 288
  year: 1999
  end-page: 292
  ident: bib42
  article-title: Kinesin’s tail domain is an inhibitory regulator of the motor domain
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Howard
– volume: 133
  start-page: 4131
  year: 2006
  end-page: 4143
  ident: bib10
  article-title: The roles of cilia in developmental disorders and disease
  publication-title: Development
  contributor:
    fullname: Yost
– volume: 114
  start-page: E6830
  year: 2017
  end-page: E6838
  ident: bib50
  article-title: Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Block
– volume: 18
  start-page: 1947
  year: 2017
  end-page: 1956
  ident: bib33
  article-title: Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules
  publication-title: EMBO Rep.
  contributor:
    fullname: Ökten
– volume: 6
  start-page: 1109
  year: 2004
  end-page: 1113
  ident: bib26
  article-title: Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Scholey
– volume: 13
  start-page: 1687
  year: 2003
  end-page: 1696
  ident: bib25
  article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails
  publication-title: Curr. Biol.
  contributor:
    fullname: Eberl
– volume: 56
  start-page: 217
  year: 1999
  end-page: 226
  ident: bib40
  article-title: Kinesin-II, the heteromeric kinesin
  publication-title: Cell. Mol. Life Sci.
  contributor:
    fullname: Cole
– volume: 85
  start-page: 452
  year: 2005
  end-page: 463
  ident: bib7
  article-title: Cilium-generated signaling and cilia-related disorders
  publication-title: Lab. Invest.
  contributor:
    fullname: Snell
– volume: 174
  start-page: 1035
  year: 2006
  end-page: 1045
  ident: bib27
  article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors
  publication-title: J. Cell Biol.
  contributor:
    fullname: Scholey
– volume: 106
  start-page: 3190
  year: 2009
  end-page: 3195
  ident: bib3
  article-title: The reciprocal coordination and mechanics of molecular motors in living cells
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Guilford
– volume: 2
  start-page: e201900456
  year: 2019
  ident: bib46
  article-title: Resolving kinesin stepping: one head at a time
  publication-title: Life Sci. Alliance
  contributor:
    fullname: Ökten
– volume: 352
  start-page: 721
  year: 2016
  end-page: 724
  ident: bib32
  article-title: Microtubule doublets are double-track railways for intraflagellar transport trains
  publication-title: Science
  contributor:
    fullname: Pigino
– volume: 366
  start-page: 268
  year: 1993
  end-page: 270
  ident: bib13
  article-title: Novel heterotrimeric kinesin-related protein purified from sea urchin eggs
  publication-title: Nature
  contributor:
    fullname: Scholey
– volume: 26
  start-page: 975
  year: 2015
  end-page: 986
  ident: bib53
  article-title: HaloTag technology: a versatile platform for biomedical applications
  publication-title: Bioconjug. Chem.
  contributor:
    fullname: Cai
– volume: 189
  start-page: 1013
  year: 2010
  ident: 10.1016/j.cub.2020.01.046_bib45
  article-title: Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001057
  contributor:
    fullname: Hammond
– volume: 557
  start-page: 387
  year: 2018
  ident: 10.1016/j.cub.2020.01.046_bib38
  article-title: Reconstitution reveals motor activation for intraflagellar transport
  publication-title: Nature
  doi: 10.1038/s41586-018-0105-3
  contributor:
    fullname: Mohamed
– volume: 26
  start-page: 975
  year: 2015
  ident: 10.1016/j.cub.2020.01.046_bib53
  article-title: HaloTag technology: a versatile platform for biomedical applications
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.5b00191
  contributor:
    fullname: England
– volume: 147
  start-page: 519
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib20
  article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.147.3.519
  contributor:
    fullname: Signor
– volume: 56
  start-page: 217
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib40
  article-title: Kinesin-II, the heteromeric kinesin
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180050423
  contributor:
    fullname: Cole
– volume: 7
  start-page: 125
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib5
  article-title: The ciliopathies: an emerging class of human genetic disorders
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev.genom.7.080505.115610
  contributor:
    fullname: Badano
– volume: 6
  start-page: 231
  year: 2011
  ident: 10.1016/j.cub.2020.01.046_bib49
  article-title: Flagellar kinesins in protists
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.10.167
  contributor:
    fullname: Marande
– volume: 1
  start-page: 288
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib42
  article-title: Kinesin’s tail domain is an inhibitory regulator of the motor domain
  publication-title: Nat. Cell Biol.
  doi: 10.1038/13001
  contributor:
    fullname: Coy
– volume: 25
  start-page: 1166
  year: 2015
  ident: 10.1016/j.cub.2020.01.046_bib52
  article-title: The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.03.013
  contributor:
    fullname: Andreasson
– volume: 607
  start-page: 130
  year: 2007
  ident: 10.1016/j.cub.2020.01.046_bib21
  article-title: The evolution of eukaryotic cilia and flagella as motile and sensory organelles
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-0-387-74021-8_11
  contributor:
    fullname: Mitchell
– volume: 352
  start-page: 721
  year: 2016
  ident: 10.1016/j.cub.2020.01.046_bib32
  article-title: Microtubule doublets are double-track railways for intraflagellar transport trains
  publication-title: Science
  doi: 10.1126/science.aaf4594
  contributor:
    fullname: Stepanek
– volume: 13
  start-page: 1687
  year: 2003
  ident: 10.1016/j.cub.2020.01.046_bib25
  article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.09.025
  contributor:
    fullname: Sarpal
– volume: 126
  start-page: 327
  year: 2013
  ident: 10.1016/j.cub.2020.01.046_bib31
  article-title: Intraflagellar transport proteins cycle between the flagellum and its base
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.117069
  contributor:
    fullname: Buisson
– volume: 1
  start-page: 293
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib43
  article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain
  publication-title: Nat. Cell Biol.
  doi: 10.1038/13008
  contributor:
    fullname: Friedman
– volume: 139
  start-page: 663
  year: 2009
  ident: 10.1016/j.cub.2020.01.046_bib6
  article-title: Centrioles, centrosomes, and cilia in health and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.036
  contributor:
    fullname: Nigg
– volume: 6
  start-page: 1109
  year: 2004
  ident: 10.1016/j.cub.2020.01.046_bib26
  article-title: Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1186
  contributor:
    fullname: Snow
– volume: 22
  start-page: 317
  year: 2000
  ident: 10.1016/j.cub.2020.01.046_bib17
  article-title: Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system
  publication-title: Methods
  doi: 10.1006/meth.2000.1084
  contributor:
    fullname: Signor
– volume: 274
  start-page: 14617
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib41
  article-title: Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.21.14617
  contributor:
    fullname: Stock
– volume: 6
  start-page: e28606
  year: 2017
  ident: 10.1016/j.cub.2020.01.046_bib36
  article-title: Dynamics of the IFT machinery at the ciliary tip
  publication-title: eLife
  doi: 10.7554/eLife.28606
  contributor:
    fullname: Chien
– volume: 12
  start-page: 551
  year: 2002
  ident: 10.1016/j.cub.2020.01.046_bib12
  article-title: Intraflagellar transport and cilia-dependent diseases
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(02)02410-8
  contributor:
    fullname: Pazour
– volume: 131
  start-page: 1517
  year: 1995
  ident: 10.1016/j.cub.2020.01.046_bib14
  article-title: The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.131.6.1517
  contributor:
    fullname: Kozminski
– volume: 174
  start-page: 931
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib39
  article-title: Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200605179
  contributor:
    fullname: Imanishi
– volume: 174
  start-page: 1035
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib51
  article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200606003
  contributor:
    fullname: Pan
– volume: 19
  start-page: 423
  year: 2003
  ident: 10.1016/j.cub.2020.01.046_bib2
  article-title: Intraflagellar transport
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.19.111401.091318
  contributor:
    fullname: Scholey
– volume: 436
  start-page: 583
  year: 2005
  ident: 10.1016/j.cub.2020.01.046_bib48
  article-title: Functional coordination of intraflagellar transport motors
  publication-title: Nature
  doi: 10.1038/nature03818
  contributor:
    fullname: Ou
– volume: 116
  start-page: 1115
  year: 2019
  ident: 10.1016/j.cub.2020.01.046_bib55
  article-title: Motor dynamics underlying cargo transport by pairs of kinesin-1 and kinesin-3 motors
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.01.036
  contributor:
    fullname: Arpağ
– volume: 3
  start-page: 813
  year: 2002
  ident: 10.1016/j.cub.2020.01.046_bib1
  article-title: Intraflagellar transport
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm952
  contributor:
    fullname: Rosenbaum
– volume: 130
  start-page: 1387
  year: 1995
  ident: 10.1016/j.cub.2020.01.046_bib30
  article-title: KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.130.6.1387
  contributor:
    fullname: Yamazaki
– volume: 107
  start-page: 10460
  year: 2010
  ident: 10.1016/j.cub.2020.01.046_bib28
  article-title: Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005177107
  contributor:
    fullname: Brunnbauer
– volume: 18
  start-page: 1947
  year: 2017
  ident: 10.1016/j.cub.2020.01.046_bib33
  article-title: Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201744097
  contributor:
    fullname: Stepp
– volume: 366
  start-page: 268
  year: 1993
  ident: 10.1016/j.cub.2020.01.046_bib13
  article-title: Novel heterotrimeric kinesin-related protein purified from sea urchin eggs
  publication-title: Nature
  doi: 10.1038/366268a0
  contributor:
    fullname: Cole
– volume: 10
  start-page: 693
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib16
  article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.3.693
  contributor:
    fullname: Porter
– volume: 6
  start-page: 72
  year: 2012
  ident: 10.1016/j.cub.2020.01.046_bib54
  article-title: HaloTag, a platform technology for protein analysis
  publication-title: Curr. Chem. Genomics
  doi: 10.2174/1875397301206010072
  contributor:
    fullname: Urh
– volume: 144
  start-page: 473
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib15
  article-title: The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.144.3.473
  contributor:
    fullname: Pazour
– volume: 10
  start-page: 765
  year: 2009
  ident: 10.1016/j.cub.2020.01.046_bib44
  article-title: Traffic control: regulation of kinesin motors
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2782
  contributor:
    fullname: Verhey
– volume: 286
  start-page: 1489
  year: 1983
  ident: 10.1016/j.cub.2020.01.046_bib57
  article-title: Statistical guidelines for contributors to medical journals
  publication-title: Br. Med. J. (Clin. Res. Ed.)
  doi: 10.1136/bmj.286.6376.1489
  contributor:
    fullname: Altman
– volume: 15
  start-page: 199
  year: 2019
  ident: 10.1016/j.cub.2020.01.046_bib9
  article-title: Cellular signalling by primary cilia in development, organ function and disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0116-9
  contributor:
    fullname: Anvarian
– volume: 125
  start-page: 439
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib8
  article-title: Intraflagellar transport and cilium-based signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.013
  contributor:
    fullname: Scholey
– volume: 114
  start-page: E6830
  year: 2017
  ident: 10.1016/j.cub.2020.01.046_bib50
  article-title: Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1708157114
  contributor:
    fullname: Milic
– volume: 90
  start-page: 5519
  year: 1993
  ident: 10.1016/j.cub.2020.01.046_bib4
  article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.12.5519
  contributor:
    fullname: Kozminski
– volume: 10
  start-page: 345
  year: 1999
  ident: 10.1016/j.cub.2020.01.046_bib18
  article-title: Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.2.345
  contributor:
    fullname: Signor
– volume: 133
  start-page: 4131
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib10
  article-title: The roles of cilia in developmental disorders and disease
  publication-title: Development
  doi: 10.1242/dev.02595
  contributor:
    fullname: Bisgrove
– volume: 141
  start-page: 993
  year: 1998
  ident: 10.1016/j.cub.2020.01.046_bib23
  article-title: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.4.993
  contributor:
    fullname: Cole
– volume: 333
  start-page: 883
  year: 2011
  ident: 10.1016/j.cub.2020.01.046_bib47
  article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
  publication-title: Science
  doi: 10.1126/science.1204824
  contributor:
    fullname: Kaan
– volume: 174
  start-page: 1035
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib27
  article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200606003
  contributor:
    fullname: Pan
– volume: 63
  start-page: 2145
  year: 2006
  ident: 10.1016/j.cub.2020.01.046_bib11
  article-title: Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-006-6180-x
  contributor:
    fullname: Blacque
– year: 2012
  ident: 10.1016/j.cub.2020.01.046_bib56
  contributor:
    fullname: Brunnbauer
– volume: 153
  start-page: 13
  year: 2001
  ident: 10.1016/j.cub.2020.01.046_bib34
  article-title: Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.1.13
  contributor:
    fullname: Iomini
– volume: 143
  start-page: 1547
  year: 1998
  ident: 10.1016/j.cub.2020.01.046_bib29
  article-title: Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.6.1547
  contributor:
    fullname: Tuma
– volume: 17
  start-page: 1536
  year: 2015
  ident: 10.1016/j.cub.2020.01.046_bib35
  article-title: Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3263
  contributor:
    fullname: Prevo
– volume: 2
  start-page: e201900456
  year: 2019
  ident: 10.1016/j.cub.2020.01.046_bib46
  article-title: Resolving kinesin stepping: one head at a time
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201900456
  contributor:
    fullname: Stepp
– volume: 29
  start-page: 443
  year: 2013
  ident: 10.1016/j.cub.2020.01.046_bib22
  article-title: Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122335
  contributor:
    fullname: Scholey
– volume: 106
  start-page: 3190
  year: 2009
  ident: 10.1016/j.cub.2020.01.046_bib3
  article-title: The reciprocal coordination and mechanics of molecular motors in living cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809849106
  contributor:
    fullname: Laib
– volume: 85
  start-page: 452
  year: 2005
  ident: 10.1016/j.cub.2020.01.046_bib7
  article-title: Cilium-generated signaling and cilia-related disorders
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700253
  contributor:
    fullname: Pan
– volume: 16
  start-page: 1341
  year: 2005
  ident: 10.1016/j.cub.2020.01.046_bib24
  article-title: The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-10-0931
  contributor:
    fullname: Mueller
– volume: 20
  start-page: 1250
  year: 2018
  ident: 10.1016/j.cub.2020.01.046_bib37
  article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0213-1
  contributor:
    fullname: Jordan
– volume: 132
  start-page: 371
  year: 1996
  ident: 10.1016/j.cub.2020.01.046_bib19
  article-title: Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.132.3.371
  contributor:
    fullname: Wedaman
SSID ssj0012896
Score 2.448097
Snippet Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast...
Construction and function of virtually all cilia require the universally conserved process of Intraflagellar Transport (IFT) [ 1 , 2 ]. During the atypically...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1160
SubjectTerms auto-inhibition
C. elegans
C. reinhardtii
cilia
flagella
intraflagellar transport
kinesin-2
motor cooperation
Title Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport
URI https://dx.doi.org/10.1016/j.cub.2020.01.046
https://www.ncbi.nlm.nih.gov/pubmed/32142698
https://search.proquest.com/docview/2374318767
https://pubmed.ncbi.nlm.nih.gov/PMC7905398
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELXKIiReEHfKTUZiX6hS5e7ksep21WoFWmkXLW-R4zhslpJUTfKQ7-AH-Ba-jBk7SS-7IEDiJWrdJHV6Tsdjz_gMIW_tWLgALDe4yTDMyKQR8zgxzDT0klQIEQjcnDw_Yx8-BUczdzYYdCqLm7b_ijS0Ada4c_Yv0O5vCg3wGjCHI6AOxz_C_QTz2LPcsPXOken4cGofTsy1zHLcYFVl2WiBusyjSdWsEKFlMzrmpU40n9RVYcCJWaw80fdFpZIQeYXXTIQqhaZd1jmm0RQVFgdYt1s5VcbiAheL0yVYqSXmt_ba6dtOcKcJ1QpA9Ys8MClQ_Dmtc_51yxw12jReZKvLuo-ZLKWsal1Kuf6MJck2-QEXWclzrIbS8C-FTlY-5VWVrYp2mG5XOWBKazqG3oisl9667Tc72aE4_TJQgFAPZtqCBwyjPVqjsjPxbegnu2avLUtXM2jHfnjrj6V349CiVzmuxqKOx9hDpfbq7sl4K8fgTMn4oecFFtQMUevgtg12EEs7HC1O-iAXzHVVKL17ii7ortIP977mV27T9WnRfnbvlrt0fp_ca-c5dKIJ-oAMZP6Q3NGVT5tH5FtPU4o0pdPxj-9bFKWLkvKcbihKkaLQlNBdilJFUYoUxWt6itK4oTdQlAJF6S5FaU_Rx-Tj8ex8Ojfa-iCGcD2rMuw4tUOUDHSYl7hC2kHshnESxmnsMl-AdfKkK2CEYWnAHJ9ZNpcyhBHLQcPl2M4TcpAXuXxGaABusS-Y8BIH7p06QephrUvX5aYlfCmH5F3380crLQMTdfmRVxFgFSFWkWlFgNWQuB1AUevHav80Ai797rI3HZgR2HgM3PFcFnUZwQOCnw9-CxuSpxrcvhdYaMz2w2BI2A7s_QmoH7_7SZ5dKh151OZzwuD5v3X3Bbm7-aO-JAfVupavyK0yqV8rmv8EHv_ueA
link.rule.ids 230,315,782,786,887,27934,27935
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinesin-2+from+C.%C2%A0reinhardtii+Is+an+Atypically+Fast+and+Auto-inhibited+Motor+that+Is+Activated+by+Heterotrimerization+for+Intraflagellar+Transport&rft.jtitle=Current+biology&rft.au=Sonar%2C+Punam&rft.au=Youyen%2C+Wiphu&rft.au=Cleetus%2C+Augustine&rft.au=Wisanpitayakorn%2C+Pattipong&rft.date=2020-03-23&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=30&rft.issue=6&rft.spage=1160&rft.epage=1166.e5&rft_id=info:doi/10.1016%2Fj.cub.2020.01.046&rft.externalDocID=S0960982220300907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon