Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport
Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the questio...
Saved in:
Published in: | Current biology Vol. 30; no. 6; pp. 1160 - 1166.e5 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Inc
23-03-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
•FLA8/10/KAP is necessary and sufficient for the anterograde IFT in C. reinhardtii•Heterotrimerization with KAP fully activates the auto-inhibited FLA8/10 motor•Coupled kinesin-2 motors work mostly independently during co-transport
Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven intraflagellar transport in the unicellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multicellular organisms, which turn out to be remarkably similar. |
---|---|
AbstractList | Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors “line up” in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
•FLA8/10/KAP is necessary and sufficient for the anterograde IFT in C. reinhardtii•Heterotrimerization with KAP fully activates the auto-inhibited FLA8/10 motor•Coupled kinesin-2 motors work mostly independently during co-transport
Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven intraflagellar transport in the unicellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multicellular organisms, which turn out to be remarkably similar. Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties. Construction and function of virtually all cilia require the universally conserved process of Intraflagellar Transport (IFT) [ 1 , 2 ]. During the atypically fast IFT in the green alga C. reinhardtii , on average ten kinesin-2 motors ‘line up’ in a tight assembly on the trains [ 3 ], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii . Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [ 4 ], but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit in fully activating FLA8/10 for IFT in vivo . Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA-tether to understand the molecular underpinnings of motor coordination during IFT in vivo . For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties. Sonar et al. explain the mechanism of the atypically fast kinesin-2-driven Intraflagellar Transport in the uni-cellular green algae C. reinhardtii and provide a simple model of motor cooperation in distantly related uni- and multi-cellular organisms, which turns out to be remarkably similar. |
Author | Wisanpitayakorn, Pattipong Hancock, William O. Ökten, Zeynep Stepp, Willi L. Tüzel, Erkan Mousavi, Sayed I. Youyen, Wiphu Sonar, Punam Cleetus, Augustine |
AuthorAffiliation | 1 Physik Department E22, Technische Universität München, Garching, 85748,Germany 3 Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122 2 Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609 4 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA |
AuthorAffiliation_xml | – name: 2 Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609 – name: 4 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA – name: 1 Physik Department E22, Technische Universität München, Garching, 85748,Germany – name: 3 Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122 |
Author_xml | – sequence: 1 givenname: Punam surname: Sonar fullname: Sonar, Punam organization: Physik Department E22, Technische Universität München, Garching 85748, Germany – sequence: 2 givenname: Wiphu surname: Youyen fullname: Youyen, Wiphu organization: Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA – sequence: 3 givenname: Augustine surname: Cleetus fullname: Cleetus, Augustine organization: Physik Department E22, Technische Universität München, Garching 85748, Germany – sequence: 4 givenname: Pattipong surname: Wisanpitayakorn fullname: Wisanpitayakorn, Pattipong organization: Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA – sequence: 5 givenname: Sayed I. surname: Mousavi fullname: Mousavi, Sayed I. organization: Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA – sequence: 6 givenname: Willi L. surname: Stepp fullname: Stepp, Willi L. organization: Physik Department E22, Technische Universität München, Garching 85748, Germany – sequence: 7 givenname: William O. surname: Hancock fullname: Hancock, William O. organization: Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA – sequence: 8 givenname: Erkan surname: Tüzel fullname: Tüzel, Erkan organization: Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA – sequence: 9 givenname: Zeynep surname: Ökten fullname: Ökten, Zeynep email: zoekten@ph.tum.de organization: Physik Department E22, Technische Universität München, Garching 85748, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32142698$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9uEzEQxi1URNPCA3BBPnLZxfZ6_1hISFFE24giLuVs2d7ZxtHGDrY3UvoavADPwpPVq5QKLpwszfzm8zfzXaAz5x0g9JaSkhLafNiWZtIlI4yUhJaENy_QgnatKAjn9RlaENGQQnSMnaOLGLeEUNaJ5hU6rxjlrBHdAv38Yh1E6wqGh-B3eFX-_hXAuo0KfbIWryNWDi_TcW-NGscjvlIx5VKPl1PyRQattgl6_NUnH3DaqDTPLE2yBzXX9RHfQILgU7A7CPZBJesdHjK8dimoYVT3MI4q4LugXNz7kF6jl4MaI7x5ei_R96vPd6ub4vbb9Xq1vC0Mr2kqmB6YmBep2rrnBlinudC90IPmbWM0mBq4EU3VDl1bNS1lCkDwrqtyy1SsukSfTrr7Se-gNzD7GeU-G1XhKL2y8t-Osxt57w-yFaSuRJcF3j8JBP9jgpjkzkYzb-PAT1FmZ7zKgTRtRukJNcHHGGB4_oYSOYcptzKHKecwJaEyh5ln3v3t73niT3oZ-HgCIF_pYCHIaCw4A70NYJLsvf2P_CPDmrX3 |
CitedBy_id | crossref_primary_10_1126_sciadv_abp9660 crossref_primary_10_7554_eLife_58868 crossref_primary_10_1146_annurev_cellbio_121420_100107 crossref_primary_10_15252_embj_2020105781 crossref_primary_10_1016_j_cub_2020_02_005 crossref_primary_10_1016_j_semcdb_2020_05_021 crossref_primary_10_3390_cells11172737 crossref_primary_10_1073_pnas_2109378119 crossref_primary_10_1080_10409238_2020_1768206 |
Cites_doi | 10.1083/jcb.201001057 10.1038/s41586-018-0105-3 10.1021/acs.bioconjchem.5b00191 10.1083/jcb.147.3.519 10.1007/s000180050423 10.1146/annurev.genom.7.080505.115610 10.2217/fmb.10.167 10.1038/13001 10.1016/j.cub.2015.03.013 10.1007/978-0-387-74021-8_11 10.1126/science.aaf4594 10.1016/j.cub.2003.09.025 10.1242/jcs.117069 10.1038/13008 10.1016/j.cell.2009.10.036 10.1038/ncb1186 10.1006/meth.2000.1084 10.1074/jbc.274.21.14617 10.7554/eLife.28606 10.1016/S0962-8924(02)02410-8 10.1083/jcb.131.6.1517 10.1083/jcb.200605179 10.1083/jcb.200606003 10.1146/annurev.cellbio.19.111401.091318 10.1038/nature03818 10.1016/j.bpj.2019.01.036 10.1038/nrm952 10.1083/jcb.130.6.1387 10.1073/pnas.1005177107 10.15252/embr.201744097 10.1038/366268a0 10.1091/mbc.10.3.693 10.2174/1875397301206010072 10.1083/jcb.144.3.473 10.1038/nrm2782 10.1136/bmj.286.6376.1489 10.1038/s41581-019-0116-9 10.1016/j.cell.2006.04.013 10.1073/pnas.1708157114 10.1073/pnas.90.12.5519 10.1091/mbc.10.2.345 10.1242/dev.02595 10.1083/jcb.141.4.993 10.1126/science.1204824 10.1007/s00018-006-6180-x 10.1083/jcb.153.1.13 10.1083/jcb.143.6.1547 10.1038/ncb3263 10.26508/lsa.201900456 10.1146/annurev-cellbio-101512-122335 10.1073/pnas.0809849106 10.1038/labinvest.3700253 10.1091/mbc.e04-10-0931 10.1038/s41556-018-0213-1 10.1083/jcb.132.3.371 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.cub.2020.01.046 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 1166.e5 |
ExternalDocumentID | 10_1016_j_cub_2020_01_046 32142698 S0960982220300907 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM121679 – fundername: NIGMS NIH HHS grantid: R01 GM100076 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 0SF AAEDT AAMRU ADVLN AKAPO AKRWK NPM RIG 29F 5VS 6I. AAIKJ AAQFI AAQXK AAYXX ADMUD AGHFR ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ NCXOZ OZT R2- SEW UHS XIH XPP Y6R ZGI 7X8 5PM |
ID | FETCH-LOGICAL-c451t-2bf292142375d4ce28b49bd9bfb476cbec5e4c9637f8736712aee94883becc323 |
ISSN | 0960-9822 |
IngestDate | Tue Sep 17 21:25:07 EDT 2024 Sat Oct 05 06:11:28 EDT 2024 Thu Sep 26 19:59:24 EDT 2024 Wed Oct 16 00:43:11 EDT 2024 Fri Feb 23 02:48:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | flagella C. elegans cilia C. reinhardtii motor cooperation kinesin-2 intraflagellar transport auto-inhibition |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-2bf292142375d4ce28b49bd9bfb476cbec5e4c9637f8736712aee94883becc323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present Address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06516 Author contributions P.S. and Z.Ö. designed the experiments. P.S. and A.C. performed experiments and analyzed the data. W.L.S. wrote all customized MATLAB routines. W.Y. developed the model, performed the simulations, analyzed data, prepared the figures; P.W. analyzed data, prepared figures; S.I.M. developed the Monte Carlo simulations for calculating the landing distributions; E.T. supervised all the modeling work. Z.Ö., P. S., W. O. H., W.Y., P.W. and E.T. contributed to the manuscript writing. |
OpenAccessLink | http://www.cell.com/article/S0960982220300907/pdf |
PMID | 32142698 |
PQID | 2374318767 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7905398 proquest_miscellaneous_2374318767 crossref_primary_10_1016_j_cub_2020_01_046 pubmed_primary_32142698 elsevier_sciencedirect_doi_10_1016_j_cub_2020_01_046 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-23 |
PublicationDateYYYYMMDD | 2020-03-23 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Pazour, Dickert, Witman (bib15) 1999; 144 Scholey (bib22) 2013; 29 Imanishi, Endres, Gennerich, Vale (bib39) 2006; 174 Mohamed, Stepp, Ökten (bib38) 2018; 557 Mitchell (bib21) 2007; 607 Stepp, Merck, Mueller-Planitz, Ökten (bib33) 2017; 18 Hammond, Blasius, Soppina, Cai, Verhey (bib45) 2010; 189 Snow, Ou, Gunnarson, Walker, Zhou, Brust-Mascher, Scholey (bib26) 2004; 6 Brunnbauer (bib56) 2012 Kozminski, Beech, Rosenbaum (bib14) 1995; 131 Verhey, Hammond (bib44) 2009; 10 Iomini, Babaev-Khaimov, Sassaroli, Piperno (bib34) 2001; 153 Pan, Wang, Snell (bib7) 2005; 85 Buisson, Chenouard, Lagache, Blisnick, Olivo-Marin, Bastin (bib31) 2013; 126 Pan, Ou, Civelekoglu-Scholey, Blacque, Endres, Tao, Mogilner, Leroux, Vale, Scholey (bib27) 2006; 174 Nigg, Raff (bib6) 2009; 139 Signor, Wedaman, Orozco, Dwyer, Bargmann, Rose, Scholey (bib20) 1999; 147 Mueller, Perrone, Bower, Cole, Porter (bib24) 2005; 16 Sarpal, Todi, Sivan-Loukianova, Shirolikar, Subramanian, Raff, Erickson, Ray, Eberl (bib25) 2003; 13 Jordan, Diener, Stepanek, Pigino (bib37) 2018; 20 Signor, Wedaman, Rose, Scholey (bib18) 1999; 10 Friedman, Vale (bib43) 1999; 1 Milic, Andreasson, Hogan, Block (bib50) 2017; 114 Wedaman, Meyer, Rashid, Cole, Scholey (bib19) 1996; 132 Rosenbaum, Witman (bib1) 2002; 3 Coy, Hancock, Wagenbach, Howard (bib42) 1999; 1 Marande, Kohl (bib49) 2011; 6 Stock, Guerrero, Cobb, Eggers, Huang, Li, Hackney (bib41) 1999; 274 Prevo, Mangeol, Oswald, Scholey, Peterman (bib35) 2015; 17 England, Luo, Cai (bib53) 2015; 26 Urh, Rosenberg (bib54) 2012; 6 Ou, Blacque, Snow, Leroux, Scholey (bib48) 2005; 436 Laib, Marin, Bloodgood, Guilford (bib3) 2009; 106 Badano, Mitsuma, Beales, Katsanis (bib5) 2006; 7 Cole, Diener, Himelblau, Beech, Fuster, Rosenbaum (bib23) 1998; 141 Scholey (bib2) 2003; 19 Bisgrove, Yost (bib10) 2006; 133 Blacque, Leroux (bib11) 2006; 63 Pazour, Rosenbaum (bib12) 2002; 12 Kaan, Hackney, Kozielski (bib47) 2011; 333 Porter, Bower, Knott, Byrd, Dentler (bib16) 1999; 10 Cole, Chinn, Wedaman, Hall, Vuong, Scholey (bib13) 1993; 366 Yamazaki, Nakata, Okada, Hirokawa (bib30) 1995; 130 Kozminski, Johnson, Forscher, Rosenbaum (bib4) 1993; 90 Signor, Rose, Scholey (bib17) 2000; 22 Brunnbauer, Mueller-Planitz, Kösem, Ho, Dombi, Gebhardt, Rief, Okten (bib28) 2010; 107 Anvarian, Mykytyn, Mukhopadhyay, Pedersen, Christensen (bib9) 2019; 15 Stepp, Ökten (bib46) 2019; 2 Scholey, Anderson (bib8) 2006; 125 Chien, Shih, Bower, Tritschler, Porter, Yildiz (bib36) 2017; 6 Pan, Ou, Civelekoglu-Scholey, Blacque, Endres, Tao, Mogilner, Leroux, Vale, Scholey (bib51) 2006; 174 Arpağ, Norris, Mousavi, Soppina, Verhey, Hancock, Tüzel (bib55) 2019; 116 Tuma, Zill, Le Bot, Vernos, Gelfand (bib29) 1998; 143 Stepanek, Pigino (bib32) 2016; 352 Altman, Gore, Gardner, Pocock (bib57) 1983; 286 Cole (bib40) 1999; 56 Andreasson, Shastry, Hancock, Block (bib52) 2015; 25 32208157 - Curr Biol. 2020 Mar 23;30(6):R282-R285 Signor (10.1016/j.cub.2020.01.046_bib18) 1999; 10 Tuma (10.1016/j.cub.2020.01.046_bib29) 1998; 143 Hammond (10.1016/j.cub.2020.01.046_bib45) 2010; 189 Altman (10.1016/j.cub.2020.01.046_bib57) 1983; 286 Kozminski (10.1016/j.cub.2020.01.046_bib14) 1995; 131 Badano (10.1016/j.cub.2020.01.046_bib5) 2006; 7 Pazour (10.1016/j.cub.2020.01.046_bib12) 2002; 12 Cole (10.1016/j.cub.2020.01.046_bib13) 1993; 366 Chien (10.1016/j.cub.2020.01.046_bib36) 2017; 6 Imanishi (10.1016/j.cub.2020.01.046_bib39) 2006; 174 Signor (10.1016/j.cub.2020.01.046_bib20) 1999; 147 Buisson (10.1016/j.cub.2020.01.046_bib31) 2013; 126 Friedman (10.1016/j.cub.2020.01.046_bib43) 1999; 1 Signor (10.1016/j.cub.2020.01.046_bib17) 2000; 22 England (10.1016/j.cub.2020.01.046_bib53) 2015; 26 Pan (10.1016/j.cub.2020.01.046_bib27) 2006; 174 Coy (10.1016/j.cub.2020.01.046_bib42) 1999; 1 Scholey (10.1016/j.cub.2020.01.046_bib2) 2003; 19 Porter (10.1016/j.cub.2020.01.046_bib16) 1999; 10 Stepp (10.1016/j.cub.2020.01.046_bib33) 2017; 18 Nigg (10.1016/j.cub.2020.01.046_bib6) 2009; 139 Scholey (10.1016/j.cub.2020.01.046_bib8) 2006; 125 Kozminski (10.1016/j.cub.2020.01.046_bib4) 1993; 90 Stock (10.1016/j.cub.2020.01.046_bib41) 1999; 274 Stepp (10.1016/j.cub.2020.01.046_bib46) 2019; 2 Verhey (10.1016/j.cub.2020.01.046_bib44) 2009; 10 Mohamed (10.1016/j.cub.2020.01.046_bib38) 2018; 557 Arpağ (10.1016/j.cub.2020.01.046_bib55) 2019; 116 Laib (10.1016/j.cub.2020.01.046_bib3) 2009; 106 Sarpal (10.1016/j.cub.2020.01.046_bib25) 2003; 13 Prevo (10.1016/j.cub.2020.01.046_bib35) 2015; 17 Stepanek (10.1016/j.cub.2020.01.046_bib32) 2016; 352 Ou (10.1016/j.cub.2020.01.046_bib48) 2005; 436 Wedaman (10.1016/j.cub.2020.01.046_bib19) 1996; 132 Milic (10.1016/j.cub.2020.01.046_bib50) 2017; 114 Pan (10.1016/j.cub.2020.01.046_bib7) 2005; 85 Bisgrove (10.1016/j.cub.2020.01.046_bib10) 2006; 133 Scholey (10.1016/j.cub.2020.01.046_bib22) 2013; 29 Mueller (10.1016/j.cub.2020.01.046_bib24) 2005; 16 Pazour (10.1016/j.cub.2020.01.046_bib15) 1999; 144 Mitchell (10.1016/j.cub.2020.01.046_bib21) 2007; 607 Jordan (10.1016/j.cub.2020.01.046_bib37) 2018; 20 Kaan (10.1016/j.cub.2020.01.046_bib47) 2011; 333 Pan (10.1016/j.cub.2020.01.046_bib51) 2006; 174 Snow (10.1016/j.cub.2020.01.046_bib26) 2004; 6 Brunnbauer (10.1016/j.cub.2020.01.046_bib28) 2010; 107 Andreasson (10.1016/j.cub.2020.01.046_bib52) 2015; 25 Yamazaki (10.1016/j.cub.2020.01.046_bib30) 1995; 130 Brunnbauer (10.1016/j.cub.2020.01.046_bib56) 2012 Anvarian (10.1016/j.cub.2020.01.046_bib9) 2019; 15 Cole (10.1016/j.cub.2020.01.046_bib23) 1998; 141 Cole (10.1016/j.cub.2020.01.046_bib40) 1999; 56 Blacque (10.1016/j.cub.2020.01.046_bib11) 2006; 63 Rosenbaum (10.1016/j.cub.2020.01.046_bib1) 2002; 3 Marande (10.1016/j.cub.2020.01.046_bib49) 2011; 6 Iomini (10.1016/j.cub.2020.01.046_bib34) 2001; 153 Urh (10.1016/j.cub.2020.01.046_bib54) 2012; 6 |
References_xml | – volume: 10 start-page: 345 year: 1999 end-page: 360 ident: bib18 article-title: Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans publication-title: Mol. Biol. Cell contributor: fullname: Scholey – volume: 6 start-page: 231 year: 2011 end-page: 246 ident: bib49 article-title: Flagellar kinesins in protists publication-title: Future Microbiol. contributor: fullname: Kohl – volume: 607 start-page: 130 year: 2007 end-page: 140 ident: bib21 article-title: The evolution of eukaryotic cilia and flagella as motile and sensory organelles publication-title: Adv. Exp. Med. Biol. contributor: fullname: Mitchell – volume: 10 start-page: 693 year: 1999 end-page: 712 ident: bib16 article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas publication-title: Mol. Biol. Cell contributor: fullname: Dentler – volume: 174 start-page: 1035 year: 2006 end-page: 1045 ident: bib51 article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors publication-title: J. Cell Biol. contributor: fullname: Scholey – volume: 19 start-page: 423 year: 2003 end-page: 443 ident: bib2 article-title: Intraflagellar transport publication-title: Annu. Rev. Cell Dev. Biol. contributor: fullname: Scholey – volume: 436 start-page: 583 year: 2005 end-page: 587 ident: bib48 article-title: Functional coordination of intraflagellar transport motors publication-title: Nature contributor: fullname: Scholey – volume: 557 start-page: 387 year: 2018 end-page: 391 ident: bib38 article-title: Reconstitution reveals motor activation for intraflagellar transport publication-title: Nature contributor: fullname: Ökten – volume: 1 start-page: 293 year: 1999 end-page: 297 ident: bib43 article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain publication-title: Nat. Cell Biol. contributor: fullname: Vale – volume: 6 start-page: 72 year: 2012 end-page: 78 ident: bib54 article-title: HaloTag, a platform technology for protein analysis publication-title: Curr. Chem. Genomics contributor: fullname: Rosenberg – volume: 131 start-page: 1517 year: 1995 end-page: 1527 ident: bib14 article-title: The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane publication-title: J. Cell Biol. contributor: fullname: Rosenbaum – volume: 90 start-page: 5519 year: 1993 end-page: 5523 ident: bib4 article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Rosenbaum – volume: 130 start-page: 1387 year: 1995 end-page: 1399 ident: bib30 article-title: KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport publication-title: J. Cell Biol. contributor: fullname: Hirokawa – volume: 126 start-page: 327 year: 2013 end-page: 338 ident: bib31 article-title: Intraflagellar transport proteins cycle between the flagellum and its base publication-title: J. Cell Sci. contributor: fullname: Bastin – volume: 153 start-page: 13 year: 2001 end-page: 24 ident: bib34 article-title: Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases publication-title: J. Cell Biol. contributor: fullname: Piperno – volume: 333 start-page: 883 year: 2011 end-page: 885 ident: bib47 article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition publication-title: Science contributor: fullname: Kozielski – volume: 7 start-page: 125 year: 2006 end-page: 148 ident: bib5 article-title: The ciliopathies: an emerging class of human genetic disorders publication-title: Annu. Rev. Genomics Hum. Genet. contributor: fullname: Katsanis – volume: 132 start-page: 371 year: 1996 end-page: 380 ident: bib19 article-title: Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex publication-title: J. Cell Biol. contributor: fullname: Scholey – volume: 143 start-page: 1547 year: 1998 end-page: 1558 ident: bib29 article-title: Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores publication-title: J. Cell Biol. contributor: fullname: Gelfand – volume: 139 start-page: 663 year: 2009 end-page: 678 ident: bib6 article-title: Centrioles, centrosomes, and cilia in health and disease publication-title: Cell contributor: fullname: Raff – volume: 116 start-page: 1115 year: 2019 end-page: 1126 ident: bib55 article-title: Motor dynamics underlying cargo transport by pairs of kinesin-1 and kinesin-3 motors publication-title: Biophys. J. contributor: fullname: Tüzel – volume: 174 start-page: 931 year: 2006 end-page: 937 ident: bib39 article-title: Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3 publication-title: J. Cell Biol. contributor: fullname: Vale – year: 2012 ident: bib56 article-title: Mechanische Untersuchungen heterodimerer Kinesin-2 Motoren. PhD thesis contributor: fullname: Brunnbauer – volume: 12 start-page: 551 year: 2002 end-page: 555 ident: bib12 article-title: Intraflagellar transport and cilia-dependent diseases publication-title: Trends Cell Biol. contributor: fullname: Rosenbaum – volume: 63 start-page: 2145 year: 2006 end-page: 2161 ident: bib11 article-title: Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport publication-title: Cell. Mol. Life Sci. contributor: fullname: Leroux – volume: 147 start-page: 519 year: 1999 end-page: 530 ident: bib20 article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans publication-title: J. Cell Biol. contributor: fullname: Scholey – volume: 189 start-page: 1013 year: 2010 end-page: 1025 ident: bib45 article-title: Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms publication-title: J. Cell Biol. contributor: fullname: Verhey – volume: 16 start-page: 1341 year: 2005 end-page: 1354 ident: bib24 article-title: The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport publication-title: Mol. Biol. Cell contributor: fullname: Porter – volume: 6 start-page: e28606 year: 2017 ident: bib36 article-title: Dynamics of the IFT machinery at the ciliary tip publication-title: eLife contributor: fullname: Yildiz – volume: 25 start-page: 1166 year: 2015 end-page: 1175 ident: bib52 article-title: The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load publication-title: Curr. Biol. contributor: fullname: Block – volume: 141 start-page: 993 year: 1998 end-page: 1008 ident: bib23 article-title: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons publication-title: J. Cell Biol. contributor: fullname: Rosenbaum – volume: 22 start-page: 317 year: 2000 end-page: 325 ident: bib17 article-title: Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system publication-title: Methods contributor: fullname: Scholey – volume: 17 start-page: 1536 year: 2015 end-page: 1545 ident: bib35 article-title: Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia publication-title: Nat. Cell Biol. contributor: fullname: Peterman – volume: 29 start-page: 443 year: 2013 end-page: 469 ident: bib22 article-title: Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions publication-title: Annu. Rev. Cell Dev. Biol. contributor: fullname: Scholey – volume: 20 start-page: 1250 year: 2018 end-page: 1255 ident: bib37 article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia publication-title: Nat. Cell Biol. contributor: fullname: Pigino – volume: 3 start-page: 813 year: 2002 end-page: 825 ident: bib1 article-title: Intraflagellar transport publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Witman – volume: 144 start-page: 473 year: 1999 end-page: 481 ident: bib15 article-title: The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly publication-title: J. Cell Biol. contributor: fullname: Witman – volume: 15 start-page: 199 year: 2019 end-page: 219 ident: bib9 article-title: Cellular signalling by primary cilia in development, organ function and disease publication-title: Nat. Rev. Nephrol. contributor: fullname: Christensen – volume: 125 start-page: 439 year: 2006 end-page: 442 ident: bib8 article-title: Intraflagellar transport and cilium-based signaling publication-title: Cell contributor: fullname: Anderson – volume: 10 start-page: 765 year: 2009 end-page: 777 ident: bib44 article-title: Traffic control: regulation of kinesin motors publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Hammond – volume: 286 start-page: 1489 year: 1983 end-page: 1493 ident: bib57 article-title: Statistical guidelines for contributors to medical journals publication-title: Br. Med. J. (Clin. Res. Ed.) contributor: fullname: Pocock – volume: 107 start-page: 10460 year: 2010 end-page: 10465 ident: bib28 article-title: Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Okten – volume: 274 start-page: 14617 year: 1999 end-page: 14623 ident: bib41 article-title: Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity publication-title: J. Biol. Chem. contributor: fullname: Hackney – volume: 1 start-page: 288 year: 1999 end-page: 292 ident: bib42 article-title: Kinesin’s tail domain is an inhibitory regulator of the motor domain publication-title: Nat. Cell Biol. contributor: fullname: Howard – volume: 133 start-page: 4131 year: 2006 end-page: 4143 ident: bib10 article-title: The roles of cilia in developmental disorders and disease publication-title: Development contributor: fullname: Yost – volume: 114 start-page: E6830 year: 2017 end-page: E6838 ident: bib50 article-title: Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Block – volume: 18 start-page: 1947 year: 2017 end-page: 1956 ident: bib33 article-title: Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules publication-title: EMBO Rep. contributor: fullname: Ökten – volume: 6 start-page: 1109 year: 2004 end-page: 1113 ident: bib26 article-title: Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons publication-title: Nat. Cell Biol. contributor: fullname: Scholey – volume: 13 start-page: 1687 year: 2003 end-page: 1696 ident: bib25 article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails publication-title: Curr. Biol. contributor: fullname: Eberl – volume: 56 start-page: 217 year: 1999 end-page: 226 ident: bib40 article-title: Kinesin-II, the heteromeric kinesin publication-title: Cell. Mol. Life Sci. contributor: fullname: Cole – volume: 85 start-page: 452 year: 2005 end-page: 463 ident: bib7 article-title: Cilium-generated signaling and cilia-related disorders publication-title: Lab. Invest. contributor: fullname: Snell – volume: 174 start-page: 1035 year: 2006 end-page: 1045 ident: bib27 article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors publication-title: J. Cell Biol. contributor: fullname: Scholey – volume: 106 start-page: 3190 year: 2009 end-page: 3195 ident: bib3 article-title: The reciprocal coordination and mechanics of molecular motors in living cells publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Guilford – volume: 2 start-page: e201900456 year: 2019 ident: bib46 article-title: Resolving kinesin stepping: one head at a time publication-title: Life Sci. Alliance contributor: fullname: Ökten – volume: 352 start-page: 721 year: 2016 end-page: 724 ident: bib32 article-title: Microtubule doublets are double-track railways for intraflagellar transport trains publication-title: Science contributor: fullname: Pigino – volume: 366 start-page: 268 year: 1993 end-page: 270 ident: bib13 article-title: Novel heterotrimeric kinesin-related protein purified from sea urchin eggs publication-title: Nature contributor: fullname: Scholey – volume: 26 start-page: 975 year: 2015 end-page: 986 ident: bib53 article-title: HaloTag technology: a versatile platform for biomedical applications publication-title: Bioconjug. Chem. contributor: fullname: Cai – volume: 189 start-page: 1013 year: 2010 ident: 10.1016/j.cub.2020.01.046_bib45 article-title: Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms publication-title: J. Cell Biol. doi: 10.1083/jcb.201001057 contributor: fullname: Hammond – volume: 557 start-page: 387 year: 2018 ident: 10.1016/j.cub.2020.01.046_bib38 article-title: Reconstitution reveals motor activation for intraflagellar transport publication-title: Nature doi: 10.1038/s41586-018-0105-3 contributor: fullname: Mohamed – volume: 26 start-page: 975 year: 2015 ident: 10.1016/j.cub.2020.01.046_bib53 article-title: HaloTag technology: a versatile platform for biomedical applications publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.5b00191 contributor: fullname: England – volume: 147 start-page: 519 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib20 article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans publication-title: J. Cell Biol. doi: 10.1083/jcb.147.3.519 contributor: fullname: Signor – volume: 56 start-page: 217 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib40 article-title: Kinesin-II, the heteromeric kinesin publication-title: Cell. Mol. Life Sci. doi: 10.1007/s000180050423 contributor: fullname: Cole – volume: 7 start-page: 125 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib5 article-title: The ciliopathies: an emerging class of human genetic disorders publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev.genom.7.080505.115610 contributor: fullname: Badano – volume: 6 start-page: 231 year: 2011 ident: 10.1016/j.cub.2020.01.046_bib49 article-title: Flagellar kinesins in protists publication-title: Future Microbiol. doi: 10.2217/fmb.10.167 contributor: fullname: Marande – volume: 1 start-page: 288 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib42 article-title: Kinesin’s tail domain is an inhibitory regulator of the motor domain publication-title: Nat. Cell Biol. doi: 10.1038/13001 contributor: fullname: Coy – volume: 25 start-page: 1166 year: 2015 ident: 10.1016/j.cub.2020.01.046_bib52 article-title: The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.03.013 contributor: fullname: Andreasson – volume: 607 start-page: 130 year: 2007 ident: 10.1016/j.cub.2020.01.046_bib21 article-title: The evolution of eukaryotic cilia and flagella as motile and sensory organelles publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-74021-8_11 contributor: fullname: Mitchell – volume: 352 start-page: 721 year: 2016 ident: 10.1016/j.cub.2020.01.046_bib32 article-title: Microtubule doublets are double-track railways for intraflagellar transport trains publication-title: Science doi: 10.1126/science.aaf4594 contributor: fullname: Stepanek – volume: 13 start-page: 1687 year: 2003 ident: 10.1016/j.cub.2020.01.046_bib25 article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.09.025 contributor: fullname: Sarpal – volume: 126 start-page: 327 year: 2013 ident: 10.1016/j.cub.2020.01.046_bib31 article-title: Intraflagellar transport proteins cycle between the flagellum and its base publication-title: J. Cell Sci. doi: 10.1242/jcs.117069 contributor: fullname: Buisson – volume: 1 start-page: 293 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib43 article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain publication-title: Nat. Cell Biol. doi: 10.1038/13008 contributor: fullname: Friedman – volume: 139 start-page: 663 year: 2009 ident: 10.1016/j.cub.2020.01.046_bib6 article-title: Centrioles, centrosomes, and cilia in health and disease publication-title: Cell doi: 10.1016/j.cell.2009.10.036 contributor: fullname: Nigg – volume: 6 start-page: 1109 year: 2004 ident: 10.1016/j.cub.2020.01.046_bib26 article-title: Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons publication-title: Nat. Cell Biol. doi: 10.1038/ncb1186 contributor: fullname: Snow – volume: 22 start-page: 317 year: 2000 ident: 10.1016/j.cub.2020.01.046_bib17 article-title: Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system publication-title: Methods doi: 10.1006/meth.2000.1084 contributor: fullname: Signor – volume: 274 start-page: 14617 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib41 article-title: Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.21.14617 contributor: fullname: Stock – volume: 6 start-page: e28606 year: 2017 ident: 10.1016/j.cub.2020.01.046_bib36 article-title: Dynamics of the IFT machinery at the ciliary tip publication-title: eLife doi: 10.7554/eLife.28606 contributor: fullname: Chien – volume: 12 start-page: 551 year: 2002 ident: 10.1016/j.cub.2020.01.046_bib12 article-title: Intraflagellar transport and cilia-dependent diseases publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(02)02410-8 contributor: fullname: Pazour – volume: 131 start-page: 1517 year: 1995 ident: 10.1016/j.cub.2020.01.046_bib14 article-title: The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane publication-title: J. Cell Biol. doi: 10.1083/jcb.131.6.1517 contributor: fullname: Kozminski – volume: 174 start-page: 931 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib39 article-title: Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3 publication-title: J. Cell Biol. doi: 10.1083/jcb.200605179 contributor: fullname: Imanishi – volume: 174 start-page: 1035 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib51 article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors publication-title: J. Cell Biol. doi: 10.1083/jcb.200606003 contributor: fullname: Pan – volume: 19 start-page: 423 year: 2003 ident: 10.1016/j.cub.2020.01.046_bib2 article-title: Intraflagellar transport publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.19.111401.091318 contributor: fullname: Scholey – volume: 436 start-page: 583 year: 2005 ident: 10.1016/j.cub.2020.01.046_bib48 article-title: Functional coordination of intraflagellar transport motors publication-title: Nature doi: 10.1038/nature03818 contributor: fullname: Ou – volume: 116 start-page: 1115 year: 2019 ident: 10.1016/j.cub.2020.01.046_bib55 article-title: Motor dynamics underlying cargo transport by pairs of kinesin-1 and kinesin-3 motors publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.01.036 contributor: fullname: Arpağ – volume: 3 start-page: 813 year: 2002 ident: 10.1016/j.cub.2020.01.046_bib1 article-title: Intraflagellar transport publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm952 contributor: fullname: Rosenbaum – volume: 130 start-page: 1387 year: 1995 ident: 10.1016/j.cub.2020.01.046_bib30 article-title: KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport publication-title: J. Cell Biol. doi: 10.1083/jcb.130.6.1387 contributor: fullname: Yamazaki – volume: 107 start-page: 10460 year: 2010 ident: 10.1016/j.cub.2020.01.046_bib28 article-title: Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005177107 contributor: fullname: Brunnbauer – volume: 18 start-page: 1947 year: 2017 ident: 10.1016/j.cub.2020.01.046_bib33 article-title: Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules publication-title: EMBO Rep. doi: 10.15252/embr.201744097 contributor: fullname: Stepp – volume: 366 start-page: 268 year: 1993 ident: 10.1016/j.cub.2020.01.046_bib13 article-title: Novel heterotrimeric kinesin-related protein purified from sea urchin eggs publication-title: Nature doi: 10.1038/366268a0 contributor: fullname: Cole – volume: 10 start-page: 693 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib16 article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.3.693 contributor: fullname: Porter – volume: 6 start-page: 72 year: 2012 ident: 10.1016/j.cub.2020.01.046_bib54 article-title: HaloTag, a platform technology for protein analysis publication-title: Curr. Chem. Genomics doi: 10.2174/1875397301206010072 contributor: fullname: Urh – volume: 144 start-page: 473 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib15 article-title: The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly publication-title: J. Cell Biol. doi: 10.1083/jcb.144.3.473 contributor: fullname: Pazour – volume: 10 start-page: 765 year: 2009 ident: 10.1016/j.cub.2020.01.046_bib44 article-title: Traffic control: regulation of kinesin motors publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2782 contributor: fullname: Verhey – volume: 286 start-page: 1489 year: 1983 ident: 10.1016/j.cub.2020.01.046_bib57 article-title: Statistical guidelines for contributors to medical journals publication-title: Br. Med. J. (Clin. Res. Ed.) doi: 10.1136/bmj.286.6376.1489 contributor: fullname: Altman – volume: 15 start-page: 199 year: 2019 ident: 10.1016/j.cub.2020.01.046_bib9 article-title: Cellular signalling by primary cilia in development, organ function and disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0116-9 contributor: fullname: Anvarian – volume: 125 start-page: 439 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib8 article-title: Intraflagellar transport and cilium-based signaling publication-title: Cell doi: 10.1016/j.cell.2006.04.013 contributor: fullname: Scholey – volume: 114 start-page: E6830 year: 2017 ident: 10.1016/j.cub.2020.01.046_bib50 article-title: Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708157114 contributor: fullname: Milic – volume: 90 start-page: 5519 year: 1993 ident: 10.1016/j.cub.2020.01.046_bib4 article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.12.5519 contributor: fullname: Kozminski – volume: 10 start-page: 345 year: 1999 ident: 10.1016/j.cub.2020.01.046_bib18 article-title: Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.2.345 contributor: fullname: Signor – volume: 133 start-page: 4131 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib10 article-title: The roles of cilia in developmental disorders and disease publication-title: Development doi: 10.1242/dev.02595 contributor: fullname: Bisgrove – volume: 141 start-page: 993 year: 1998 ident: 10.1016/j.cub.2020.01.046_bib23 article-title: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons publication-title: J. Cell Biol. doi: 10.1083/jcb.141.4.993 contributor: fullname: Cole – volume: 333 start-page: 883 year: 2011 ident: 10.1016/j.cub.2020.01.046_bib47 article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition publication-title: Science doi: 10.1126/science.1204824 contributor: fullname: Kaan – volume: 174 start-page: 1035 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib27 article-title: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors publication-title: J. Cell Biol. doi: 10.1083/jcb.200606003 contributor: fullname: Pan – volume: 63 start-page: 2145 year: 2006 ident: 10.1016/j.cub.2020.01.046_bib11 article-title: Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-006-6180-x contributor: fullname: Blacque – year: 2012 ident: 10.1016/j.cub.2020.01.046_bib56 contributor: fullname: Brunnbauer – volume: 153 start-page: 13 year: 2001 ident: 10.1016/j.cub.2020.01.046_bib34 article-title: Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases publication-title: J. Cell Biol. doi: 10.1083/jcb.153.1.13 contributor: fullname: Iomini – volume: 143 start-page: 1547 year: 1998 ident: 10.1016/j.cub.2020.01.046_bib29 article-title: Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores publication-title: J. Cell Biol. doi: 10.1083/jcb.143.6.1547 contributor: fullname: Tuma – volume: 17 start-page: 1536 year: 2015 ident: 10.1016/j.cub.2020.01.046_bib35 article-title: Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia publication-title: Nat. Cell Biol. doi: 10.1038/ncb3263 contributor: fullname: Prevo – volume: 2 start-page: e201900456 year: 2019 ident: 10.1016/j.cub.2020.01.046_bib46 article-title: Resolving kinesin stepping: one head at a time publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900456 contributor: fullname: Stepp – volume: 29 start-page: 443 year: 2013 ident: 10.1016/j.cub.2020.01.046_bib22 article-title: Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101512-122335 contributor: fullname: Scholey – volume: 106 start-page: 3190 year: 2009 ident: 10.1016/j.cub.2020.01.046_bib3 article-title: The reciprocal coordination and mechanics of molecular motors in living cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0809849106 contributor: fullname: Laib – volume: 85 start-page: 452 year: 2005 ident: 10.1016/j.cub.2020.01.046_bib7 article-title: Cilium-generated signaling and cilia-related disorders publication-title: Lab. Invest. doi: 10.1038/labinvest.3700253 contributor: fullname: Pan – volume: 16 start-page: 1341 year: 2005 ident: 10.1016/j.cub.2020.01.046_bib24 article-title: The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-10-0931 contributor: fullname: Mueller – volume: 20 start-page: 1250 year: 2018 ident: 10.1016/j.cub.2020.01.046_bib37 article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0213-1 contributor: fullname: Jordan – volume: 132 start-page: 371 year: 1996 ident: 10.1016/j.cub.2020.01.046_bib19 article-title: Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex publication-title: J. Cell Biol. doi: 10.1083/jcb.132.3.371 contributor: fullname: Wedaman |
SSID | ssj0012896 |
Score | 2.448097 |
Snippet | Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast... Construction and function of virtually all cilia require the universally conserved process of Intraflagellar Transport (IFT) [ 1 , 2 ]. During the atypically... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1160 |
SubjectTerms | auto-inhibition C. elegans C. reinhardtii cilia flagella intraflagellar transport kinesin-2 motor cooperation |
Title | Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport |
URI | https://dx.doi.org/10.1016/j.cub.2020.01.046 https://www.ncbi.nlm.nih.gov/pubmed/32142698 https://search.proquest.com/docview/2374318767 https://pubmed.ncbi.nlm.nih.gov/PMC7905398 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELXKIiReEHfKTUZiX6hS5e7ksep21WoFWmkXLW-R4zhslpJUTfKQ7-AH-Ba-jBk7SS-7IEDiJWrdJHV6Tsdjz_gMIW_tWLgALDe4yTDMyKQR8zgxzDT0klQIEQjcnDw_Yx8-BUczdzYYdCqLm7b_ijS0Ada4c_Yv0O5vCg3wGjCHI6AOxz_C_QTz2LPcsPXOken4cGofTsy1zHLcYFVl2WiBusyjSdWsEKFlMzrmpU40n9RVYcCJWaw80fdFpZIQeYXXTIQqhaZd1jmm0RQVFgdYt1s5VcbiAheL0yVYqSXmt_ba6dtOcKcJ1QpA9Ys8MClQ_Dmtc_51yxw12jReZKvLuo-ZLKWsal1Kuf6MJck2-QEXWclzrIbS8C-FTlY-5VWVrYp2mG5XOWBKazqG3oisl9667Tc72aE4_TJQgFAPZtqCBwyjPVqjsjPxbegnu2avLUtXM2jHfnjrj6V349CiVzmuxqKOx9hDpfbq7sl4K8fgTMn4oecFFtQMUevgtg12EEs7HC1O-iAXzHVVKL17ii7ortIP977mV27T9WnRfnbvlrt0fp_ca-c5dKIJ-oAMZP6Q3NGVT5tH5FtPU4o0pdPxj-9bFKWLkvKcbihKkaLQlNBdilJFUYoUxWt6itK4oTdQlAJF6S5FaU_Rx-Tj8ex8Ojfa-iCGcD2rMuw4tUOUDHSYl7hC2kHshnESxmnsMl-AdfKkK2CEYWnAHJ9ZNpcyhBHLQcPl2M4TcpAXuXxGaABusS-Y8BIH7p06QephrUvX5aYlfCmH5F3380crLQMTdfmRVxFgFSFWkWlFgNWQuB1AUevHav80Ai797rI3HZgR2HgM3PFcFnUZwQOCnw9-CxuSpxrcvhdYaMz2w2BI2A7s_QmoH7_7SZ5dKh151OZzwuD5v3X3Bbm7-aO-JAfVupavyK0yqV8rmv8EHv_ueA |
link.rule.ids | 230,315,782,786,887,27934,27935 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinesin-2+from+C.%C2%A0reinhardtii+Is+an+Atypically+Fast+and+Auto-inhibited+Motor+that+Is+Activated+by+Heterotrimerization+for+Intraflagellar+Transport&rft.jtitle=Current+biology&rft.au=Sonar%2C+Punam&rft.au=Youyen%2C+Wiphu&rft.au=Cleetus%2C+Augustine&rft.au=Wisanpitayakorn%2C+Pattipong&rft.date=2020-03-23&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=30&rft.issue=6&rft.spage=1160&rft.epage=1166.e5&rft_id=info:doi/10.1016%2Fj.cub.2020.01.046&rft.externalDocID=S0960982220300907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |