Performance of high lignin content cellulose nanocrystals in poly(lactic acid)
High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNC...
Saved in:
Published in: | Polymer (Guilford) Vol. 135; pp. 305 - 313 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
17-01-2018
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus.
[Display omitted]
•High-lignin-containing CNCs (HLCNCs) were used as nanofiller for PLA matrix.•HLCNC has lower agglomeration degree and higher hydrophobicity and surface area.•Lignin nanoparticles increased the compatibility of filler and polymer matrix.•HLCNCs based nanocomposites showed higher degree of crystallinity than neat PLA.•Adding HLCNCs increased the viscoelastic properties as compared to neat PLA. |
---|---|
AbstractList | High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus.
[Display omitted]
•High-lignin-containing CNCs (HLCNCs) were used as nanofiller for PLA matrix.•HLCNC has lower agglomeration degree and higher hydrophobicity and surface area.•Lignin nanoparticles increased the compatibility of filler and polymer matrix.•HLCNCs based nanocomposites showed higher degree of crystallinity than neat PLA.•Adding HLCNCs increased the viscoelastic properties as compared to neat PLA. High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus. |
Author | Agarwal, Umesh P. Stark, Nicole M. Matuana, Laurent Wei, Liqing Sabo, Ronald C. |
Author_xml | – sequence: 1 givenname: Liqing surname: Wei fullname: Wei, Liqing organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States – sequence: 2 givenname: Umesh P. orcidid: 0000-0002-5509-1961 surname: Agarwal fullname: Agarwal, Umesh P. organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States – sequence: 3 givenname: Laurent surname: Matuana fullname: Matuana, Laurent organization: School of Packaging, Michigan State University, East Lansing, MI 48824, United States – sequence: 4 givenname: Ronald C. surname: Sabo fullname: Sabo, Ronald C. email: rsabo@fs.fed.us organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States – sequence: 5 givenname: Nicole M. surname: Stark fullname: Stark, Nicole M. email: nstark@fs.fed.us organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States |
BookMark | eNqFkE1LwzAYx4NMcJt-BCHgRQ-tydO0aU8iwzcY6kHPIaRPt5QumUkn7Nubsd09PYf_G89vRibOOyTkmrOcM17d9_nWD_sNhhwYlzmHnBXNGZnyWhYZQMMnZMpYAVlRV_yCzGLsGWNQgpiS908MnQ8b7QxS39G1Xa3pYFfOOmq8G9GN1OAw7AYfkTrtvAn7OOoh0uQ47N4O2ozWUG1se3dJzruk4dXpzsn389PX4jVbfry8LR6XmRElGzPkvKtRYNNJDSWypuJggEPZNqyTWHWSQdWaui2hSC6OdcUkSCkKJjQ2ppiTm2PvNvifHcZR9X4XXJpUiYGAAmohkqs8ukzwMQbs1DbYjQ57xZk6oFO9OqE7xKTioBK6lHs45jC98GuTGo3FRKi1Ac2oWm__afgDVPB7oQ |
CitedBy_id | crossref_primary_10_1016_j_polymer_2018_07_070 crossref_primary_10_1016_j_mtsust_2021_100084 crossref_primary_10_1038_s41578_020_00239_y crossref_primary_10_1016_j_pmatsci_2023_101187 crossref_primary_10_3390_ma17010022 crossref_primary_10_1002_app_47594 crossref_primary_10_24011_barofd_744585 crossref_primary_10_1002_mawe_201800081 crossref_primary_10_3390_polym16010036 crossref_primary_10_1016_j_indcrop_2021_113898 crossref_primary_10_1007_s10965_022_03300_2 crossref_primary_10_1007_s10570_023_05217_5 crossref_primary_10_1016_j_polymer_2019_02_044 crossref_primary_10_1016_j_ijbiomac_2019_08_022 crossref_primary_10_1080_15440478_2022_2146830 crossref_primary_10_1007_s13399_023_05027_6 crossref_primary_10_1016_j_mtcomm_2021_102907 crossref_primary_10_1039_D1GC02841C crossref_primary_10_1016_j_polymer_2020_122677 crossref_primary_10_1080_02773813_2022_2036195 crossref_primary_10_1016_j_fuproc_2022_107390 crossref_primary_10_3390_polym13213661 crossref_primary_10_1021_acs_chemrev_2c00816 crossref_primary_10_3390_polym10091013 crossref_primary_10_1016_j_indcrop_2023_117200 crossref_primary_10_1016_j_jclepro_2020_122506 crossref_primary_10_21967_jbb_v4i1_186 crossref_primary_10_1515_ntrev_2020_0116 crossref_primary_10_1002_adma_202002264 crossref_primary_10_1016_j_carbpol_2024_122460 crossref_primary_10_1016_j_cej_2019_122669 crossref_primary_10_1016_j_chemosphere_2020_129277 crossref_primary_10_3390_app11115307 crossref_primary_10_1007_s10098_021_02215_8 crossref_primary_10_1002_app_50199 crossref_primary_10_1021_acsfoodscitech_2c00289 crossref_primary_10_1016_j_biotechadv_2023_108265 crossref_primary_10_1002_app_51848 crossref_primary_10_1007_s10570_022_04620_8 crossref_primary_10_1021_acsapm_2c00742 crossref_primary_10_1007_s10570_018_1984_z crossref_primary_10_1007_s10853_023_08418_2 crossref_primary_10_1007_s13399_020_00860_5 crossref_primary_10_1021_acs_iecr_0c00170 crossref_primary_10_3390_nano12081320 crossref_primary_10_1021_acs_langmuir_8b01892 crossref_primary_10_1016_j_carbpol_2020_117480 crossref_primary_10_3390_polym11020204 crossref_primary_10_1016_j_ijbiomac_2018_11_064 crossref_primary_10_1039_D1NJ01958A crossref_primary_10_1007_s10570_019_02382_4 crossref_primary_10_1007_s10570_019_02934_8 crossref_primary_10_1016_j_indcrop_2021_113582 crossref_primary_10_1002_app_49025 crossref_primary_10_1016_j_matchemphys_2021_124719 crossref_primary_10_3390_polym13111726 crossref_primary_10_1021_acs_biomac_8b00023 |
Cites_doi | 10.1021/bm0500345 10.1002/pi.4217 10.1016/j.jaap.2015.08.005 10.1021/acssuschemeng.6b02458 10.1016/j.indcrop.2015.02.011 10.1039/C5GC01568E 10.1039/C6TA00900J 10.1007/s10570-015-0615-1 10.1021/acs.biomac.5b00049 10.1023/A:1015826713109 10.1177/004051755902901003 10.3390/ma8125447 10.1007/s10570-011-9630-z 10.1002/app.41724 10.1016/j.polymer.2015.12.050 10.1016/j.compositesa.2015.05.024 10.32964/TJ13.5.19 10.1111/j.1541-4337.2010.00126.x 10.1016/S0032-3861(01)00086-6 10.1016/j.compositesa.2011.07.025 10.1016/j.polymdegradstab.2013.03.027 10.1016/j.polymer.2007.03.062 10.1039/C6GC00687F 10.1007/s10570-015-0788-7 10.1021/jf5019406 10.1016/j.carbpol.2017.04.008 10.1021/acs.langmuir.6b01376 10.1039/c0gc00035c 10.1007/s13233-013-1160-0 10.1016/j.polymer.2006.04.013 10.1021/am302624t 10.1016/j.ijbiomac.2016.04.068 |
ContentType | Journal Article |
Copyright | 2017 Copyright Elsevier BV Jan 17, 2018 |
Copyright_xml | – notice: 2017 – notice: Copyright Elsevier BV Jan 17, 2018 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.polymer.2017.12.039 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
EndPage | 313 |
ExternalDocumentID | 10_1016_j_polymer_2017_12_039 S0032386117312090 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AAXKI AAYXX ABDEX ABDPE ABXDB ACNNM ADMUD ADVLN AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c450t-e11f8e4e9f7a25e09612c2125d90f7e6f7026dc8d5234e91e86072774304ae9c3 |
ISSN | 0032-3861 |
IngestDate | Thu Oct 10 14:32:54 EDT 2024 Fri Nov 22 03:09:09 EST 2024 Fri Feb 23 02:33:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Poly(lactic acid) Nanolignin Nanocomposites Hydrothermally-treated wood Cellulose nanocrystals Interface |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-e11f8e4e9f7a25e09612c2125d90f7e6f7026dc8d5234e91e86072774304ae9c3 |
ORCID | 0000-0002-5509-1961 |
OpenAccessLink | http://manuscript.elsevier.com/S0032386117312090/pdf/S0032386117312090.pdf |
PQID | 2014232844 |
PQPubID | 2045419 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2014232844 crossref_primary_10_1016_j_polymer_2017_12_039 elsevier_sciencedirect_doi_10_1016_j_polymer_2017_12_039 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-17 |
PublicationDateYYYYMMDD | 2018-01-17 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wei, Liang, Guho, Hanson, Smith, Garcia-Perez, McDonald (bib19) 2015; 115 Chen, Zhu, Baez, Kitin, Elder (bib30) 2016; 18 Lee, Park, Kim (bib22) 2013; 21 Wang, Ding, Cheng (bib28) 2007; 48 Moon, Beck, Rudie (bib1) 2013 Agarwal, Ralph, Reiner, Baez (bib9) 2015; 23 Segal, Creely, Martin, Conrad (bib18) 1959; 29 Gupta, Simmons, Schueneman, Hylton, Mintz (bib8) 2017; 5 Xu, Tong, Yu, Wen, Zhang, He (bib16) 2012; 61 Liang, McDonald (bib15) 2014; 62 Heath, Thielemans (bib27) 2010; 12 Henriksson, Gatenholm (bib31) 2002; 9 Peng, Walsh, Sabo, Turng, Clemons (bib25) 2016; 84 Brinkmann, Chen, Couillard, Jakubek, Leng, Johnston (bib26) 2016; 32 Martin, Avérous (bib37) 2001; 42 U.P. Agarwal, S.A. Ralph, R.S. Reiner, C. Baez, Production of cellulose nanocrystals from raw wood via hydrothermal treatment. Patent pending, Application serial no. 15/455211, USPTO, 2017. Wei, McDonald, Freitag, Morrell (bib21) 2013; 98 Nelson, Retsina (bib14) 2014; 13 Thielemans, Wool (bib34) 2005; 6 Wei, Agarwal, Hirth, Matuana, Sabo, Stark (bib17) 2017; 169 Wei, McDonald (bib24) 2014; 132 Xu, Liu, Jiang, Zhu, Haagenson, Wiesenborn (bib23) 2013; 5 Wei, Stark, McDonald (bib3) 2015; 17 Wei, Stark, Sabo, Matuana (bib33) 2016 Sullivan, Moon, Kalaitzidou (bib36) 2015; 8 Peng, Gardner, Han (bib5) 2011; 19 Yang, Fortunati, Dominici, Giovanale, Mazzaglia, Balestra, Kenny, Puglia (bib7) 2016; 89 Sirvi, Visanko, Heiskanen, Liimatainen (bib6) 2016; 4 Wei, Agarwal, Stark, Sabo (bib12) 2017 Herrera, Salaberria, Mathew, Oksman (bib32) 2016; 83 Wei, Luo, McDonald, Agarwal, Hirth, Matuana, Sabo, Stark (bib11) 2017 Pillin, Montrelay, Grohens (bib35) 2006; 47 Wei, McDonald, Stark (bib4) 2015; 16 Wei, Liang, McDonald (bib20) 2015; 69 Chen, Wang, Hirth, Baez, Agarwal, Zhu (bib29) 2015; 22 Reiner, Rudie (bib13) 2013 Jamshidian, Tehrany, Imran, Jacquot, Desobry (bib39) 2010; 9 Sahoo, Misra, Mohanty (bib38) 2011; 42 Wei, McDonald (bib2) 2016; 9 Sirvi (10.1016/j.polymer.2017.12.039_bib6) 2016; 4 Herrera (10.1016/j.polymer.2017.12.039_bib32) 2016; 83 Yang (10.1016/j.polymer.2017.12.039_bib7) 2016; 89 Pillin (10.1016/j.polymer.2017.12.039_bib35) 2006; 47 Wei (10.1016/j.polymer.2017.12.039_bib12) 2017 Jamshidian (10.1016/j.polymer.2017.12.039_bib39) 2010; 9 Lee (10.1016/j.polymer.2017.12.039_bib22) 2013; 21 Wei (10.1016/j.polymer.2017.12.039_bib20) 2015; 69 Thielemans (10.1016/j.polymer.2017.12.039_bib34) 2005; 6 Nelson (10.1016/j.polymer.2017.12.039_bib14) 2014; 13 Chen (10.1016/j.polymer.2017.12.039_bib29) 2015; 22 Brinkmann (10.1016/j.polymer.2017.12.039_bib26) 2016; 32 Sullivan (10.1016/j.polymer.2017.12.039_bib36) 2015; 8 Sahoo (10.1016/j.polymer.2017.12.039_bib38) 2011; 42 Wei (10.1016/j.polymer.2017.12.039_bib2) 2016; 9 10.1016/j.polymer.2017.12.039_bib10 Wei (10.1016/j.polymer.2017.12.039_bib24) 2014; 132 Wei (10.1016/j.polymer.2017.12.039_bib4) 2015; 16 Chen (10.1016/j.polymer.2017.12.039_bib30) 2016; 18 Peng (10.1016/j.polymer.2017.12.039_bib25) 2016; 84 Heath (10.1016/j.polymer.2017.12.039_bib27) 2010; 12 Henriksson (10.1016/j.polymer.2017.12.039_bib31) 2002; 9 Wei (10.1016/j.polymer.2017.12.039_bib17) 2017; 169 Martin (10.1016/j.polymer.2017.12.039_bib37) 2001; 42 Xu (10.1016/j.polymer.2017.12.039_bib16) 2012; 61 Wei (10.1016/j.polymer.2017.12.039_bib3) 2015; 17 Wei (10.1016/j.polymer.2017.12.039_bib21) 2013; 98 Peng (10.1016/j.polymer.2017.12.039_bib5) 2011; 19 Xu (10.1016/j.polymer.2017.12.039_bib23) 2013; 5 Segal (10.1016/j.polymer.2017.12.039_bib18) 1959; 29 Wei (10.1016/j.polymer.2017.12.039_bib33) 2016 Agarwal (10.1016/j.polymer.2017.12.039_bib9) 2015; 23 Wang (10.1016/j.polymer.2017.12.039_bib28) 2007; 48 Moon (10.1016/j.polymer.2017.12.039_bib1) 2013 Gupta (10.1016/j.polymer.2017.12.039_bib8) 2017; 5 Reiner (10.1016/j.polymer.2017.12.039_bib13) 2013 Liang (10.1016/j.polymer.2017.12.039_bib15) 2014; 62 Wei (10.1016/j.polymer.2017.12.039_bib11) Wei (10.1016/j.polymer.2017.12.039_bib19) 2015; 115 |
References_xml | – start-page: 9 year: 2013 end-page: 12 ident: bib1 article-title: Cellulose nanocrystals – a material with unique properties and many potential applications publication-title: Production and Applications of Cellulose Nanomaterials contributor: fullname: Rudie – volume: 29 start-page: 786 year: 1959 end-page: 794 ident: bib18 article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer publication-title: Textil. Res. J. contributor: fullname: Conrad – year: 2017 ident: bib11 article-title: Preparation and characterization of the nanocomposites from chemically modified nanocellulose and poly (lactic acid) contributor: fullname: Stark – volume: 9 start-page: 55 year: 2002 end-page: 64 ident: bib31 article-title: Surface properties of CTMP fibers modified with xylans publication-title: Cellulose contributor: fullname: Gatenholm – volume: 21 start-page: 1218 year: 2013 end-page: 1225 ident: bib22 article-title: Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide publication-title: Macromol. Res. contributor: fullname: Kim – volume: 169 start-page: 108 year: 2017 end-page: 116 ident: bib17 article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester publication-title: Carbohydr. Polym. contributor: fullname: Stark – year: 2016 ident: bib33 article-title: Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging Products publication-title: Proceedings, Forest Products Society International Convention, June 28-29 contributor: fullname: Matuana – year: 2017 ident: bib12 article-title: Nanocomposites from Lignin-containing Cellulose Nanocrystals and Poly(lactic Acid), ANTEC 2017 contributor: fullname: Sabo – volume: 5 start-page: 2999 year: 2013 end-page: 3009 ident: bib23 article-title: Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Wiesenborn – volume: 69 start-page: 91 year: 2015 end-page: 103 ident: bib20 article-title: Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue publication-title: Ind. Crop. Prod. contributor: fullname: McDonald – volume: 18 start-page: 3835 year: 2016 end-page: 3843 ident: bib30 article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids publication-title: Green Chem. contributor: fullname: Elder – volume: 62 start-page: 8421 year: 2014 end-page: 8429 ident: bib15 article-title: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production publication-title: J. Agric. Food Chem. contributor: fullname: McDonald – volume: 8 start-page: 8106 year: 2015 end-page: 8116 ident: bib36 article-title: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films publication-title: Materials contributor: fullname: Kalaitzidou – volume: 19 start-page: 91 year: 2011 end-page: 102 ident: bib5 article-title: Drying cellulose nanofibrils: in search of a suitable method publication-title: Cellulose contributor: fullname: Han – volume: 16 start-page: 1040 year: 2015 end-page: 1049 ident: bib4 article-title: Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide publication-title: Biomacromolecules contributor: fullname: Stark – volume: 83 start-page: 89 year: 2016 end-page: 97 ident: bib32 article-title: Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties publication-title: Compos. Appl. Sci. Manuf. contributor: fullname: Oksman – volume: 22 start-page: 1753 year: 2015 end-page: 1762 ident: bib29 article-title: Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis publication-title: Cellulose contributor: fullname: Zhu – volume: 42 start-page: 6209 year: 2001 end-page: 6219 ident: bib37 article-title: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems publication-title: Polymer contributor: fullname: Avérous – volume: 32 start-page: 6105 year: 2016 end-page: 6114 ident: bib26 article-title: Correlating cellulose nanocrystal particle size and surface area publication-title: Langmuir contributor: fullname: Johnston – volume: 47 start-page: 4676 year: 2006 end-page: 4682 ident: bib35 article-title: Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? publication-title: Polymer contributor: fullname: Grohens – volume: 115 start-page: 268 year: 2015 end-page: 278 ident: bib19 article-title: Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process publication-title: J. Anal. Appl. Pyrol. contributor: fullname: McDonald – volume: 5 start-page: 1711 year: 2017 end-page: 1720 ident: bib8 article-title: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites publication-title: ACS Sustainable Chemistry & Engineering contributor: fullname: Mintz – volume: 84 start-page: 158 year: 2016 end-page: 166 ident: bib25 article-title: Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming publication-title: Polymer contributor: fullname: Clemons – volume: 42 start-page: 1710 year: 2011 end-page: 1718 ident: bib38 article-title: Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process publication-title: Compos. Appl. Sci. Manuf. contributor: fullname: Mohanty – volume: 13 start-page: 19 year: 2014 end-page: 23 ident: bib14 article-title: Innovative nanocellulose process breaks the cost barrier publication-title: TAPPI contributor: fullname: Retsina – volume: 9 start-page: 552 year: 2010 end-page: 571 ident: bib39 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Compr. Rev. Food Sci. Food Saf. contributor: fullname: Desobry – volume: 9 start-page: 303 year: 2016 ident: bib2 article-title: A review on grafting of biofibers for biocomposites materials contributor: fullname: McDonald – volume: 48 start-page: 3486 year: 2007 end-page: 3493 ident: bib28 article-title: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups publication-title: Polymer contributor: fullname: Cheng – start-page: 21 year: 2013 end-page: 24 ident: bib13 article-title: Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory publication-title: Production and Applications of Cellulose Nanomaterials contributor: fullname: Rudie – volume: 4 start-page: 6368 year: 2016 end-page: 6375 ident: bib6 article-title: UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films publication-title: J. Mater. Chem. contributor: fullname: Liimatainen – volume: 12 start-page: 1448 year: 2010 ident: bib27 article-title: Cellulose nanowhisker aerogels publication-title: Green Chem. contributor: fullname: Thielemans – volume: 132 start-page: 41724 year: 2014 ident: bib24 article-title: Peroxide induced cross-linking by reactive melt processing of two biopolyesters: poly(3-hydroxybutyrate) and poly(L-lactic acid) improve their melting processability publication-title: J. Appl. Polym. Sci. contributor: fullname: McDonald – volume: 89 start-page: 360 year: 2016 end-page: 368 ident: bib7 article-title: Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films publication-title: Int. J. Biol. Macromol. contributor: fullname: Puglia – volume: 61 start-page: 1382 year: 2012 end-page: 1388 ident: bib16 article-title: A one-pot method to prepare transparent poly (methyl methacrylate)/montmorillonite nanocomposites using imidazolium-based ionic liquids publication-title: Polym. Int. contributor: fullname: He – volume: 98 start-page: 1348 year: 2013 end-page: 1361 ident: bib21 article-title: Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites publication-title: Polym. Degrad. Stabil. contributor: fullname: Morrell – volume: 17 start-page: 4800 year: 2015 end-page: 4814 ident: bib3 article-title: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers publication-title: Green Chem. contributor: fullname: McDonald – volume: 6 start-page: 1895 year: 2005 end-page: 1905 ident: bib34 article-title: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling publication-title: Biomacromolecules contributor: fullname: Wool – volume: 23 start-page: 125 year: 2015 end-page: 144 ident: bib9 article-title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy publication-title: Cellulose contributor: fullname: Baez – volume: 6 start-page: 1895 year: 2005 ident: 10.1016/j.polymer.2017.12.039_bib34 article-title: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling publication-title: Biomacromolecules doi: 10.1021/bm0500345 contributor: fullname: Thielemans – volume: 61 start-page: 1382 issue: 9 year: 2012 ident: 10.1016/j.polymer.2017.12.039_bib16 article-title: A one-pot method to prepare transparent poly (methyl methacrylate)/montmorillonite nanocomposites using imidazolium-based ionic liquids publication-title: Polym. Int. doi: 10.1002/pi.4217 contributor: fullname: Xu – volume: 115 start-page: 268 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib19 article-title: Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.08.005 contributor: fullname: Wei – start-page: 9 year: 2013 ident: 10.1016/j.polymer.2017.12.039_bib1 article-title: Cellulose nanocrystals – a material with unique properties and many potential applications contributor: fullname: Moon – volume: 5 start-page: 1711 issue: 2 year: 2017 ident: 10.1016/j.polymer.2017.12.039_bib8 article-title: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.6b02458 contributor: fullname: Gupta – year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib33 article-title: Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging Products contributor: fullname: Wei – volume: 9 start-page: 303 issue: 4 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib2 article-title: A review on grafting of biofibers for biocomposites materials contributor: fullname: Wei – start-page: 21 year: 2013 ident: 10.1016/j.polymer.2017.12.039_bib13 article-title: Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory contributor: fullname: Reiner – volume: 69 start-page: 91 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib20 article-title: Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2015.02.011 contributor: fullname: Wei – volume: 17 start-page: 4800 issue: 10 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib3 article-title: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers publication-title: Green Chem. doi: 10.1039/C5GC01568E contributor: fullname: Wei – volume: 4 start-page: 6368 issue: 17 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib6 article-title: UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films publication-title: J. Mater. Chem. doi: 10.1039/C6TA00900J contributor: fullname: Sirvi – volume: 22 start-page: 1753 issue: 3 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib29 article-title: Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis publication-title: Cellulose doi: 10.1007/s10570-015-0615-1 contributor: fullname: Chen – volume: 16 start-page: 1040 issue: 3 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib4 article-title: Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00049 contributor: fullname: Wei – volume: 9 start-page: 55 year: 2002 ident: 10.1016/j.polymer.2017.12.039_bib31 article-title: Surface properties of CTMP fibers modified with xylans publication-title: Cellulose doi: 10.1023/A:1015826713109 contributor: fullname: Henriksson – volume: 29 start-page: 786 issue: 10 year: 1959 ident: 10.1016/j.polymer.2017.12.039_bib18 article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer publication-title: Textil. Res. J. doi: 10.1177/004051755902901003 contributor: fullname: Segal – year: 2017 ident: 10.1016/j.polymer.2017.12.039_bib12 contributor: fullname: Wei – volume: 8 start-page: 8106 issue: 12 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib36 article-title: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films publication-title: Materials doi: 10.3390/ma8125447 contributor: fullname: Sullivan – volume: 19 start-page: 91 issue: 1 year: 2011 ident: 10.1016/j.polymer.2017.12.039_bib5 article-title: Drying cellulose nanofibrils: in search of a suitable method publication-title: Cellulose doi: 10.1007/s10570-011-9630-z contributor: fullname: Peng – volume: 132 start-page: 41724 year: 2014 ident: 10.1016/j.polymer.2017.12.039_bib24 article-title: Peroxide induced cross-linking by reactive melt processing of two biopolyesters: poly(3-hydroxybutyrate) and poly(L-lactic acid) improve their melting processability publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41724 contributor: fullname: Wei – volume: 84 start-page: 158 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib25 article-title: Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming publication-title: Polymer doi: 10.1016/j.polymer.2015.12.050 contributor: fullname: Peng – volume: 83 start-page: 89 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib32 article-title: Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.05.024 contributor: fullname: Herrera – volume: 13 start-page: 19 year: 2014 ident: 10.1016/j.polymer.2017.12.039_bib14 article-title: Innovative nanocellulose process breaks the cost barrier publication-title: TAPPI doi: 10.32964/TJ13.5.19 contributor: fullname: Nelson – volume: 9 start-page: 552 issue: 5 year: 2010 ident: 10.1016/j.polymer.2017.12.039_bib39 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/j.1541-4337.2010.00126.x contributor: fullname: Jamshidian – ident: 10.1016/j.polymer.2017.12.039_bib11 contributor: fullname: Wei – volume: 42 start-page: 6209 issue: 14 year: 2001 ident: 10.1016/j.polymer.2017.12.039_bib37 article-title: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems publication-title: Polymer doi: 10.1016/S0032-3861(01)00086-6 contributor: fullname: Martin – volume: 42 start-page: 1710 issue: 11 year: 2011 ident: 10.1016/j.polymer.2017.12.039_bib38 article-title: Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2011.07.025 contributor: fullname: Sahoo – volume: 98 start-page: 1348 issue: 7 year: 2013 ident: 10.1016/j.polymer.2017.12.039_bib21 article-title: Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.03.027 contributor: fullname: Wei – volume: 48 start-page: 3486 issue: 12 year: 2007 ident: 10.1016/j.polymer.2017.12.039_bib28 article-title: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups publication-title: Polymer doi: 10.1016/j.polymer.2007.03.062 contributor: fullname: Wang – volume: 18 start-page: 3835 issue: 13 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib30 article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids publication-title: Green Chem. doi: 10.1039/C6GC00687F contributor: fullname: Chen – volume: 23 start-page: 125 issue: 1 year: 2015 ident: 10.1016/j.polymer.2017.12.039_bib9 article-title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy publication-title: Cellulose doi: 10.1007/s10570-015-0788-7 contributor: fullname: Agarwal – volume: 62 start-page: 8421 issue: 33 year: 2014 ident: 10.1016/j.polymer.2017.12.039_bib15 article-title: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production publication-title: J. Agric. Food Chem. doi: 10.1021/jf5019406 contributor: fullname: Liang – volume: 169 start-page: 108 year: 2017 ident: 10.1016/j.polymer.2017.12.039_bib17 article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.04.008 contributor: fullname: Wei – volume: 32 start-page: 6105 issue: 24 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib26 article-title: Correlating cellulose nanocrystal particle size and surface area publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01376 contributor: fullname: Brinkmann – volume: 12 start-page: 1448 issue: 8 year: 2010 ident: 10.1016/j.polymer.2017.12.039_bib27 article-title: Cellulose nanowhisker aerogels publication-title: Green Chem. doi: 10.1039/c0gc00035c contributor: fullname: Heath – volume: 21 start-page: 1218 issue: 11 year: 2013 ident: 10.1016/j.polymer.2017.12.039_bib22 article-title: Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide publication-title: Macromol. Res. doi: 10.1007/s13233-013-1160-0 contributor: fullname: Lee – volume: 47 start-page: 4676 issue: 13 year: 2006 ident: 10.1016/j.polymer.2017.12.039_bib35 article-title: Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? publication-title: Polymer doi: 10.1016/j.polymer.2006.04.013 contributor: fullname: Pillin – ident: 10.1016/j.polymer.2017.12.039_bib10 – volume: 5 start-page: 2999 issue: 8 year: 2013 ident: 10.1016/j.polymer.2017.12.039_bib23 article-title: Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302624t contributor: fullname: Xu – volume: 89 start-page: 360 year: 2016 ident: 10.1016/j.polymer.2017.12.039_bib7 article-title: Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.04.068 contributor: fullname: Yang |
SSID | ssj0002524 |
Score | 2.5307317 |
Snippet | High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 305 |
SubjectTerms | Adhesion Adhesion tests Cellulose Cellulose fibers Cellulose nanocrystals Contact angle Crystal structure Crystallinity Crystals Degree of crystallinity Electron microscopy Elongation Extrusion molding Fibers Fillers Hydrophobic surfaces Hydrophobicity Hydrothermally-treated wood Injection molding Interface Lignin Mechanical properties Modulus of elasticity Nanocomposites Nanocrystals Nanolignin Nanoparticles Poly(lactic acid) Polylactic acid Polymers Spectroscopy Storage modulus Surface area Thermal analysis Viscoelasticity |
Title | Performance of high lignin content cellulose nanocrystals in poly(lactic acid) |
URI | https://dx.doi.org/10.1016/j.polymer.2017.12.039 https://www.proquest.com/docview/2014232844 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa27QE4ICggCgX5wAEUOcSOnTjHalkoHKqVthW9RXk47VZptuxuhPj3zMR5qYB4SFyiyOtkrZkv4_HomxlCXplU6SLhmqk89ZjkqWbgxxnGA5VGJvO8tClgerwIT871u5mcTSYdkXQY-6-ahjHQNWbO_oW2-5fCANyDzuEKWofrH-l9PsoEQEcQDt9OubyoGr458tW3Dgbr6xKJ6lVSrbL1N_AQS8snX2HjaV02mVNOkuHqo7H_OocJ11h9QugP9bK0zPg-lvDZ2Fzr5ZduQ0QoXSTrr01bAefs2mwunbk7hMG3dWKT0jA_e8TBWQA2LfEbQ9fO1B1HJzgS45hNxrQhsy5tZuAoNWbYF8zXtgq7a6zl1aHPhLCtu3rT7KuRcfU9NdqnfZvD-sMWYKMRV-6NFQiy98Im4muLJt2qrr3AteBSeOhjGrG3Q_YE2CwwmXtHH2fnn_ptXShhS3q3ax_Swd7-9M9-5ejc2vIbP-b0AbnfHkDokUXOQzIx1T65M-36_u2Te6MSlY_IyQhPdFVQxBO1eKItnmiPJzrGE4UZuODXFk0U0fTmMTl7PzudHrO2BwfLpPK2zHBeaCNNVISJUAYbBIkM3B2VR14RmqAI4RCfZzpXwodZ3OjAA5cY_FJPJibK_Cdkt1pV5imhATafg_N6Ekg41RsZyUAInke5CXjGTXJA3E5g8Y0ttRJ3HMSruJVwjBKOuYhBwgdEd2KNW3_R-oExYOF3jx52aojbj3eDvyNtQUv57N_f_JzcHb6DQ7K7XdfmBdnZ5PXLFlHfAUK_l6E |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+high+lignin+content+cellulose+nanocrystals+in+poly%28lactic+acid%29&rft.jtitle=Polymer+%28Guilford%29&rft.au=Wei%2C+Liqing&rft.au=Agarwal%2C+Umesh+P.&rft.au=Matuana%2C+Laurent&rft.au=Sabo%2C+Ronald+C.&rft.date=2018-01-17&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=135&rft.spage=305&rft.epage=313&rft_id=info:doi/10.1016%2Fj.polymer.2017.12.039&rft.externalDocID=S0032386117312090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |