Performance of high lignin content cellulose nanocrystals in poly(lactic acid)

High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNC...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) Vol. 135; pp. 305 - 313
Main Authors: Wei, Liqing, Agarwal, Umesh P., Matuana, Laurent, Sabo, Ronald C., Stark, Nicole M.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 17-01-2018
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus. [Display omitted] •High-lignin-containing CNCs (HLCNCs) were used as nanofiller for PLA matrix.•HLCNC has lower agglomeration degree and higher hydrophobicity and surface area.•Lignin nanoparticles increased the compatibility of filler and polymer matrix.•HLCNCs based nanocomposites showed higher degree of crystallinity than neat PLA.•Adding HLCNCs increased the viscoelastic properties as compared to neat PLA.
AbstractList High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus. [Display omitted] •High-lignin-containing CNCs (HLCNCs) were used as nanofiller for PLA matrix.•HLCNC has lower agglomeration degree and higher hydrophobicity and surface area.•Lignin nanoparticles increased the compatibility of filler and polymer matrix.•HLCNCs based nanocomposites showed higher degree of crystallinity than neat PLA.•Adding HLCNCs increased the viscoelastic properties as compared to neat PLA.
High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus.
Author Agarwal, Umesh P.
Stark, Nicole M.
Matuana, Laurent
Wei, Liqing
Sabo, Ronald C.
Author_xml – sequence: 1
  givenname: Liqing
  surname: Wei
  fullname: Wei, Liqing
  organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
– sequence: 2
  givenname: Umesh P.
  orcidid: 0000-0002-5509-1961
  surname: Agarwal
  fullname: Agarwal, Umesh P.
  organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
– sequence: 3
  givenname: Laurent
  surname: Matuana
  fullname: Matuana, Laurent
  organization: School of Packaging, Michigan State University, East Lansing, MI 48824, United States
– sequence: 4
  givenname: Ronald C.
  surname: Sabo
  fullname: Sabo, Ronald C.
  email: rsabo@fs.fed.us
  organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
– sequence: 5
  givenname: Nicole M.
  surname: Stark
  fullname: Stark, Nicole M.
  email: nstark@fs.fed.us
  organization: USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
BookMark eNqFkE1LwzAYx4NMcJt-BCHgRQ-tydO0aU8iwzcY6kHPIaRPt5QumUkn7Nubsd09PYf_G89vRibOOyTkmrOcM17d9_nWD_sNhhwYlzmHnBXNGZnyWhYZQMMnZMpYAVlRV_yCzGLsGWNQgpiS908MnQ8b7QxS39G1Xa3pYFfOOmq8G9GN1OAw7AYfkTrtvAn7OOoh0uQ47N4O2ozWUG1se3dJzruk4dXpzsn389PX4jVbfry8LR6XmRElGzPkvKtRYNNJDSWypuJggEPZNqyTWHWSQdWaui2hSC6OdcUkSCkKJjQ2ppiTm2PvNvifHcZR9X4XXJpUiYGAAmohkqs8ukzwMQbs1DbYjQ57xZk6oFO9OqE7xKTioBK6lHs45jC98GuTGo3FRKi1Ac2oWm__afgDVPB7oQ
CitedBy_id crossref_primary_10_1016_j_polymer_2018_07_070
crossref_primary_10_1016_j_mtsust_2021_100084
crossref_primary_10_1038_s41578_020_00239_y
crossref_primary_10_1016_j_pmatsci_2023_101187
crossref_primary_10_3390_ma17010022
crossref_primary_10_1002_app_47594
crossref_primary_10_24011_barofd_744585
crossref_primary_10_1002_mawe_201800081
crossref_primary_10_3390_polym16010036
crossref_primary_10_1016_j_indcrop_2021_113898
crossref_primary_10_1007_s10965_022_03300_2
crossref_primary_10_1007_s10570_023_05217_5
crossref_primary_10_1016_j_polymer_2019_02_044
crossref_primary_10_1016_j_ijbiomac_2019_08_022
crossref_primary_10_1080_15440478_2022_2146830
crossref_primary_10_1007_s13399_023_05027_6
crossref_primary_10_1016_j_mtcomm_2021_102907
crossref_primary_10_1039_D1GC02841C
crossref_primary_10_1016_j_polymer_2020_122677
crossref_primary_10_1080_02773813_2022_2036195
crossref_primary_10_1016_j_fuproc_2022_107390
crossref_primary_10_3390_polym13213661
crossref_primary_10_1021_acs_chemrev_2c00816
crossref_primary_10_3390_polym10091013
crossref_primary_10_1016_j_indcrop_2023_117200
crossref_primary_10_1016_j_jclepro_2020_122506
crossref_primary_10_21967_jbb_v4i1_186
crossref_primary_10_1515_ntrev_2020_0116
crossref_primary_10_1002_adma_202002264
crossref_primary_10_1016_j_carbpol_2024_122460
crossref_primary_10_1016_j_cej_2019_122669
crossref_primary_10_1016_j_chemosphere_2020_129277
crossref_primary_10_3390_app11115307
crossref_primary_10_1007_s10098_021_02215_8
crossref_primary_10_1002_app_50199
crossref_primary_10_1021_acsfoodscitech_2c00289
crossref_primary_10_1016_j_biotechadv_2023_108265
crossref_primary_10_1002_app_51848
crossref_primary_10_1007_s10570_022_04620_8
crossref_primary_10_1021_acsapm_2c00742
crossref_primary_10_1007_s10570_018_1984_z
crossref_primary_10_1007_s10853_023_08418_2
crossref_primary_10_1007_s13399_020_00860_5
crossref_primary_10_1021_acs_iecr_0c00170
crossref_primary_10_3390_nano12081320
crossref_primary_10_1021_acs_langmuir_8b01892
crossref_primary_10_1016_j_carbpol_2020_117480
crossref_primary_10_3390_polym11020204
crossref_primary_10_1016_j_ijbiomac_2018_11_064
crossref_primary_10_1039_D1NJ01958A
crossref_primary_10_1007_s10570_019_02382_4
crossref_primary_10_1007_s10570_019_02934_8
crossref_primary_10_1016_j_indcrop_2021_113582
crossref_primary_10_1002_app_49025
crossref_primary_10_1016_j_matchemphys_2021_124719
crossref_primary_10_3390_polym13111726
crossref_primary_10_1021_acs_biomac_8b00023
Cites_doi 10.1021/bm0500345
10.1002/pi.4217
10.1016/j.jaap.2015.08.005
10.1021/acssuschemeng.6b02458
10.1016/j.indcrop.2015.02.011
10.1039/C5GC01568E
10.1039/C6TA00900J
10.1007/s10570-015-0615-1
10.1021/acs.biomac.5b00049
10.1023/A:1015826713109
10.1177/004051755902901003
10.3390/ma8125447
10.1007/s10570-011-9630-z
10.1002/app.41724
10.1016/j.polymer.2015.12.050
10.1016/j.compositesa.2015.05.024
10.32964/TJ13.5.19
10.1111/j.1541-4337.2010.00126.x
10.1016/S0032-3861(01)00086-6
10.1016/j.compositesa.2011.07.025
10.1016/j.polymdegradstab.2013.03.027
10.1016/j.polymer.2007.03.062
10.1039/C6GC00687F
10.1007/s10570-015-0788-7
10.1021/jf5019406
10.1016/j.carbpol.2017.04.008
10.1021/acs.langmuir.6b01376
10.1039/c0gc00035c
10.1007/s13233-013-1160-0
10.1016/j.polymer.2006.04.013
10.1021/am302624t
10.1016/j.ijbiomac.2016.04.068
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Jan 17, 2018
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Jan 17, 2018
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.polymer.2017.12.039
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
EndPage 313
ExternalDocumentID 10_1016_j_polymer_2017_12_039
S0032386117312090
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
AAQXK
AAXKI
AAYXX
ABDEX
ABDPE
ABXDB
ACNNM
ADMUD
ADVLN
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SCB
SEW
T9H
WUQ
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c450t-e11f8e4e9f7a25e09612c2125d90f7e6f7026dc8d5234e91e86072774304ae9c3
ISSN 0032-3861
IngestDate Thu Oct 10 14:32:54 EDT 2024
Fri Nov 22 03:09:09 EST 2024
Fri Feb 23 02:33:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Poly(lactic acid)
Nanolignin
Nanocomposites
Hydrothermally-treated wood
Cellulose nanocrystals
Interface
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-e11f8e4e9f7a25e09612c2125d90f7e6f7026dc8d5234e91e86072774304ae9c3
ORCID 0000-0002-5509-1961
OpenAccessLink http://manuscript.elsevier.com/S0032386117312090/pdf/S0032386117312090.pdf
PQID 2014232844
PQPubID 2045419
PageCount 9
ParticipantIDs proquest_journals_2014232844
crossref_primary_10_1016_j_polymer_2017_12_039
elsevier_sciencedirect_doi_10_1016_j_polymer_2017_12_039
PublicationCentury 2000
PublicationDate 2018-01-17
PublicationDateYYYYMMDD 2018-01-17
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-17
  day: 17
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wei, Liang, Guho, Hanson, Smith, Garcia-Perez, McDonald (bib19) 2015; 115
Chen, Zhu, Baez, Kitin, Elder (bib30) 2016; 18
Lee, Park, Kim (bib22) 2013; 21
Wang, Ding, Cheng (bib28) 2007; 48
Moon, Beck, Rudie (bib1) 2013
Agarwal, Ralph, Reiner, Baez (bib9) 2015; 23
Segal, Creely, Martin, Conrad (bib18) 1959; 29
Gupta, Simmons, Schueneman, Hylton, Mintz (bib8) 2017; 5
Xu, Tong, Yu, Wen, Zhang, He (bib16) 2012; 61
Liang, McDonald (bib15) 2014; 62
Heath, Thielemans (bib27) 2010; 12
Henriksson, Gatenholm (bib31) 2002; 9
Peng, Walsh, Sabo, Turng, Clemons (bib25) 2016; 84
Brinkmann, Chen, Couillard, Jakubek, Leng, Johnston (bib26) 2016; 32
Martin, Avérous (bib37) 2001; 42
U.P. Agarwal, S.A. Ralph, R.S. Reiner, C. Baez, Production of cellulose nanocrystals from raw wood via hydrothermal treatment. Patent pending, Application serial no. 15/455211, USPTO, 2017.
Wei, McDonald, Freitag, Morrell (bib21) 2013; 98
Nelson, Retsina (bib14) 2014; 13
Thielemans, Wool (bib34) 2005; 6
Wei, Agarwal, Hirth, Matuana, Sabo, Stark (bib17) 2017; 169
Wei, McDonald (bib24) 2014; 132
Xu, Liu, Jiang, Zhu, Haagenson, Wiesenborn (bib23) 2013; 5
Wei, Stark, McDonald (bib3) 2015; 17
Wei, Stark, Sabo, Matuana (bib33) 2016
Sullivan, Moon, Kalaitzidou (bib36) 2015; 8
Peng, Gardner, Han (bib5) 2011; 19
Yang, Fortunati, Dominici, Giovanale, Mazzaglia, Balestra, Kenny, Puglia (bib7) 2016; 89
Sirvi, Visanko, Heiskanen, Liimatainen (bib6) 2016; 4
Wei, Agarwal, Stark, Sabo (bib12) 2017
Herrera, Salaberria, Mathew, Oksman (bib32) 2016; 83
Wei, Luo, McDonald, Agarwal, Hirth, Matuana, Sabo, Stark (bib11) 2017
Pillin, Montrelay, Grohens (bib35) 2006; 47
Wei, McDonald, Stark (bib4) 2015; 16
Wei, Liang, McDonald (bib20) 2015; 69
Chen, Wang, Hirth, Baez, Agarwal, Zhu (bib29) 2015; 22
Reiner, Rudie (bib13) 2013
Jamshidian, Tehrany, Imran, Jacquot, Desobry (bib39) 2010; 9
Sahoo, Misra, Mohanty (bib38) 2011; 42
Wei, McDonald (bib2) 2016; 9
Sirvi (10.1016/j.polymer.2017.12.039_bib6) 2016; 4
Herrera (10.1016/j.polymer.2017.12.039_bib32) 2016; 83
Yang (10.1016/j.polymer.2017.12.039_bib7) 2016; 89
Pillin (10.1016/j.polymer.2017.12.039_bib35) 2006; 47
Wei (10.1016/j.polymer.2017.12.039_bib12) 2017
Jamshidian (10.1016/j.polymer.2017.12.039_bib39) 2010; 9
Lee (10.1016/j.polymer.2017.12.039_bib22) 2013; 21
Wei (10.1016/j.polymer.2017.12.039_bib20) 2015; 69
Thielemans (10.1016/j.polymer.2017.12.039_bib34) 2005; 6
Nelson (10.1016/j.polymer.2017.12.039_bib14) 2014; 13
Chen (10.1016/j.polymer.2017.12.039_bib29) 2015; 22
Brinkmann (10.1016/j.polymer.2017.12.039_bib26) 2016; 32
Sullivan (10.1016/j.polymer.2017.12.039_bib36) 2015; 8
Sahoo (10.1016/j.polymer.2017.12.039_bib38) 2011; 42
Wei (10.1016/j.polymer.2017.12.039_bib2) 2016; 9
10.1016/j.polymer.2017.12.039_bib10
Wei (10.1016/j.polymer.2017.12.039_bib24) 2014; 132
Wei (10.1016/j.polymer.2017.12.039_bib4) 2015; 16
Chen (10.1016/j.polymer.2017.12.039_bib30) 2016; 18
Peng (10.1016/j.polymer.2017.12.039_bib25) 2016; 84
Heath (10.1016/j.polymer.2017.12.039_bib27) 2010; 12
Henriksson (10.1016/j.polymer.2017.12.039_bib31) 2002; 9
Wei (10.1016/j.polymer.2017.12.039_bib17) 2017; 169
Martin (10.1016/j.polymer.2017.12.039_bib37) 2001; 42
Xu (10.1016/j.polymer.2017.12.039_bib16) 2012; 61
Wei (10.1016/j.polymer.2017.12.039_bib3) 2015; 17
Wei (10.1016/j.polymer.2017.12.039_bib21) 2013; 98
Peng (10.1016/j.polymer.2017.12.039_bib5) 2011; 19
Xu (10.1016/j.polymer.2017.12.039_bib23) 2013; 5
Segal (10.1016/j.polymer.2017.12.039_bib18) 1959; 29
Wei (10.1016/j.polymer.2017.12.039_bib33) 2016
Agarwal (10.1016/j.polymer.2017.12.039_bib9) 2015; 23
Wang (10.1016/j.polymer.2017.12.039_bib28) 2007; 48
Moon (10.1016/j.polymer.2017.12.039_bib1) 2013
Gupta (10.1016/j.polymer.2017.12.039_bib8) 2017; 5
Reiner (10.1016/j.polymer.2017.12.039_bib13) 2013
Liang (10.1016/j.polymer.2017.12.039_bib15) 2014; 62
Wei (10.1016/j.polymer.2017.12.039_bib11)
Wei (10.1016/j.polymer.2017.12.039_bib19) 2015; 115
References_xml – start-page: 9
  year: 2013
  end-page: 12
  ident: bib1
  article-title: Cellulose nanocrystals – a material with unique properties and many potential applications
  publication-title: Production and Applications of Cellulose Nanomaterials
  contributor:
    fullname: Rudie
– volume: 29
  start-page: 786
  year: 1959
  end-page: 794
  ident: bib18
  article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer
  publication-title: Textil. Res. J.
  contributor:
    fullname: Conrad
– year: 2017
  ident: bib11
  article-title: Preparation and characterization of the nanocomposites from chemically modified nanocellulose and poly (lactic acid)
  contributor:
    fullname: Stark
– volume: 9
  start-page: 55
  year: 2002
  end-page: 64
  ident: bib31
  article-title: Surface properties of CTMP fibers modified with xylans
  publication-title: Cellulose
  contributor:
    fullname: Gatenholm
– volume: 21
  start-page: 1218
  year: 2013
  end-page: 1225
  ident: bib22
  article-title: Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide
  publication-title: Macromol. Res.
  contributor:
    fullname: Kim
– volume: 169
  start-page: 108
  year: 2017
  end-page: 116
  ident: bib17
  article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester
  publication-title: Carbohydr. Polym.
  contributor:
    fullname: Stark
– year: 2016
  ident: bib33
  article-title: Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging Products
  publication-title: Proceedings, Forest Products Society International Convention, June 28-29
  contributor:
    fullname: Matuana
– year: 2017
  ident: bib12
  article-title: Nanocomposites from Lignin-containing Cellulose Nanocrystals and Poly(lactic Acid), ANTEC 2017
  contributor:
    fullname: Sabo
– volume: 5
  start-page: 2999
  year: 2013
  end-page: 3009
  ident: bib23
  article-title: Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Wiesenborn
– volume: 69
  start-page: 91
  year: 2015
  end-page: 103
  ident: bib20
  article-title: Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue
  publication-title: Ind. Crop. Prod.
  contributor:
    fullname: McDonald
– volume: 18
  start-page: 3835
  year: 2016
  end-page: 3843
  ident: bib30
  article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
  publication-title: Green Chem.
  contributor:
    fullname: Elder
– volume: 62
  start-page: 8421
  year: 2014
  end-page: 8429
  ident: bib15
  article-title: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production
  publication-title: J. Agric. Food Chem.
  contributor:
    fullname: McDonald
– volume: 8
  start-page: 8106
  year: 2015
  end-page: 8116
  ident: bib36
  article-title: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films
  publication-title: Materials
  contributor:
    fullname: Kalaitzidou
– volume: 19
  start-page: 91
  year: 2011
  end-page: 102
  ident: bib5
  article-title: Drying cellulose nanofibrils: in search of a suitable method
  publication-title: Cellulose
  contributor:
    fullname: Han
– volume: 16
  start-page: 1040
  year: 2015
  end-page: 1049
  ident: bib4
  article-title: Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide
  publication-title: Biomacromolecules
  contributor:
    fullname: Stark
– volume: 83
  start-page: 89
  year: 2016
  end-page: 97
  ident: bib32
  article-title: Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties
  publication-title: Compos. Appl. Sci. Manuf.
  contributor:
    fullname: Oksman
– volume: 22
  start-page: 1753
  year: 2015
  end-page: 1762
  ident: bib29
  article-title: Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis
  publication-title: Cellulose
  contributor:
    fullname: Zhu
– volume: 42
  start-page: 6209
  year: 2001
  end-page: 6219
  ident: bib37
  article-title: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems
  publication-title: Polymer
  contributor:
    fullname: Avérous
– volume: 32
  start-page: 6105
  year: 2016
  end-page: 6114
  ident: bib26
  article-title: Correlating cellulose nanocrystal particle size and surface area
  publication-title: Langmuir
  contributor:
    fullname: Johnston
– volume: 47
  start-page: 4676
  year: 2006
  end-page: 4682
  ident: bib35
  article-title: Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor?
  publication-title: Polymer
  contributor:
    fullname: Grohens
– volume: 115
  start-page: 268
  year: 2015
  end-page: 278
  ident: bib19
  article-title: Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process
  publication-title: J. Anal. Appl. Pyrol.
  contributor:
    fullname: McDonald
– volume: 5
  start-page: 1711
  year: 2017
  end-page: 1720
  ident: bib8
  article-title: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites
  publication-title: ACS Sustainable Chemistry & Engineering
  contributor:
    fullname: Mintz
– volume: 84
  start-page: 158
  year: 2016
  end-page: 166
  ident: bib25
  article-title: Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming
  publication-title: Polymer
  contributor:
    fullname: Clemons
– volume: 42
  start-page: 1710
  year: 2011
  end-page: 1718
  ident: bib38
  article-title: Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process
  publication-title: Compos. Appl. Sci. Manuf.
  contributor:
    fullname: Mohanty
– volume: 13
  start-page: 19
  year: 2014
  end-page: 23
  ident: bib14
  article-title: Innovative nanocellulose process breaks the cost barrier
  publication-title: TAPPI
  contributor:
    fullname: Retsina
– volume: 9
  start-page: 552
  year: 2010
  end-page: 571
  ident: bib39
  article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies
  publication-title: Compr. Rev. Food Sci. Food Saf.
  contributor:
    fullname: Desobry
– volume: 9
  start-page: 303
  year: 2016
  ident: bib2
  article-title: A review on grafting of biofibers for biocomposites materials
  contributor:
    fullname: McDonald
– volume: 48
  start-page: 3486
  year: 2007
  end-page: 3493
  ident: bib28
  article-title: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups
  publication-title: Polymer
  contributor:
    fullname: Cheng
– start-page: 21
  year: 2013
  end-page: 24
  ident: bib13
  article-title: Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory
  publication-title: Production and Applications of Cellulose Nanomaterials
  contributor:
    fullname: Rudie
– volume: 4
  start-page: 6368
  year: 2016
  end-page: 6375
  ident: bib6
  article-title: UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Liimatainen
– volume: 12
  start-page: 1448
  year: 2010
  ident: bib27
  article-title: Cellulose nanowhisker aerogels
  publication-title: Green Chem.
  contributor:
    fullname: Thielemans
– volume: 132
  start-page: 41724
  year: 2014
  ident: bib24
  article-title: Peroxide induced cross-linking by reactive melt processing of two biopolyesters: poly(3-hydroxybutyrate) and poly(L-lactic acid) improve their melting processability
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: McDonald
– volume: 89
  start-page: 360
  year: 2016
  end-page: 368
  ident: bib7
  article-title: Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Puglia
– volume: 61
  start-page: 1382
  year: 2012
  end-page: 1388
  ident: bib16
  article-title: A one-pot method to prepare transparent poly (methyl methacrylate)/montmorillonite nanocomposites using imidazolium-based ionic liquids
  publication-title: Polym. Int.
  contributor:
    fullname: He
– volume: 98
  start-page: 1348
  year: 2013
  end-page: 1361
  ident: bib21
  article-title: Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites
  publication-title: Polym. Degrad. Stabil.
  contributor:
    fullname: Morrell
– volume: 17
  start-page: 4800
  year: 2015
  end-page: 4814
  ident: bib3
  article-title: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers
  publication-title: Green Chem.
  contributor:
    fullname: McDonald
– volume: 6
  start-page: 1895
  year: 2005
  end-page: 1905
  ident: bib34
  article-title: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling
  publication-title: Biomacromolecules
  contributor:
    fullname: Wool
– volume: 23
  start-page: 125
  year: 2015
  end-page: 144
  ident: bib9
  article-title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy
  publication-title: Cellulose
  contributor:
    fullname: Baez
– volume: 6
  start-page: 1895
  year: 2005
  ident: 10.1016/j.polymer.2017.12.039_bib34
  article-title: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling
  publication-title: Biomacromolecules
  doi: 10.1021/bm0500345
  contributor:
    fullname: Thielemans
– volume: 61
  start-page: 1382
  issue: 9
  year: 2012
  ident: 10.1016/j.polymer.2017.12.039_bib16
  article-title: A one-pot method to prepare transparent poly (methyl methacrylate)/montmorillonite nanocomposites using imidazolium-based ionic liquids
  publication-title: Polym. Int.
  doi: 10.1002/pi.4217
  contributor:
    fullname: Xu
– volume: 115
  start-page: 268
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib19
  article-title: Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2015.08.005
  contributor:
    fullname: Wei
– start-page: 9
  year: 2013
  ident: 10.1016/j.polymer.2017.12.039_bib1
  article-title: Cellulose nanocrystals – a material with unique properties and many potential applications
  contributor:
    fullname: Moon
– volume: 5
  start-page: 1711
  issue: 2
  year: 2017
  ident: 10.1016/j.polymer.2017.12.039_bib8
  article-title: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.6b02458
  contributor:
    fullname: Gupta
– year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib33
  article-title: Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging Products
  contributor:
    fullname: Wei
– volume: 9
  start-page: 303
  issue: 4
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib2
  article-title: A review on grafting of biofibers for biocomposites materials
  contributor:
    fullname: Wei
– start-page: 21
  year: 2013
  ident: 10.1016/j.polymer.2017.12.039_bib13
  article-title: Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory
  contributor:
    fullname: Reiner
– volume: 69
  start-page: 91
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib20
  article-title: Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2015.02.011
  contributor:
    fullname: Wei
– volume: 17
  start-page: 4800
  issue: 10
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib3
  article-title: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers
  publication-title: Green Chem.
  doi: 10.1039/C5GC01568E
  contributor:
    fullname: Wei
– volume: 4
  start-page: 6368
  issue: 17
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib6
  article-title: UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA00900J
  contributor:
    fullname: Sirvi
– volume: 22
  start-page: 1753
  issue: 3
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib29
  article-title: Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0615-1
  contributor:
    fullname: Chen
– volume: 16
  start-page: 1040
  issue: 3
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib4
  article-title: Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00049
  contributor:
    fullname: Wei
– volume: 9
  start-page: 55
  year: 2002
  ident: 10.1016/j.polymer.2017.12.039_bib31
  article-title: Surface properties of CTMP fibers modified with xylans
  publication-title: Cellulose
  doi: 10.1023/A:1015826713109
  contributor:
    fullname: Henriksson
– volume: 29
  start-page: 786
  issue: 10
  year: 1959
  ident: 10.1016/j.polymer.2017.12.039_bib18
  article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer
  publication-title: Textil. Res. J.
  doi: 10.1177/004051755902901003
  contributor:
    fullname: Segal
– year: 2017
  ident: 10.1016/j.polymer.2017.12.039_bib12
  contributor:
    fullname: Wei
– volume: 8
  start-page: 8106
  issue: 12
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib36
  article-title: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films
  publication-title: Materials
  doi: 10.3390/ma8125447
  contributor:
    fullname: Sullivan
– volume: 19
  start-page: 91
  issue: 1
  year: 2011
  ident: 10.1016/j.polymer.2017.12.039_bib5
  article-title: Drying cellulose nanofibrils: in search of a suitable method
  publication-title: Cellulose
  doi: 10.1007/s10570-011-9630-z
  contributor:
    fullname: Peng
– volume: 132
  start-page: 41724
  year: 2014
  ident: 10.1016/j.polymer.2017.12.039_bib24
  article-title: Peroxide induced cross-linking by reactive melt processing of two biopolyesters: poly(3-hydroxybutyrate) and poly(L-lactic acid) improve their melting processability
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41724
  contributor:
    fullname: Wei
– volume: 84
  start-page: 158
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib25
  article-title: Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.12.050
  contributor:
    fullname: Peng
– volume: 83
  start-page: 89
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib32
  article-title: Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.05.024
  contributor:
    fullname: Herrera
– volume: 13
  start-page: 19
  year: 2014
  ident: 10.1016/j.polymer.2017.12.039_bib14
  article-title: Innovative nanocellulose process breaks the cost barrier
  publication-title: TAPPI
  doi: 10.32964/TJ13.5.19
  contributor:
    fullname: Nelson
– volume: 9
  start-page: 552
  issue: 5
  year: 2010
  ident: 10.1016/j.polymer.2017.12.039_bib39
  article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/j.1541-4337.2010.00126.x
  contributor:
    fullname: Jamshidian
– ident: 10.1016/j.polymer.2017.12.039_bib11
  contributor:
    fullname: Wei
– volume: 42
  start-page: 6209
  issue: 14
  year: 2001
  ident: 10.1016/j.polymer.2017.12.039_bib37
  article-title: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00086-6
  contributor:
    fullname: Martin
– volume: 42
  start-page: 1710
  issue: 11
  year: 2011
  ident: 10.1016/j.polymer.2017.12.039_bib38
  article-title: Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2011.07.025
  contributor:
    fullname: Sahoo
– volume: 98
  start-page: 1348
  issue: 7
  year: 2013
  ident: 10.1016/j.polymer.2017.12.039_bib21
  article-title: Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.03.027
  contributor:
    fullname: Wei
– volume: 48
  start-page: 3486
  issue: 12
  year: 2007
  ident: 10.1016/j.polymer.2017.12.039_bib28
  article-title: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.03.062
  contributor:
    fullname: Wang
– volume: 18
  start-page: 3835
  issue: 13
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib30
  article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
  publication-title: Green Chem.
  doi: 10.1039/C6GC00687F
  contributor:
    fullname: Chen
– volume: 23
  start-page: 125
  issue: 1
  year: 2015
  ident: 10.1016/j.polymer.2017.12.039_bib9
  article-title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0788-7
  contributor:
    fullname: Agarwal
– volume: 62
  start-page: 8421
  issue: 33
  year: 2014
  ident: 10.1016/j.polymer.2017.12.039_bib15
  article-title: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf5019406
  contributor:
    fullname: Liang
– volume: 169
  start-page: 108
  year: 2017
  ident: 10.1016/j.polymer.2017.12.039_bib17
  article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.04.008
  contributor:
    fullname: Wei
– volume: 32
  start-page: 6105
  issue: 24
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib26
  article-title: Correlating cellulose nanocrystal particle size and surface area
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01376
  contributor:
    fullname: Brinkmann
– volume: 12
  start-page: 1448
  issue: 8
  year: 2010
  ident: 10.1016/j.polymer.2017.12.039_bib27
  article-title: Cellulose nanowhisker aerogels
  publication-title: Green Chem.
  doi: 10.1039/c0gc00035c
  contributor:
    fullname: Heath
– volume: 21
  start-page: 1218
  issue: 11
  year: 2013
  ident: 10.1016/j.polymer.2017.12.039_bib22
  article-title: Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-013-1160-0
  contributor:
    fullname: Lee
– volume: 47
  start-page: 4676
  issue: 13
  year: 2006
  ident: 10.1016/j.polymer.2017.12.039_bib35
  article-title: Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor?
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.04.013
  contributor:
    fullname: Pillin
– ident: 10.1016/j.polymer.2017.12.039_bib10
– volume: 5
  start-page: 2999
  issue: 8
  year: 2013
  ident: 10.1016/j.polymer.2017.12.039_bib23
  article-title: Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302624t
  contributor:
    fullname: Xu
– volume: 89
  start-page: 360
  year: 2016
  ident: 10.1016/j.polymer.2017.12.039_bib7
  article-title: Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.04.068
  contributor:
    fullname: Yang
SSID ssj0002524
Score 2.5307317
Snippet High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 305
SubjectTerms Adhesion
Adhesion tests
Cellulose
Cellulose fibers
Cellulose nanocrystals
Contact angle
Crystal structure
Crystallinity
Crystals
Degree of crystallinity
Electron microscopy
Elongation
Extrusion molding
Fibers
Fillers
Hydrophobic surfaces
Hydrophobicity
Hydrothermally-treated wood
Injection molding
Interface
Lignin
Mechanical properties
Modulus of elasticity
Nanocomposites
Nanocrystals
Nanolignin
Nanoparticles
Poly(lactic acid)
Polylactic acid
Polymers
Spectroscopy
Storage modulus
Surface area
Thermal analysis
Viscoelasticity
Title Performance of high lignin content cellulose nanocrystals in poly(lactic acid)
URI https://dx.doi.org/10.1016/j.polymer.2017.12.039
https://www.proquest.com/docview/2014232844
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa27QE4ICggCgX5wAEUOcSOnTjHalkoHKqVthW9RXk47VZptuxuhPj3zMR5qYB4SFyiyOtkrZkv4_HomxlCXplU6SLhmqk89ZjkqWbgxxnGA5VGJvO8tClgerwIT871u5mcTSYdkXQY-6-ahjHQNWbO_oW2-5fCANyDzuEKWofrH-l9PsoEQEcQDt9OubyoGr458tW3Dgbr6xKJ6lVSrbL1N_AQS8snX2HjaV02mVNOkuHqo7H_OocJ11h9QugP9bK0zPg-lvDZ2Fzr5ZduQ0QoXSTrr01bAefs2mwunbk7hMG3dWKT0jA_e8TBWQA2LfEbQ9fO1B1HJzgS45hNxrQhsy5tZuAoNWbYF8zXtgq7a6zl1aHPhLCtu3rT7KuRcfU9NdqnfZvD-sMWYKMRV-6NFQiy98Im4muLJt2qrr3AteBSeOhjGrG3Q_YE2CwwmXtHH2fnn_ptXShhS3q3ax_Swd7-9M9-5ejc2vIbP-b0AbnfHkDokUXOQzIx1T65M-36_u2Te6MSlY_IyQhPdFVQxBO1eKItnmiPJzrGE4UZuODXFk0U0fTmMTl7PzudHrO2BwfLpPK2zHBeaCNNVISJUAYbBIkM3B2VR14RmqAI4RCfZzpXwodZ3OjAA5cY_FJPJibK_Cdkt1pV5imhATafg_N6Ekg41RsZyUAInke5CXjGTXJA3E5g8Y0ttRJ3HMSruJVwjBKOuYhBwgdEd2KNW3_R-oExYOF3jx52aojbj3eDvyNtQUv57N_f_JzcHb6DQ7K7XdfmBdnZ5PXLFlHfAUK_l6E
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+high+lignin+content+cellulose+nanocrystals+in+poly%28lactic+acid%29&rft.jtitle=Polymer+%28Guilford%29&rft.au=Wei%2C+Liqing&rft.au=Agarwal%2C+Umesh+P.&rft.au=Matuana%2C+Laurent&rft.au=Sabo%2C+Ronald+C.&rft.date=2018-01-17&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=135&rft.spage=305&rft.epage=313&rft_id=info:doi/10.1016%2Fj.polymer.2017.12.039&rft.externalDocID=S0032386117312090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon