Theory of ultrasound Doppler-spectra velocimetry for arbitrary beam and flow configurations
In conventional ultrasound Doppler systems, the velocity component along the beam axis is derived from the observed frequency shift. Recently, it was verified that by using a pulsed-Doppler system with the beam transversely oriented with respect to the flow, the velocity component transverse to the...
Saved in:
Published in: | IEEE transactions on biomedical engineering Vol. 35; no. 9; pp. 740 - 751 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-09-1988
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In conventional ultrasound Doppler systems, the velocity component along the beam axis is derived from the observed frequency shift. Recently, it was verified that by using a pulsed-Doppler system with the beam transversely oriented with respect to the flow, the velocity component transverse to the beam can be derived from the edges of the spectrum. These results are generalized to take into account arbitrary angles of incidence, effects of velocity gradients, arbitrary apertures, and arbitrary source pulses. For uniform apertures and transverse flow, it has been previously shown that the Doppler output spectrum is symmetrical about zero frequency, with its width depending on the Doppler effect due to the transverse velocity and the geometry of the problem. For a beam direction oblique to the velocity, it is shown that the spectrum is now shifted, and is centered about the classical Doppler frequency. For velocity gradients and transverse flows the spectrum remains symmetrical, with the edges corresponding to the maximal velocity; however, the profile becomes peaked at the center. For oblique incidence, an asymmetrical spectrum is obtained and its edges are related to the maximal and minimal velocities within the sampling volume.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.7275 |