Spatial and temporal variability of aerosol particles in Arctic spring

The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi‐Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft‐based measurements of total ae...

Full description

Saved in:
Bibliographic Details
Published in:Quarterly journal of the Royal Meteorological Society Vol. 138; no. 669; pp. 2229 - 2240
Main Authors: Shantz, N. C., Gultepe, I., Liu, P. S. K., Earle, M. E., Zelenyuk, A.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-10-2012
Wiley
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi‐Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft‐based measurements of total aerosol particle number concentration (Na) in the size range of 0.12–3 µm diameter were obtained using a passive cavity aerosol spectrometer probe (PCASP‐100X). The analysis considers Na during cloud‐free periods in biomass burning (BB) and non‐BB aerosol loading scenarios, the latter including background cases and cases with elevated concentration in layers. The BB cases had air masses originating mainly from Russian and Asian forest and crop fires, whereas the non‐BB cases originated predominantly from Arctic or oceanic regions. The average Na for all non‐BB cases was 127 cm−3, while that for all BB cases was Na = 720 cm−3. These estimates do not, however, capture the details of aerosol particle layers encountered during most flights. Variability in Na was considered for constant altitude (horizontal) flight legs ranging from 50 to 650 km in length, as well as for vertical flight profiles up to 7 km above sea level. When aerosol particle layers were encountered, Na rapidly increased from 20 to 550 cm−3, and reached up to 2200 cm−3 within air masses dominated by BB plumes. The observed variability in Na may have important implications for estimating cloud microphysical properties as well as estimates of particle properties used in global climate model simulations, because averaging over large space‐ or time‐scales may not represent real atmospheric conditions. The analysis demonstrates the difficulty in interpreting average aerosol particle characteristics along longer flight legs, particularly during cases with higher particle loading that varies over shorter distance scales and time periods. Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.
AbstractList The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi-Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft-based measurements of total aerosol particle number concentration (Na) in the size range of 0.12-3 µm diameter were obtained using a passive cavity aerosol spectrometer probe (PCASP-100X). The analysis considers Na during cloud-free periods in biomass burning (BB) and non-BB aerosol loading scenarios, the latter including background cases and cases with elevated concentration in layers. The BB cases had air masses originating mainly from Russian and Asian forest and crop fires, whereas the non-BB cases originated predominantly from Arctic or oceanic regions. The average Na for all non-BB cases was 127 cm-3, while that for all BB cases was Na = 720 cm-3. These estimates do not, however, capture the details of aerosol particle layers encountered during most flights. Variability in Na was considered for constant altitude (horizontal) flight legs ranging from 50 to 650 km in length, as well as for vertical flight profiles up to 7 km above sea level. When aerosol particle layers were encountered, Na rapidly increased from 20 to 550 cm-3, and reached up to 2200 cm-3 within air masses dominated by BB plumes. The observed variability in Na may have important implications for estimating cloud microphysical properties as well as estimates of particle properties used in global climate model simulations, because averaging over large space- or time-scales may not represent real atmospheric conditions. The analysis demonstrates the difficulty in interpreting average aerosol particle characteristics along longer flight legs, particularly during cases with higher particle loading that varies over shorter distance scales and time periods. Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada. [PUBLICATION ABSTRACT]
The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi‐Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft‐based measurements of total aerosol particle number concentration ( N a ) in the size range of 0.12–3 µm diameter were obtained using a passive cavity aerosol spectrometer probe (PCASP‐100X). The analysis considers N a during cloud‐free periods in biomass burning (BB) and non‐BB aerosol loading scenarios, the latter including background cases and cases with elevated concentration in layers. The BB cases had air masses originating mainly from Russian and Asian forest and crop fires, whereas the non‐BB cases originated predominantly from Arctic or oceanic regions. The average N a for all non‐BB cases was 127 cm −3 , while that for all BB cases was N a = 720 cm −3 . These estimates do not, however, capture the details of aerosol particle layers encountered during most flights. Variability in N a was considered for constant altitude (horizontal) flight legs ranging from 50 to 650 km in length, as well as for vertical flight profiles up to 7 km above sea level. When aerosol particle layers were encountered, N a rapidly increased from 20 to 550 cm −3 , and reached up to 2200 cm −3 within air masses dominated by BB plumes. The observed variability in N a may have important implications for estimating cloud microphysical properties as well as estimates of particle properties used in global climate model simulations, because averaging over large space‐ or time‐scales may not represent real atmospheric conditions. The analysis demonstrates the difficulty in interpreting average aerosol particle characteristics along longer flight legs, particularly during cases with higher particle loading that varies over shorter distance scales and time periods. Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.
The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi‐Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft‐based measurements of total aerosol particle number concentration (Na) in the size range of 0.12–3 µm diameter were obtained using a passive cavity aerosol spectrometer probe (PCASP‐100X). The analysis considers Na during cloud‐free periods in biomass burning (BB) and non‐BB aerosol loading scenarios, the latter including background cases and cases with elevated concentration in layers. The BB cases had air masses originating mainly from Russian and Asian forest and crop fires, whereas the non‐BB cases originated predominantly from Arctic or oceanic regions. The average Na for all non‐BB cases was 127 cm−3, while that for all BB cases was Na = 720 cm−3. These estimates do not, however, capture the details of aerosol particle layers encountered during most flights. Variability in Na was considered for constant altitude (horizontal) flight legs ranging from 50 to 650 km in length, as well as for vertical flight profiles up to 7 km above sea level. When aerosol particle layers were encountered, Na rapidly increased from 20 to 550 cm−3, and reached up to 2200 cm−3 within air masses dominated by BB plumes. The observed variability in Na may have important implications for estimating cloud microphysical properties as well as estimates of particle properties used in global climate model simulations, because averaging over large space‐ or time‐scales may not represent real atmospheric conditions. The analysis demonstrates the difficulty in interpreting average aerosol particle characteristics along longer flight legs, particularly during cases with higher particle loading that varies over shorter distance scales and time periods. Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.
The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi-Direct Aerosol Campaign (ISDAC) was conducted during April 2008 in the vicinities of Fairbanks and Barrow, Alaska. Aircraft-based measurements of total aerosol particle number concentration (N sub(a)) in the size range of 0.12-3 mu m diameter were obtained using a passive cavity aerosol spectrometer probe (PCASP-100X). The analysis considers N sub(a) during cloud-free periods in biomass burning (BB) and non-BB aerosol loading scenarios, the latter including background cases and cases with elevated concentration in layers. The BB cases had air masses originating mainly from Russian and Asian forest and crop fires, whereas the non-BB cases originated predominantly from Arctic or oceanic regions. The average N sub(a) for all non-BB cases was 127 cm super(-3), while that for all BB cases was N sub(a) = 720 cm super(-3). These estimates do not, however, capture the details of aerosol particle layers encountered during most flights. Variability in N sub(a) was considered for constant altitude (horizontal) flight legs ranging from 50 to 650 km in length, as well as for vertical flight profiles up to 7 km above sea level. When aerosol particle layers were encountered, N sub(a) rapidly increased from 20 to 550 cm super(-3), and reached up to 2200 cm super(-3) within air masses dominated by BB plumes. The observed variability in N sub(a) may have important implications for estimating cloud microphysical properties as well as estimates of particle properties used in global climate model simulations, because averaging over large space- or time-scales may not represent real atmospheric conditions. The analysis demonstrates the difficulty in interpreting average aerosol particle characteristics along longer flight legs, particularly during cases with higher particle loading that varies over shorter distance scales and time periods. and Crown in the right of Canada.
Author Gultepe, I.
Zelenyuk, A.
Shantz, N. C.
Liu, P. S. K.
Earle, M. E.
Author_xml – sequence: 1
  givenname: N. C.
  surname: Shantz
  fullname: Shantz, N. C.
  organization: Cloud Physics and Severe Weather Section, Environment Canada, Toronto, Ontario, Canada
– sequence: 2
  givenname: I.
  surname: Gultepe
  fullname: Gultepe, I.
  email: ismail.gultepe@ec.gc.ca
  organization: Cloud Physics and Severe Weather Section, Environment Canada, Toronto, Ontario, Canada
– sequence: 3
  givenname: P. S. K.
  surname: Liu
  fullname: Liu, P. S. K.
  organization: Cloud Physics and Severe Weather Section, Environment Canada, Toronto, Ontario, Canada
– sequence: 4
  givenname: M. E.
  surname: Earle
  fullname: Earle, M. E.
  organization: Cloud Physics and Severe Weather Section, Environment Canada, Toronto, Ontario, Canada
– sequence: 5
  givenname: A.
  surname: Zelenyuk
  fullname: Zelenyuk, A.
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26720430$$DView record in Pascal Francis
BookMark eNqF0F9rFDEUBfBQWui2Sr_CgIiCTHvzf_JYWlu1VREt61vIZBLJmp2ZTWbV_fZm2aUPQvHpcuHHgXNO0GE_9A6hMwznGIBcrBbnWDE4QDPMpKwbCd8P0QyA8loBqGN0kvMCALgkcoZuvo5mCiZWpu-qyS3HIZXnl0nBtCGGaVMNvjIuDXmI1WjSFGx0uQp9dZlseao8ptD_eIaOvInZPd_fU_Rw8_bb1bv6_vPt-6vL-9oyDlAzrHBLO0pJQ7ww0raeeysVcMylbznuPHWtUG0HilPRNM66jncds2B46ww9Ra93uWMaVmuXJ70M2boYTe-GddZYMEIUlUT8nzLKgJR5VKEv_qGLYZ36UkRjIgThWDWyqFc7ZcsaOTmvS_WlSRuNQW-n16uF3k5f5Mt9nsnWRJ9Mb0N-5ERIAoxu3Zud-x2i2zwVp7982KfWOx3y5P48apN-aiGp5Hr-6VYzOr-bX_Nr_ZH-BV1VoEg
CODEN QJRMAM
CitedBy_id crossref_primary_10_1007_s13361_014_1043_4
crossref_primary_10_1175_BAMS_D_13_00040_1
crossref_primary_10_1002_2014JD022563
crossref_primary_10_5194_acp_16_715_2016
crossref_primary_10_1002_joc_3898
crossref_primary_10_1021_es404622n
Cites_doi 10.1021/ac1013892
10.1175/JCLI3612.1
10.1038/370450a0
10.1111/j.1600-0889.2006.00236.x
10.1029/2001JD001248
10.1029/2007JD009442
10.1007/BF00052832
10.1175/2010BAMS2935.1
10.1111/j.1600-0889.2008.00348.x
10.1002/joc.1205
10.1016/S0169-8095(96)00035-X
10.1029/2000JC000440
10.1029/JD095iD13p22369
10.1126/science.245.4923.1227
10.1029/96JD02246
10.5194/acp-8-1723-2008
10.1029/2011JD015887
10.1029/2005JD006223
10.3137/ao.410102
10.1029/2008GL036194
10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2
10.1016/j.atmosenv.2004.09.066
10.1175/1520-0442(1999)012<1268:SEOAOC>2.0.CO;2
10.1029/JD094iD06p08599
10.1016/0004-6981(74)90004-3
10.1007/BF00052828
10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2
10.1175/1520-0450(1995)034<2076:CCNOTA>2.0.CO;2
10.1029/97JD03735
ContentType Journal Article
Copyright Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.
– notice: 2014 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
7QH
7UA
C1K
8FD
H8D
L7M
DOI 10.1002/qj.1940
DatabaseName Istex
Pascal-Francis
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 2240
ExternalDocumentID 2856321231
10_1002_qj_1940
26720430
QJ1940
ark_67375_WNG_43WKWD5D_M
Genre article
GeographicLocations polar regions
Alaska
United States
Asia
Arctic region
USA, Alaska, Fairbanks
PNW, USA, Alaska, Barrow
PN, Arctic
GeographicLocations_xml – name: PNW, USA, Alaska, Barrow
– name: PN, Arctic
– name: USA, Alaska, Fairbanks
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
WIN
AAMNL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
7QH
7UA
C1K
8FD
H8D
L7M
ID FETCH-LOGICAL-c4500-4191b3d33282f6a7cbf5fc7905157fb51df3eb69bd0953688eced5dd4c0a5bea3
IEDL.DBID 33P
ISSN 0035-9009
IngestDate Fri Aug 16 06:30:12 EDT 2024
Fri Aug 16 04:49:00 EDT 2024
Thu Oct 10 15:52:08 EDT 2024
Thu Nov 21 21:29:01 EST 2024
Fri Nov 25 01:07:22 EST 2022
Sat Aug 24 00:54:14 EDT 2024
Wed Oct 30 09:49:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 669
Keywords Arctic aerosol number concentration
altitude
Atmospheric condition
time variations
aerosols
plumes
Climate models
aerosol variability
North America
Spring(season)
Aircraft observation
Vertical profile
biomass burning
Vegetation fire
spatial variations
Polar region
Forest fire
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4500-4191b3d33282f6a7cbf5fc7905157fb51df3eb69bd0953688eced5dd4c0a5bea3
Notes ark:/67375/WNG-43WKWD5D-M
ArticleID:QJ1940
istex:BE40A93665BE3B36FD00746AC39804E1A7B77D84
The publisher acknowledges that the United States Government retains the right to publish or reproduce the published form of this work, or allow others to do so, for government purposes.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1266251987
PQPubID 1016432
PageCount 12
ParticipantIDs proquest_miscellaneous_1642293726
proquest_miscellaneous_1434028709
proquest_journals_1266251987
crossref_primary_10_1002_qj_1940
pascalfrancis_primary_26720430
wiley_primary_10_1002_qj_1940_QJ1940
istex_primary_ark_67375_WNG_43WKWD5D_M
PublicationCentury 2000
PublicationDate October 2012 Part B
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012 Part B
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationTitleAlternate Q.J.R. Meteorol. Soc
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Twomey S. 1974. Pollution and planetary albedo. Atmos. Environ. 8: 1251-1256.
Warneke C, Bahreini R, Brioude J, Brock CA, De Gouw JA, Fahey DW, Froyd KD, Holloway JS, Middlebrook A, Miller L, Montzka S, Murphy DM, Peischl J, Ryerson TB, Schwarz JP, Spademan JR, Veres P. 2009. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 36: L02813, DOI:02810.01029/02008GL036194.
Gultepe I, Isaac GA. 1999. Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models. J. Climate 12: 1268-1279.
Jones A, Roberts DL, Slingo A. 1994. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370: 450-453.
Hegg DA, Hobbs PV, Gasso S, Nance JD, Rangno AL. 1996. Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing. J. Geophys. Res.-Atmos. 101: 23349-23363.
Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS. 2006. Present-day atmospheric simulations using GISS Model E: Comparison to in situ, satellite, and reanalysis data. J. Climate 19: 153-192.
Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL. 2007. Arctic haze: Current trends and knowledge gaps. Tellus 59: 99-114.
Menon S, Del Genio AD, Kaufman Y, Bennartz R, Koch D, Loeb N, Orlikowski D. 2008. Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J. Geophys. Res. 113: D14S22, DOI:10.1029/2007JD009442.
Earle ME, Liu PSK, Strapp JW, Zelenyuk A, Imre D, McFarquhar GM, Shantz NC, Leaitch WR. 2011. Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: Insight from observations of aerosol and clouds during ISDAC. J. Geophys. Res. 116: DOI:10.1029/2011JD015887.
Hegg DA, Ferek RJ, Hobbs PV. 1995. Cloud Condensation Nuclei over the Arctic-Ocean in Early Spring. J. Appl. Meteorol. 34: 2076-2082.
Brock CA, Radke LF, Lyons JH, Hobbs PV. 1989. Arctic Hazes in Summer over Greenland and the North-American Arctic. 1. Incidence and Origins. J. Atmos. Chem. 9: 129-148.
Treffeisen R, Rinke A, Fortmann M, Dethloff K, Herber A, Yamanouchi T. 2005. A case study of the radiative effects of Arctic aerosols in March 2000. Atmos. Environ. 39: 899-911.
Abdul-Razzak H, Ghan SJ, Rivera-Carpio C. 1998. A parameterization of aerosol activation-1. Single aerosol type. J. Geophys. Res.-Atmos. 103: 6123-6131.
Gultepe I, Isaac GA. 2002. Effects of air mass origin on Arctic cloud microphysical parameters for April 1998 during FIRE.ACE. J. Geophys. Res. 107: 8029, DOI: 8010.1029/2000JC000440.
Shaw GE. 1995. The Arctic haze phenomenon. Bull. Am. Meteorol. Soc. 76: 2403-2413.
IPCC. 2007. Intergovernmental Panel on Climate Change: Climate Change 2007, The Physical Science Basis- Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press: Cambridge, UK.
Zelenyuk A, Imre D, Earle M, Easter R, Korolev A, Leaitch R, Liu P, Macdonald AM, Ovchinnikov M, Strapp W. 2010. In-situ characterization of cloud condensation nuclei, interstitial, and background particles using Single Particle Mass Spectrometer, SPLAT II. Anal. Chem. 82: 7943-7951.
Liou KN, Ou SC. 1989. The role of cloud microphysical processes in climate - an assessment from a one-dimensional perspective. J. Geophys. Res. Atmos. 94: 8599-8607.
Gultepe I, Isaac G, Williams A, Marcotte D, Strawbridge K. 2003. Turbulent heat fluxes over leads and polynyas and their effect on Arctic clouds during FIRE-ACE: Aircraft observations for April 1998. Atmosphere and Ocean 41(1): 15-34.
Engvall AC, Krejci R, Ström J, Minikin A, Treffeisen R, Stohl A, Herber A. 2008. In-situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late spring and summer. Tellus 60B: 392-404.
Baumgardner D, Strapp JW, Dye JE. 1985. Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol. 2: 626-632.
Albrecht BA. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245: 1227-1230.
Quinn PK, Miller TL, Bates TS, Ogren JA, Andrews E, Shaw GE. 2002. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. 107: 10.1029/2001JD001248.
Brock CA, Radke LF, Hobbs PV. 1990. Sulfur in Particles in Arctic Hazes Derived from Airborne Insitu and Lidar Measurements. J. Geophys. Res.-Atmos. 95: 22369-22387.
Girard E, Bekcic B. 2005. Sensitivity of an Arctic regional climate model to the horizontal resolution during winter: Implications for aerosol simulation. Int. J. Climatol. 25: 1455-1471.
Leaitch WR, Hoff RM, MacPherson JI. 1989. Airborne and lidar measurements of aerosol and cloud particles in the troposphere over Alert Canada in April 1986. J. Atmos. Chem. 9: 187-211.
McFarquhar GM, Ghan S, Verlinde J, Korolev A, Strapp JW, Schmid B, Tomlinson JM, Wolde M, Brooks SD, Cziczo D, Dubey MK, Fan J, Flynn C, Gultepe I, Hubbe J, Gilles MK, Laskin A, Lawson P, Leaitch WR, Liu P, Liu X, Lubin D, Mazzoleni C, Macdonald A-M, Moffet RC, Morrison H, Ovchinnikov M, Shupe MD, Turner DD, Xie S, Zelenyuk A, Bae K, Freer M, Glen A. 2011. Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Am. Meteorol. Soc. 92: 183-201.
Quinn PK, Bates TS, Baum E, Doubleday N, Fiore AM, Flanner M, Fridlind A, Garrett TJ, Koch D, Menon S, Shindell D, Stohl A, Warren SG. 2008. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 8: 1723-1735.
Dreiling V, Friederich B. 1997. Spatial distribution of the arctic haze aerosol size distribution in western and eastern Arctic. Atmos. Res. 44: 133-152.
Iziomon MG, Lohmann U, Quinn PK. 2006. Summertime pollution events in the Arctic and potential implications. J. Geophys. Res. Atmos. 111: D12206, DOI:12210.11029/12005JD006223.
1990; 95
2011; 116
2008; 60B
1997; 44
2010
1985; 2
1995; 34
1989; 9
1994; 370
1995; 76
2007
2008; 8
2006; 19
1996; 101
1974; 8
2006; 111
2007; 59
2005; 25
2010; 82
2009; 36
1989; 94
1989; 245
2011; 92
1999; 12
2002; 107
1998; 103
2008; 113
2005; 39
2003; 41
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Quinn PK (e_1_2_7_24_1) 2002; 107
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
IPCC (e_1_2_7_17_1) 2007
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Quinn PK (e_1_2_7_25_1) 2007; 59
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 95
  start-page: 22369
  year: 1990
  end-page: 22387
  article-title: Sulfur in Particles in Arctic Hazes Derived from Airborne Insitu and Lidar Measurements
  publication-title: J. Geophys. Res.‐Atmos.
– volume: 82
  start-page: 7943
  year: 2010
  end-page: 7951
  article-title: characterization of cloud condensation nuclei, interstitial, and background particles using Single Particle Mass Spectrometer, SPLAT II
  publication-title: Anal. Chem.
– volume: 103
  start-page: 6123
  year: 1998
  end-page: 6131
  article-title: A parameterization of aerosol activation—1. Single aerosol type.
  publication-title: J. Geophys. Res.‐Atmos.
– volume: 60B
  start-page: 392
  year: 2008
  end-page: 404
  article-title: In‐situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late spring and summer
  publication-title: Tellus
– volume: 9
  start-page: 187
  year: 1989
  end-page: 211
  article-title: Airborne and lidar measurements of aerosol and cloud particles in the troposphere over Alert Canada in April 1986
  publication-title: J. Atmos. Chem.
– volume: 41
  start-page: 15
  year: 2003
  end-page: 34
  article-title: Turbulent heat fluxes over leads and polynyas and their effect on Arctic clouds during FIRE‐ACE: Aircraft observations for April 1998
  publication-title: Atmosphere and Ocean
– volume: 8
  start-page: 1723
  year: 2008
  end-page: 1735
  article-title: Short‐lived pollutants in the Arctic: Their climate impact and possible mitigation strategies
  publication-title: Atmos. Chem. Phys.
– year: 2007
– volume: 245
  start-page: 1227
  year: 1989
  end-page: 1230
  article-title: Aerosols, cloud microphysics, and fractional cloudiness
  publication-title: Science
– volume: 12
  start-page: 1268
  year: 1999
  end-page: 1279
  article-title: Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models
  publication-title: J. Climate
– volume: 59
  start-page: 99
  year: 2007
  end-page: 114
  article-title: Arctic haze: Current trends and knowledge gaps
  publication-title: Tellus
– volume: 76
  start-page: 2403
  year: 1995
  end-page: 2413
  article-title: The Arctic haze phenomenon
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2010
– volume: 9
  start-page: 129
  year: 1989
  end-page: 148
  article-title: Arctic Hazes in Summer over Greenland and the North‐American Arctic. 1. Incidence and Origins.
  publication-title: J. Atmos. Chem.
– volume: 34
  start-page: 2076
  year: 1995
  end-page: 2082
  article-title: Cloud Condensation Nuclei over the Arctic‐Ocean in Early Spring
  publication-title: J. Appl. Meteorol.
– volume: 116
  year: 2011
  article-title: Factors influencing the microphysics and radiative properties of liquid‐dominated Arctic clouds: Insight from observations of aerosol and clouds during ISDAC
  publication-title: J. Geophys. Res.
– volume: 94
  start-page: 8599
  year: 1989
  end-page: 8607
  article-title: The role of cloud microphysical processes in climate ‐ an assessment from a one‐dimensional perspective
  publication-title: J. Geophys. Res. Atmos.
– volume: 107
  year: 2002
  article-title: A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska
  publication-title: J. Geophys. Res.
– volume: 39
  start-page: 899
  year: 2005
  end-page: 911
  article-title: A case study of the radiative effects of Arctic aerosols in March 2000
  publication-title: Atmos. Environ.
– volume: 36
  start-page: L02813
  year: 2009
  article-title: Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008
  publication-title: Geophys. Res. Lett.
– volume: 44
  start-page: 133
  year: 1997
  end-page: 152
  article-title: Spatial distribution of the arctic haze aerosol size distribution in western and eastern Arctic
  publication-title: Atmos. Res.
– volume: 92
  start-page: 183
  year: 2011
  end-page: 201
  article-title: Indirect and Semi‐Direct Aerosol Campaign: The impact of Arctic aerosols on clouds
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 370
  start-page: 450
  year: 1994
  end-page: 453
  article-title: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols
  publication-title: Nature
– volume: 107
  start-page: 8029
  year: 2002
  article-title: Effects of air mass origin on Arctic cloud microphysical parameters for April 1998 during FIRE.ACE.
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 626
  year: 1985
  end-page: 632
  article-title: Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead‐time losses.
  publication-title: J. Atmos. Oceanic Technol.
– volume: 8
  start-page: 1251
  year: 1974
  end-page: 1256
  article-title: Pollution and planetary albedo
  publication-title: Atmos. Environ.
– volume: 101
  start-page: 23349
  year: 1996
  end-page: 23363
  article-title: Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing
  publication-title: J. Geophys. Res.‐Atmos.
– volume: 111
  start-page: D12206
  year: 2006
  article-title: Summertime pollution events in the Arctic and potential implications
  publication-title: J. Geophys. Res. Atmos.
– volume: 113
  start-page: D14S22
  year: 2008
  article-title: Analyzing signatures of aerosol‐cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 153
  year: 2006
  end-page: 192
  article-title: Present‐day atmospheric simulations using GISS Model E: Comparison to , satellite, and reanalysis data
  publication-title: J. Climate
– volume: 25
  start-page: 1455
  year: 2005
  end-page: 1471
  article-title: Sensitivity of an Arctic regional climate model to the horizontal resolution during winter: Implications for aerosol simulation
  publication-title: Int. J. Climatol.
– ident: e_1_2_7_33_1
  doi: 10.1021/ac1013892
– ident: e_1_2_7_28_1
  doi: 10.1175/JCLI3612.1
– ident: e_1_2_7_19_1
  doi: 10.1038/370450a0
– volume: 59
  start-page: 99
  year: 2007
  ident: e_1_2_7_25_1
  article-title: Arctic haze: Current trends and knowledge gaps
  publication-title: Tellus
  doi: 10.1111/j.1600-0889.2006.00236.x
  contributor:
    fullname: Quinn PK
– volume: 107
  year: 2002
  ident: e_1_2_7_24_1
  article-title: A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001248
  contributor:
    fullname: Quinn PK
– ident: e_1_2_7_23_1
  doi: 10.1029/2007JD009442
– ident: e_1_2_7_20_1
  doi: 10.1007/BF00052832
– ident: e_1_2_7_22_1
  doi: 10.1175/2010BAMS2935.1
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1600-0889.2008.00348.x
– ident: e_1_2_7_11_1
  doi: 10.1002/joc.1205
– volume-title: Intergovernmental Panel on Climate Change: Climate Change 2007, The Physical Science Basis‐ Contribution of Working Group I to the Fourth Assessment Report of the IPCC
  year: 2007
  ident: e_1_2_7_17_1
  contributor:
    fullname: IPCC
– ident: e_1_2_7_8_1
  doi: 10.1016/S0169-8095(96)00035-X
– ident: e_1_2_7_13_1
  doi: 10.1029/2000JC000440
– ident: e_1_2_7_6_1
  doi: 10.1029/JD095iD13p22369
– ident: e_1_2_7_3_1
  doi: 10.1126/science.245.4923.1227
– ident: e_1_2_7_7_1
– ident: e_1_2_7_16_1
  doi: 10.1029/96JD02246
– ident: e_1_2_7_26_1
  doi: 10.5194/acp-8-1723-2008
– ident: e_1_2_7_9_1
  doi: 10.1029/2011JD015887
– ident: e_1_2_7_27_1
– ident: e_1_2_7_18_1
  doi: 10.1029/2005JD006223
– ident: e_1_2_7_14_1
  doi: 10.3137/ao.410102
– ident: e_1_2_7_32_1
  doi: 10.1029/2008GL036194
– ident: e_1_2_7_29_1
  doi: 10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2
– ident: e_1_2_7_30_1
  doi: 10.1016/j.atmosenv.2004.09.066
– ident: e_1_2_7_12_1
  doi: 10.1175/1520-0442(1999)012<1268:SEOAOC>2.0.CO;2
– ident: e_1_2_7_21_1
  doi: 10.1029/JD094iD06p08599
– ident: e_1_2_7_31_1
  doi: 10.1016/0004-6981(74)90004-3
– ident: e_1_2_7_5_1
  doi: 10.1007/BF00052828
– ident: e_1_2_7_4_1
  doi: 10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2
– ident: e_1_2_7_15_1
  doi: 10.1175/1520-0450(1995)034<2076:CCNOTA>2.0.CO;2
– ident: e_1_2_7_2_1
  doi: 10.1029/97JD03735
SSID ssj0005727
Score 2.119161
Snippet The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi‐Direct...
The objective of this work is to investigate the variability in the aerosol particle number concentration in Arctic spring. The Indirect and Semi-Direct...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2229
SubjectTerms aerosol variability
Aerosols
Air masses
Arctic aerosol number concentration
biomass burning
Clouds
Earth, ocean, space
Estimates
Estimating
Exact sciences and technology
External geophysics
Legs
Marine
Meteorology
Physics of the high neutral atmosphere
Reproduction
Springs
Title Spatial and temporal variability of aerosol particles in Arctic spring
URI https://api.istex.fr/ark:/67375/WNG-43WKWD5D-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.1940
https://www.proquest.com/docview/1266251987
https://search.proquest.com/docview/1434028709
https://search.proquest.com/docview/1642293726
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BuXChPEVKqYxU9RZ1E8dOckTdLqhVKxCg5Wb5KVVdJe0ui-DfM2NnU_YAQkKKFEW2k3jssb-xx98AHErHXSlLtE7awPPKlyE3Lfd5sDh5Bin4xMYgtp_qy6_N9JRocsZQX4kfYlxwI82I4zUpuDar4zvS0FvU8rYiax1thHh4g3-4c-6oh2CtXOQtwoh0XJZKHg_ltuahByTSH-QXqVcompBiWmyBzt-ha5x7Zrv_8deP4dEAONnb1EOewD3fPYXsArFyv4xL6uyInSyuELjGp2cwoyjF2CuZ7hwbmKsW7Dva1InS-yfrA9Mea9Uv2M3GsY5ddfgNOnDF0lbvc_gyO_188j4foi3kthKTCW0HF4Y7ztEIC1LX1gQRbOTvEnUwonCBeyNb44iiTjaNt94J5yo70cJ4zV_ATtd3_iUwWRfGNngR2b0Vsi24kVbj27RufeEyYBvZq5tEqqESfXKpbtEaQQFlcBTbZEzXy2vyQauFml--UxWfn8-nYqouMjjYarSxQCkp_g7HN-1vWlEN-rlSBeISOrPb1Bm8GZNRs2i7RHe-X2OeiqNxjeNZ-5c8aL4hYKpLmcFhbPc_VUh9PKPb3r9lewUPEZmVyWtwH3a-Ldf-NdxfufVB7Oi_ADrM_44
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B9gAvfKOFjWGkaW_Rmjh2Et7QujLYWoEYKm-W4w9pokq2lk7w33Nnpx19ACEhRYoi20n8cfbv7LvfARxIy20uc9ROas_TwuU-bWruUm9w8fRS8IEJQWw_l5Ov1fCEaHLerHxhIj_EesONJCPM1yTgtCF9dMsaeo1iXheorm8XEochuW_wj7fmHWUfrpWLtEYgER1mqehRX3BjJdqmRv1BlpF6gY3jY1SLDdj5O3gNq8_o4f_89yN40GNO9jYOksdwx7VPIBkjXO7mYVedHbLj2SVi1_D0FEYUqBgHJtOtZT151YzdoFodWb1_ss4z7bBa3YxdrWzr2GWL3yCfKxZPe5_Bl9HJxfFp2gdcSE0hBgM6Ec4abjlHPcxLXZrGC28ChZcofSMy67lrZN1YYqmTVeWMs8Lawgy0aJzmz2Gr7Vq3A0yWWWMqvIjv3ghZZ7yRRuPbtK5dZhNgq8ZXV5FXQ0UG5Vxdo0KCDZTAYeiUdbqefyMztFKo6eSdKvj0bDoUQzVOYH-j19YFckkheDi-aW_VjaoX0YXKEJqQ225VJvB6nYzCRScmunXdEvMUHPVrnNLqv-RBDQ4xU5nLBA5Cx_-pQurTB7q9-Ldsr-De6cX4XJ2_n5ztwn0Eank0ItyDre_zpXsJdxd2uR9G_S9VIAPF
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aBEovbfqibvNQIeRmsrYs2T6WbLZ5Lilt2d6EnhC62JvdbGj_fUeS1-keWgoBgzGSbEujkb6RRt8A7HNDTc5ztE5qR9PC5i5VNbWp0zh5Os7oQIcgtl_K8fdqeOxpcvpQX5Efol9w85oRxmuv4DPjDu9JQ29Qy-sCrfXNAkG4p82n9Oreu6PsorVSltaII-J5WV_0sCu4NhFt-jb96R0j5QLbxsWgFmuo80_sGiaf0fMH_PYWPOsQJ_kYu8gLeGSbl5BcIlhu52FNnRyQo-k1Itfw9ApGPkwxdksiG0M66qopuUOjOnJ6_yKtI9Jirdopma0868h1g9_wJ65I3Ot9Dd9Gx1-PTtIu3EKqCzYY-P3gTFFDKVphjstSK8ecDgRerHSKZcZRq3itjOeo41VltTXMmEIPJFNW0jew0bSNfQuEl5nSFV6e7V4zXmdUcS3xbVLWNjMJkFXbi1lk1RCRPzkXN2iOYAMlcBBk0qfL-Q_vhFYyMRl_EgWdnE-GbCguE9hdE1pfIOc-AA_FN22vpCg6BV2IDIGJP7RblQl86JNRtfx-iWxsu8Q8BUXrGge0-h950H5DxFTmPIH9IPe_VUh8PvO3d_-XbQ-eXA1H4uJ0fP4eniJKy6MH4TZs3M6XdgceL8xyN_T53y5JAms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+temporal+variability+of+aerosol+particles+in+Arctic+spring&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Shantz%2C+N.+C.&rft.au=Gultepe%2C+I.&rft.au=Liu%2C+P.+S.+K.&rft.au=Earle%2C+M.+E.&rft.date=2012-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=138&rft.issue=669&rft.spage=2229&rft.epage=2240&rft_id=info:doi/10.1002%2Fqj.1940&rft.externalDBID=10.1002%252Fqj.1940&rft.externalDocID=QJ1940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon