Optimization of Optical Machine Structure by Backpropagation Neural Network Based on Particle Swarm Optimization and Bayesian Regularization Algorithms
Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algor...
Saved in:
Published in: | Materials Vol. 14; no. 11; p. 2998 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures. |
---|---|
AbstractList | Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures. |
Author | Zhang, Xinyong Sun, Liwei |
AuthorAffiliation | 1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; xyz9956@163.com 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory of Infrared Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
AuthorAffiliation_xml | – name: 1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; xyz9956@163.com – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China – name: 3 Key Laboratory of Infrared Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
Author_xml | – sequence: 1 givenname: Xinyong surname: Zhang fullname: Zhang, Xinyong – sequence: 2 givenname: Liwei surname: Sun fullname: Sun, Liwei |
BookMark | eNpdkttu1DAQQCNURC_0hS-IxAtCWoivsV-QSkWhUmkR9N0aO5Nstkmc2gnV8iP8Lt7ucln8Ynvm-Ngz8nF2MPgBs-wFKd4wpou3PRBOCNVaPcmOiNZyQTTnB_-sD7PTGFdFGowRRfWz7JBxWggtyFH282ac2r79AVPrh9zX-WbvoMs_g1u2A-bfpjC7aQ6Y23X-HtzdGPwIzZa_xjkk9hqnBx_uUjpilaf4FwjJ0qXTDxD6fO8OGKoErjG2MORfsZk7CL9zZ13jQzst-_g8e1pDF_F0N59ktxcfbs8_La5uPl6en10tHOd6WlBeC1rWToMiWDDtVClRIKfcUuCiJFDRygKruMSyKJ1CxgoqbS0FtVKwk-xyq608rMwY2h7C2nhozWPAh8bsSjFUWdSlZKpmhDuswAonRVmAlWjr2ibXu61rnG2PlcNhSs3Zk-5nhnZpGv_dKKJVSVQSvNoJgr-fMU6mb6PDroMB_RwNFVwxLancoC__Q1d-DkPqVKKY1qwUj9W93lIu-BgD1n8eQwqz-T3m7-9hvwCNsLsk |
CitedBy_id | crossref_primary_10_1016_j_fss_2022_12_005 crossref_primary_10_1016_j_enbenv_2022_08_004 crossref_primary_10_1016_j_ijleo_2023_170693 |
Cites_doi | 10.1088/1757-899X/520/1/012014 10.1016/j.ijleo.2018.09.161 10.1088/1742-6596/1605/1/012023 10.1016/j.ast.2017.01.018 10.1117/12.978650 10.1016/S1003-6326(06)60281-1 10.1504/IJMR.2019.100994 10.1016/j.compgeo.2010.08.010 10.1364/AO.56.001094 10.3390/s17061344 10.1016/j.ijfatigue.2018.10.005 10.1016/S0168-874X(99)00072-4 10.1016/j.engstruct.2020.111492 10.1117/12.2072472 10.1007/s10845-020-01559-0 10.1016/j.buildenv.2020.107485 10.1049/cae.1985.0013 10.1016/j.ijleo.2020.164274 10.4028/www.scientific.net/AMM.52-54.59 10.1016/j.probengmech.2003.11.007 10.1016/j.eswa.2010.07.086 10.1016/j.asoc.2012.03.015 10.1007/s12239-011-0083-z 10.1109/59.852131 10.1007/BF02366360 10.1016/j.aej.2020.08.032 10.1007/s12239-020-0145-1 10.1016/j.engappai.2006.01.005 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ma14112998 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | oai_doaj_org_article_28be97638f314cedab5c6570ab6ebffb 10_3390_ma14112998 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c449t-24f527fc9a81e039c876e5e424b2a4571ad2dba3d46e707c8e33026bf652b653 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Oct 22 15:09:46 EDT 2024 Tue Sep 17 21:23:39 EDT 2024 Fri Oct 25 09:20:44 EDT 2024 Tue Nov 19 04:33:15 EST 2024 Thu Sep 26 21:13:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-24f527fc9a81e039c876e5e424b2a4571ad2dba3d46e707c8e33026bf652b653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6266-4046 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198718/ |
PMID | 34205951 |
PQID | 2539937565 |
PQPubID | 2032366 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_28be97638f314cedab5c6570ab6ebffb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8198718 proquest_miscellaneous_2548396268 proquest_journals_2539937565 crossref_primary_10_3390_ma14112998 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lin (ref_8) 2011; 52–54 Jin (ref_28) 2012; 12 Yu (ref_14) 2010; 37 Han (ref_7) 2006; 16 Yu (ref_4) 2020; 207 Magalhaes (ref_22) 2019; 14 Jung (ref_23) 2020; 21 Meguid (ref_11) 2000; 35 Guggenberger (ref_15) 2004; 19 Song (ref_17) 2019; 119 Zhao (ref_26) 2020; 60 Xia (ref_5) 2019; 520 Charytoniuk (ref_21) 2000; 15 Tmr (ref_12) 2021; 41 Panagiotis (ref_25) 2017; 17 Williamson (ref_9) 1985; 2 Jamal (ref_24) 2006; 19 Zhu (ref_10) 2021; 238 Wei (ref_1) 2017; 56 Xu (ref_31) 2021; 32 Lks (ref_18) 2017; 64 ref_20 Cawley (ref_32) 2007; 8 Gomes (ref_30) 2011; 38 Feng (ref_27) 2021; 188 ref_3 ref_2 Asri (ref_16) 2011; 12 ref_29 Wang (ref_19) 2019; 179 Nakonechnyi (ref_13) 1994; 30 Wu (ref_6) 2020; 1605 |
References_xml | – volume: 520 start-page: 012014 year: 2019 ident: ref_5 article-title: Calibration Mechanism Design and Stiffness Analysis publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/520/1/012014 contributor: fullname: Xia – volume: 179 start-page: 780 year: 2019 ident: ref_19 article-title: A Back Propagation neural network based optimizing model of space-based large mirror structure publication-title: Optik doi: 10.1016/j.ijleo.2018.09.161 contributor: fullname: Wang – volume: 1605 start-page: 012023 year: 2020 ident: ref_6 article-title: Design of High-lightweight Space Mirror Component Based on Automatic Optimization publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1605/1/012023 contributor: fullname: Wu – volume: 41 start-page: 101953 year: 2021 ident: ref_12 article-title: Simulation of Powder Bed Metal Additive Manufacturing Microstructures with Coupled Finite Difference-Monte Carlo Method publication-title: Addit. Manuf. contributor: fullname: Tmr – volume: 8 start-page: 841 year: 2007 ident: ref_32 article-title: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters publication-title: J. Mach. Learn. Res. contributor: fullname: Cawley – volume: 64 start-page: 52 year: 2017 ident: ref_18 article-title: Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes—ScienceDirect publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.01.018 contributor: fullname: Lks – ident: ref_3 doi: 10.1117/12.978650 – volume: 16 start-page: 696 year: 2006 ident: ref_7 article-title: Design and finite element analysis of lightmass silicon carbide primary mirror publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(06)60281-1 contributor: fullname: Han – volume: 14 start-page: 295 year: 2019 ident: ref_22 article-title: Prediction of surface residual stress and hardness induced by ball burnishing through neural networks publication-title: Int. J. Manuf. Res. doi: 10.1504/IJMR.2019.100994 contributor: fullname: Magalhaes – volume: 37 start-page: 1015 year: 2010 ident: ref_14 article-title: Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2010.08.010 contributor: fullname: Yu – volume: 56 start-page: 1094 year: 2017 ident: ref_1 article-title: Design and optimization for main support structure of a large-area off-axis three-mirror space camera publication-title: Appl. Opt. doi: 10.1364/AO.56.001094 contributor: fullname: Wei – volume: 17 start-page: 1344 year: 2017 ident: ref_25 article-title: Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials publication-title: Sensors doi: 10.3390/s17061344 contributor: fullname: Panagiotis – volume: 119 start-page: 204 year: 2019 ident: ref_17 article-title: Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.10.005 contributor: fullname: Song – volume: 35 start-page: 305 year: 2000 ident: ref_11 article-title: Finite element analysis of fir-tree region in turbine discs publication-title: Finite Elem. Anal. Des. doi: 10.1016/S0168-874X(99)00072-4 contributor: fullname: Meguid – volume: 238 start-page: 111492 year: 2021 ident: ref_10 article-title: Finite element analysis of flexural behavior of precast segmental UHPC beams with prestressed bolted hybrid joints publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111492 contributor: fullname: Zhu – ident: ref_20 doi: 10.1117/12.2072472 – volume: 32 start-page: 77 year: 2021 ident: ref_31 article-title: Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01559-0 contributor: fullname: Xu – ident: ref_29 – volume: 188 start-page: 107485 year: 2021 ident: ref_27 article-title: Predictive control model for variable air volume terminal valve opening based on backpropagation neural network—ScienceDirect publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107485 contributor: fullname: Feng – ident: ref_2 – volume: 2 start-page: 66 year: 1985 ident: ref_9 article-title: Finite-element analysis publication-title: Comput. Aided Eng. J. doi: 10.1049/cae.1985.0013 contributor: fullname: Williamson – volume: 207 start-page: 164274 year: 2020 ident: ref_4 article-title: Support structure and optical alignment technology of large-aperture secondary mirror measured by back transmission method publication-title: Optik doi: 10.1016/j.ijleo.2020.164274 contributor: fullname: Yu – volume: 52–54 start-page: 59 year: 2011 ident: ref_8 article-title: Numerical and Experimental Analysis of Light-Weighted Primary Mirror for Cassegrain Telescope publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.52-54.59 contributor: fullname: Lin – volume: 19 start-page: 81 year: 2004 ident: ref_15 article-title: Monte Carlo simulation of the hysteretic response of frame structures using plastification adapted shape functions publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2003.11.007 contributor: fullname: Guggenberger – volume: 38 start-page: 957 year: 2011 ident: ref_30 article-title: Truss optimization with dynamic constraints using a particle swarm algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.086 contributor: fullname: Gomes – volume: 12 start-page: 2147 year: 2012 ident: ref_28 article-title: Attribute selection method based on a hybrid BPNN and PSO algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.015 contributor: fullname: Jin – volume: 12 start-page: 713 year: 2011 ident: ref_16 article-title: Fatigue life reliability prediction of a stub axle using Monte Carlo simulation publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-011-0083-z contributor: fullname: Asri – volume: 15 start-page: 263 year: 2000 ident: ref_21 article-title: Short-term load forecasting using Artificial Neural Networks. A review and evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.852131 contributor: fullname: Charytoniuk – volume: 30 start-page: 34 year: 1994 ident: ref_13 article-title: Adaptive optimization of the Monte-Carlo method publication-title: Cybern. Syst. Anal. doi: 10.1007/BF02366360 contributor: fullname: Nakonechnyi – volume: 60 start-page: 357 year: 2020 ident: ref_26 article-title: Stepped generalized predictive control of test tank temperature based on backpropagation neural network publication-title: AEJ Alex. Eng. J. doi: 10.1016/j.aej.2020.08.032 contributor: fullname: Zhao – volume: 21 start-page: 1539 year: 2020 ident: ref_23 article-title: Prediction of Nonlinear Stiffness of Automotive Bushings by Artificial Neural Network Models Trained by Data from Finite Element Analysis publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-020-0145-1 contributor: fullname: Jung – volume: 19 start-page: 681 year: 2006 ident: ref_24 article-title: Neural network-based failure rate prediction for De Havilland Dash-8 tires publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.01.005 contributor: fullname: Jamal |
SSID | ssj0000331829 |
Score | 2.355007 |
Snippet | Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 2998 |
SubjectTerms | Accuracy Algorithms Back propagation Back propagation networks backpropagation neural network Bayesian analysis Bayesian regularization algorithm Cameras Design optimization Efficiency Finite element analysis Model accuracy Neural networks optical machine structure optimization Optimization Particle swarm optimization Prediction models Predictions Random variables Regularization space camera supporting structure Velocity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYKp3JAlIJIS5Grcl2R9WNtH6EF9QKtGg7cVn6MAUE2KCFC_BL-LmPvJmRPXHq0ZyR7Z8bjGe_4MyGH3nmpHKapGrwrUv5VGOtC4YXmwSttsZWOLkbq4kr_Ok0wOcunvlJNWAsP3AruiGkHuGVyHXkpPATrpE_lGtZV4GJ02fsO9UoylX0wR1tlpsUj5ZjXH41tKVJsYXRvB8pA_b3osl8bubLZnG2RzS5KpMft7D6RD9Bsk40V7MDP5OUPLvZxd4uSTiJNbRQ4Pc_lkUBHGRl2PgXqnumJ9Xc4OHqPlj9hciDvRVsEjuQZBIr9fzuB0NGTnY5pbwzbBGR8hnTtkv7Lb9hPF7Tj--vJ9PbxZjzbIZdnp5c_fxfdKwuoD2EeCyaiZCp6Y3UJQ248-keQIJhwzAqpShtYcJYHUYEaKq-Bc0zcXKwkc5Xku2S9mTSwR2gQMoASQkZMspxRBsBXofKli6bCMHNAfiwEXz-0WBo15iBJPfWbegbkJOlkyZHwr3MHWkXdCaF-zyoGZH-h0bpblLOayRyNYQg7IN-XZFxO6R-JbWAyTzxopAazPJyH6llCb0J9SnN7k4G5dTrBKfWX__EFX8lHlspn8oHPPllHm4FvZG0W5gfZ1F8Bv30MAQ priority: 102 providerName: Directory of Open Access Journals |
Title | Optimization of Optical Machine Structure by Backpropagation Neural Network Based on Particle Swarm Optimization and Bayesian Regularization Algorithms |
URI | https://www.proquest.com/docview/2539937565 https://search.proquest.com/docview/2548396268 https://pubmed.ncbi.nlm.nih.gov/PMC8198718 https://doaj.org/article/28be97638f314cedab5c6570ab6ebffb |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa6nNpD1ae6LUWu2mtY4kdsH4GCeoGiLofeIj8msCpJUJZVxS_h7zJ2Erq59ph4Iluesf19zvgzId-881I5pKkavMsi_8qMdSHzQvPglbb4FLculur8t_5-EmVy5HgWJiXte7fab27q_WZ1nXIrb2u_GPPEFhdnxzoy5VwvZmSG2HCLoqfpl2OYMtNLkXKk9Iva5iLCChMv5-OCIaKQ-WQdSnL9E4w5zZDcWnJOX5GXA1akh32bXpNn0LwhL7YUBN-Sh5845OvhLCVtKxqfsdvpWUqSBLpM-rCbDqi7p0fW_8HKcQ7p7aMyB9qe96ngWLyGQPH9xdANdPnXdjWd1GGbgIb3EA9f0l_pJvtuLDu8uWq71d11vX5HLk9PLo9_ZMNdC-gVYe4yJirJVOWN1TkccONxlgQJggnHrJAqt4EFZ3kQBagD5TVwjvTNVYVkrpD8Pdlp2gY-EBqEDKCEkBVSLWeUAfBFKHzuKlMg2JyTr2PHl7e9okaJTCR6qvznqTk5ij55sogq2OlF212VQyeUTDtAOMV1xXPhIVgnfUzlsa4AV1VuTnZHj5bD0FyXTCZMhkB2Tr48FeOgin9KbAPtJtpgqBrketgONYmESYOmJRitSZ57iM6P__3lJ_KcxcyZtNezS3YwUOAzma3DZi9tGeylgH8EdzcL3w |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RcgAOvCsCBRbB1U28D6_32JZWRTShIjlws_YxTiNqu0oaof4S_i6zG7vE1x7tGcsjz-x6vvW3nwn54qyTyiJMzcHZJOCvRBvrEydy7p3KDR6FpYupmvzKv54EmRzZ7YWJpH1nFwf1VXVQLy4jt_K6csOOJza8GB_nASmn-XCHPMTxOuJbID1OwBwLlemNGClHUD-sTCpCY6HD7_m4YNhTyLT3JoqC_b0us8-R3HrpnD67Z7jPydO2y6SHG_ML8gDql-TJlvbgK_L3B04WVbsLkzYlDceYMDqO9Eqg06gsu14Ctbf0yLjfGDTOPhv_oOmBvpMNiRzNK_AUz1-0EdHpH7OsaO8epvboeAth2yb9CfNAgO1sh1fzZrm4uaxWr8ns9GR2fJa0f2nAfAp9kzBRSqZKp02ewohrh_MrSBBMWGaEVKnxzFvDvchAjZTLgXMEfrbMJLOZ5Htkt25qeEOoF9KDEkKWCNKsVhrAZT5zqS11hm3qgHzuElZcb7Q4CsQwIcPF_wwPyFHI5Z1H0M-OJ5rlvGgfQsFyC9iI8bzkqXDgjZUukICMzcCWpR2Q_a4SinZQrwomYzeHLfCAfLoz43AM31hMDc06-GCRa0SJGIfqVVAvoL4FCycKe7eF8vbeV34kj85m4_Pi_Nvk-zvymAX-TVwx2ie7WDTwnuys_PpDHC7_AKHZIH8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJwWN6iywJGcM2m8SNOjvuqQLClonvgFvkx6VZskqrdCu0v4e8ydtLSXOHoeKKMMmN7PufLZ0I-WmOlMghTM7Am8vgryrVxkRUZd1ZlGlt-62Kqxj-y8wsvk7M96iuQ9q2ZH9c31XE9vw7cykVl4w1PLJ5cnmUeKSdZvHBlvEfu45gdyh2gHiZhjsnK8laQlCOwjyudCF9c5P6IPi4Y1hUy6a1GQbS_V2n2eZI7C8_o8X-4_IQcdNUmPWlNnpJ7UD8jj3Y0CJ-T399w0qi6vzFpU1LfxsDRy0CzBDoNCrPrJVBzR0-1_YmO4yzU2nttD7Qdt2Ry7F6Bo3h90nlFp7_0sqK9Z-jaoeEd-N836XeYeSLspu_kZtYs57fX1eoFuRpdXJ19irrTGjCuIr-NmCglU6XNdZbAkOcW51mQIJgwTAupEu2YM5o7kYIaKpsB5wgATZlKZlLJX5L9uqnhFaFOSAdKCFkiWDO5ygFs6lKbmDJPsVwdkA-boBWLVpOjQCzjo1z8jfKAnPp4bi28jna40CxnRfcSCpYZwIKMZyVPhAWnjbSeDKRNCqYszYAcbbKh6Ab3qmAyVHVYCg_I-203Dkv_rUXX0Ky9DSZ7jmgR_VC9LOo51O_B5AkC312yHP7zne_Ig8n5qPj6efzlNXnIPA0nbBwdkX3MGXhD9lZu_TaMmD9-TiL_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Optical+Machine+Structure+by+Backpropagation+Neural+Network+Based+on+Particle+Swarm+Optimization+and+Bayesian+Regularization+Algorithms&rft.jtitle=Materials&rft.au=Zhang%2C+Xinyong&rft.au=Sun%2C+Liwei&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=11&rft.spage=2998&rft_id=info:doi/10.3390%2Fma14112998&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |