Optimization of Optical Machine Structure by Backpropagation Neural Network Based on Particle Swarm Optimization and Bayesian Regularization Algorithms

Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algor...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 14; no. 11; p. 2998
Main Authors: Zhang, Xinyong, Sun, Liwei
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures.
AbstractList Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures.
Author Zhang, Xinyong
Sun, Liwei
AuthorAffiliation 1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; xyz9956@163.com
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Infrared Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
AuthorAffiliation_xml – name: 1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; xyz9956@163.com
– name: 2 University of Chinese Academy of Sciences, Beijing 100049, China
– name: 3 Key Laboratory of Infrared Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Author_xml – sequence: 1
  givenname: Xinyong
  surname: Zhang
  fullname: Zhang, Xinyong
– sequence: 2
  givenname: Liwei
  surname: Sun
  fullname: Sun, Liwei
BookMark eNpdkttu1DAQQCNURC_0hS-IxAtCWoivsV-QSkWhUmkR9N0aO5Nstkmc2gnV8iP8Lt7ucln8Ynvm-Ngz8nF2MPgBs-wFKd4wpou3PRBOCNVaPcmOiNZyQTTnB_-sD7PTGFdFGowRRfWz7JBxWggtyFH282ac2r79AVPrh9zX-WbvoMs_g1u2A-bfpjC7aQ6Y23X-HtzdGPwIzZa_xjkk9hqnBx_uUjpilaf4FwjJ0qXTDxD6fO8OGKoErjG2MORfsZk7CL9zZ13jQzst-_g8e1pDF_F0N59ktxcfbs8_La5uPl6en10tHOd6WlBeC1rWToMiWDDtVClRIKfcUuCiJFDRygKruMSyKJ1CxgoqbS0FtVKwk-xyq608rMwY2h7C2nhozWPAh8bsSjFUWdSlZKpmhDuswAonRVmAlWjr2ibXu61rnG2PlcNhSs3Zk-5nhnZpGv_dKKJVSVQSvNoJgr-fMU6mb6PDroMB_RwNFVwxLancoC__Q1d-DkPqVKKY1qwUj9W93lIu-BgD1n8eQwqz-T3m7-9hvwCNsLsk
CitedBy_id crossref_primary_10_1016_j_fss_2022_12_005
crossref_primary_10_1016_j_enbenv_2022_08_004
crossref_primary_10_1016_j_ijleo_2023_170693
Cites_doi 10.1088/1757-899X/520/1/012014
10.1016/j.ijleo.2018.09.161
10.1088/1742-6596/1605/1/012023
10.1016/j.ast.2017.01.018
10.1117/12.978650
10.1016/S1003-6326(06)60281-1
10.1504/IJMR.2019.100994
10.1016/j.compgeo.2010.08.010
10.1364/AO.56.001094
10.3390/s17061344
10.1016/j.ijfatigue.2018.10.005
10.1016/S0168-874X(99)00072-4
10.1016/j.engstruct.2020.111492
10.1117/12.2072472
10.1007/s10845-020-01559-0
10.1016/j.buildenv.2020.107485
10.1049/cae.1985.0013
10.1016/j.ijleo.2020.164274
10.4028/www.scientific.net/AMM.52-54.59
10.1016/j.probengmech.2003.11.007
10.1016/j.eswa.2010.07.086
10.1016/j.asoc.2012.03.015
10.1007/s12239-011-0083-z
10.1109/59.852131
10.1007/BF02366360
10.1016/j.aej.2020.08.032
10.1007/s12239-020-0145-1
10.1016/j.engappai.2006.01.005
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ma14112998
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID oai_doaj_org_article_28be97638f314cedab5c6570ab6ebffb
10_3390_ma14112998
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c449t-24f527fc9a81e039c876e5e424b2a4571ad2dba3d46e707c8e33026bf652b653
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Oct 22 15:09:46 EDT 2024
Tue Sep 17 21:23:39 EDT 2024
Fri Oct 25 09:20:44 EDT 2024
Tue Nov 19 04:33:15 EST 2024
Thu Sep 26 21:13:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-24f527fc9a81e039c876e5e424b2a4571ad2dba3d46e707c8e33026bf652b653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6266-4046
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198718/
PMID 34205951
PQID 2539937565
PQPubID 2032366
ParticipantIDs doaj_primary_oai_doaj_org_article_28be97638f314cedab5c6570ab6ebffb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8198718
proquest_miscellaneous_2548396268
proquest_journals_2539937565
crossref_primary_10_3390_ma14112998
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lin (ref_8) 2011; 52–54
Jin (ref_28) 2012; 12
Yu (ref_14) 2010; 37
Han (ref_7) 2006; 16
Yu (ref_4) 2020; 207
Magalhaes (ref_22) 2019; 14
Jung (ref_23) 2020; 21
Meguid (ref_11) 2000; 35
Guggenberger (ref_15) 2004; 19
Song (ref_17) 2019; 119
Zhao (ref_26) 2020; 60
Xia (ref_5) 2019; 520
Charytoniuk (ref_21) 2000; 15
Tmr (ref_12) 2021; 41
Panagiotis (ref_25) 2017; 17
Williamson (ref_9) 1985; 2
Jamal (ref_24) 2006; 19
Zhu (ref_10) 2021; 238
Wei (ref_1) 2017; 56
Xu (ref_31) 2021; 32
Lks (ref_18) 2017; 64
ref_20
Cawley (ref_32) 2007; 8
Gomes (ref_30) 2011; 38
Feng (ref_27) 2021; 188
ref_3
ref_2
Asri (ref_16) 2011; 12
ref_29
Wang (ref_19) 2019; 179
Nakonechnyi (ref_13) 1994; 30
Wu (ref_6) 2020; 1605
References_xml – volume: 520
  start-page: 012014
  year: 2019
  ident: ref_5
  article-title: Calibration Mechanism Design and Stiffness Analysis
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/520/1/012014
  contributor:
    fullname: Xia
– volume: 179
  start-page: 780
  year: 2019
  ident: ref_19
  article-title: A Back Propagation neural network based optimizing model of space-based large mirror structure
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.09.161
  contributor:
    fullname: Wang
– volume: 1605
  start-page: 012023
  year: 2020
  ident: ref_6
  article-title: Design of High-lightweight Space Mirror Component Based on Automatic Optimization
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1605/1/012023
  contributor:
    fullname: Wu
– volume: 41
  start-page: 101953
  year: 2021
  ident: ref_12
  article-title: Simulation of Powder Bed Metal Additive Manufacturing Microstructures with Coupled Finite Difference-Monte Carlo Method
  publication-title: Addit. Manuf.
  contributor:
    fullname: Tmr
– volume: 8
  start-page: 841
  year: 2007
  ident: ref_32
  article-title: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Cawley
– volume: 64
  start-page: 52
  year: 2017
  ident: ref_18
  article-title: Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes—ScienceDirect
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.01.018
  contributor:
    fullname: Lks
– ident: ref_3
  doi: 10.1117/12.978650
– volume: 16
  start-page: 696
  year: 2006
  ident: ref_7
  article-title: Design and finite element analysis of lightmass silicon carbide primary mirror
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(06)60281-1
  contributor:
    fullname: Han
– volume: 14
  start-page: 295
  year: 2019
  ident: ref_22
  article-title: Prediction of surface residual stress and hardness induced by ball burnishing through neural networks
  publication-title: Int. J. Manuf. Res.
  doi: 10.1504/IJMR.2019.100994
  contributor:
    fullname: Magalhaes
– volume: 37
  start-page: 1015
  year: 2010
  ident: ref_14
  article-title: Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2010.08.010
  contributor:
    fullname: Yu
– volume: 56
  start-page: 1094
  year: 2017
  ident: ref_1
  article-title: Design and optimization for main support structure of a large-area off-axis three-mirror space camera
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.001094
  contributor:
    fullname: Wei
– volume: 17
  start-page: 1344
  year: 2017
  ident: ref_25
  article-title: Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
  publication-title: Sensors
  doi: 10.3390/s17061344
  contributor:
    fullname: Panagiotis
– volume: 119
  start-page: 204
  year: 2019
  ident: ref_17
  article-title: Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.10.005
  contributor:
    fullname: Song
– volume: 35
  start-page: 305
  year: 2000
  ident: ref_11
  article-title: Finite element analysis of fir-tree region in turbine discs
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/S0168-874X(99)00072-4
  contributor:
    fullname: Meguid
– volume: 238
  start-page: 111492
  year: 2021
  ident: ref_10
  article-title: Finite element analysis of flexural behavior of precast segmental UHPC beams with prestressed bolted hybrid joints
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111492
  contributor:
    fullname: Zhu
– ident: ref_20
  doi: 10.1117/12.2072472
– volume: 32
  start-page: 77
  year: 2021
  ident: ref_31
  article-title: Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01559-0
  contributor:
    fullname: Xu
– ident: ref_29
– volume: 188
  start-page: 107485
  year: 2021
  ident: ref_27
  article-title: Predictive control model for variable air volume terminal valve opening based on backpropagation neural network—ScienceDirect
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107485
  contributor:
    fullname: Feng
– ident: ref_2
– volume: 2
  start-page: 66
  year: 1985
  ident: ref_9
  article-title: Finite-element analysis
  publication-title: Comput. Aided Eng. J.
  doi: 10.1049/cae.1985.0013
  contributor:
    fullname: Williamson
– volume: 207
  start-page: 164274
  year: 2020
  ident: ref_4
  article-title: Support structure and optical alignment technology of large-aperture secondary mirror measured by back transmission method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164274
  contributor:
    fullname: Yu
– volume: 52–54
  start-page: 59
  year: 2011
  ident: ref_8
  article-title: Numerical and Experimental Analysis of Light-Weighted Primary Mirror for Cassegrain Telescope
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.52-54.59
  contributor:
    fullname: Lin
– volume: 19
  start-page: 81
  year: 2004
  ident: ref_15
  article-title: Monte Carlo simulation of the hysteretic response of frame structures using plastification adapted shape functions
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2003.11.007
  contributor:
    fullname: Guggenberger
– volume: 38
  start-page: 957
  year: 2011
  ident: ref_30
  article-title: Truss optimization with dynamic constraints using a particle swarm algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.086
  contributor:
    fullname: Gomes
– volume: 12
  start-page: 2147
  year: 2012
  ident: ref_28
  article-title: Attribute selection method based on a hybrid BPNN and PSO algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.015
  contributor:
    fullname: Jin
– volume: 12
  start-page: 713
  year: 2011
  ident: ref_16
  article-title: Fatigue life reliability prediction of a stub axle using Monte Carlo simulation
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-011-0083-z
  contributor:
    fullname: Asri
– volume: 15
  start-page: 263
  year: 2000
  ident: ref_21
  article-title: Short-term load forecasting using Artificial Neural Networks. A review and evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.852131
  contributor:
    fullname: Charytoniuk
– volume: 30
  start-page: 34
  year: 1994
  ident: ref_13
  article-title: Adaptive optimization of the Monte-Carlo method
  publication-title: Cybern. Syst. Anal.
  doi: 10.1007/BF02366360
  contributor:
    fullname: Nakonechnyi
– volume: 60
  start-page: 357
  year: 2020
  ident: ref_26
  article-title: Stepped generalized predictive control of test tank temperature based on backpropagation neural network
  publication-title: AEJ Alex. Eng. J.
  doi: 10.1016/j.aej.2020.08.032
  contributor:
    fullname: Zhao
– volume: 21
  start-page: 1539
  year: 2020
  ident: ref_23
  article-title: Prediction of Nonlinear Stiffness of Automotive Bushings by Artificial Neural Network Models Trained by Data from Finite Element Analysis
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-020-0145-1
  contributor:
    fullname: Jung
– volume: 19
  start-page: 681
  year: 2006
  ident: ref_24
  article-title: Neural network-based failure rate prediction for De Havilland Dash-8 tires
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.01.005
  contributor:
    fullname: Jamal
SSID ssj0000331829
Score 2.355007
Snippet Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 2998
SubjectTerms Accuracy
Algorithms
Back propagation
Back propagation networks
backpropagation neural network
Bayesian analysis
Bayesian regularization algorithm
Cameras
Design optimization
Efficiency
Finite element analysis
Model accuracy
Neural networks
optical machine structure optimization
Optimization
Particle swarm optimization
Prediction models
Predictions
Random variables
Regularization
space camera
supporting structure
Velocity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYKp3JAlIJIS5Grcl2R9WNtH6EF9QKtGg7cVn6MAUE2KCFC_BL-LmPvJmRPXHq0ZyR7Z8bjGe_4MyGH3nmpHKapGrwrUv5VGOtC4YXmwSttsZWOLkbq4kr_Ok0wOcunvlJNWAsP3AruiGkHuGVyHXkpPATrpE_lGtZV4GJ02fsO9UoylX0wR1tlpsUj5ZjXH41tKVJsYXRvB8pA_b3osl8bubLZnG2RzS5KpMft7D6RD9Bsk40V7MDP5OUPLvZxd4uSTiJNbRQ4Pc_lkUBHGRl2PgXqnumJ9Xc4OHqPlj9hciDvRVsEjuQZBIr9fzuB0NGTnY5pbwzbBGR8hnTtkv7Lb9hPF7Tj--vJ9PbxZjzbIZdnp5c_fxfdKwuoD2EeCyaiZCp6Y3UJQ248-keQIJhwzAqpShtYcJYHUYEaKq-Bc0zcXKwkc5Xku2S9mTSwR2gQMoASQkZMspxRBsBXofKli6bCMHNAfiwEXz-0WBo15iBJPfWbegbkJOlkyZHwr3MHWkXdCaF-zyoGZH-h0bpblLOayRyNYQg7IN-XZFxO6R-JbWAyTzxopAazPJyH6llCb0J9SnN7k4G5dTrBKfWX__EFX8lHlspn8oHPPllHm4FvZG0W5gfZ1F8Bv30MAQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimization of Optical Machine Structure by Backpropagation Neural Network Based on Particle Swarm Optimization and Bayesian Regularization Algorithms
URI https://www.proquest.com/docview/2539937565
https://search.proquest.com/docview/2548396268
https://pubmed.ncbi.nlm.nih.gov/PMC8198718
https://doaj.org/article/28be97638f314cedab5c6570ab6ebffb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa6nNpD1ae6LUWu2mtY4kdsH4GCeoGiLofeIj8msCpJUJZVxS_h7zJ2Erq59ph4Iluesf19zvgzId-881I5pKkavMsi_8qMdSHzQvPglbb4FLculur8t_5-EmVy5HgWJiXte7fab27q_WZ1nXIrb2u_GPPEFhdnxzoy5VwvZmSG2HCLoqfpl2OYMtNLkXKk9Iva5iLCChMv5-OCIaKQ-WQdSnL9E4w5zZDcWnJOX5GXA1akh32bXpNn0LwhL7YUBN-Sh5845OvhLCVtKxqfsdvpWUqSBLpM-rCbDqi7p0fW_8HKcQ7p7aMyB9qe96ngWLyGQPH9xdANdPnXdjWd1GGbgIb3EA9f0l_pJvtuLDu8uWq71d11vX5HLk9PLo9_ZMNdC-gVYe4yJirJVOWN1TkccONxlgQJggnHrJAqt4EFZ3kQBagD5TVwjvTNVYVkrpD8Pdlp2gY-EBqEDKCEkBVSLWeUAfBFKHzuKlMg2JyTr2PHl7e9okaJTCR6qvznqTk5ij55sogq2OlF212VQyeUTDtAOMV1xXPhIVgnfUzlsa4AV1VuTnZHj5bD0FyXTCZMhkB2Tr48FeOgin9KbAPtJtpgqBrketgONYmESYOmJRitSZ57iM6P__3lJ_KcxcyZtNezS3YwUOAzma3DZi9tGeylgH8EdzcL3w
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RcgAOvCsCBRbB1U28D6_32JZWRTShIjlws_YxTiNqu0oaof4S_i6zG7vE1x7tGcsjz-x6vvW3nwn54qyTyiJMzcHZJOCvRBvrEydy7p3KDR6FpYupmvzKv54EmRzZ7YWJpH1nFwf1VXVQLy4jt_K6csOOJza8GB_nASmn-XCHPMTxOuJbID1OwBwLlemNGClHUD-sTCpCY6HD7_m4YNhTyLT3JoqC_b0us8-R3HrpnD67Z7jPydO2y6SHG_ML8gDql-TJlvbgK_L3B04WVbsLkzYlDceYMDqO9Eqg06gsu14Ctbf0yLjfGDTOPhv_oOmBvpMNiRzNK_AUz1-0EdHpH7OsaO8epvboeAth2yb9CfNAgO1sh1fzZrm4uaxWr8ns9GR2fJa0f2nAfAp9kzBRSqZKp02ewohrh_MrSBBMWGaEVKnxzFvDvchAjZTLgXMEfrbMJLOZ5Htkt25qeEOoF9KDEkKWCNKsVhrAZT5zqS11hm3qgHzuElZcb7Q4CsQwIcPF_wwPyFHI5Z1H0M-OJ5rlvGgfQsFyC9iI8bzkqXDgjZUukICMzcCWpR2Q_a4SinZQrwomYzeHLfCAfLoz43AM31hMDc06-GCRa0SJGIfqVVAvoL4FCycKe7eF8vbeV34kj85m4_Pi_Nvk-zvymAX-TVwx2ie7WDTwnuys_PpDHC7_AKHZIH8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJwWN6iywJGcM2m8SNOjvuqQLClonvgFvkx6VZskqrdCu0v4e8ydtLSXOHoeKKMMmN7PufLZ0I-WmOlMghTM7Am8vgryrVxkRUZd1ZlGlt-62Kqxj-y8wsvk7M96iuQ9q2ZH9c31XE9vw7cykVl4w1PLJ5cnmUeKSdZvHBlvEfu45gdyh2gHiZhjsnK8laQlCOwjyudCF9c5P6IPi4Y1hUy6a1GQbS_V2n2eZI7C8_o8X-4_IQcdNUmPWlNnpJ7UD8jj3Y0CJ-T399w0qi6vzFpU1LfxsDRy0CzBDoNCrPrJVBzR0-1_YmO4yzU2nttD7Qdt2Ry7F6Bo3h90nlFp7_0sqK9Z-jaoeEd-N836XeYeSLspu_kZtYs57fX1eoFuRpdXJ19irrTGjCuIr-NmCglU6XNdZbAkOcW51mQIJgwTAupEu2YM5o7kYIaKpsB5wgATZlKZlLJX5L9uqnhFaFOSAdKCFkiWDO5ygFs6lKbmDJPsVwdkA-boBWLVpOjQCzjo1z8jfKAnPp4bi28jna40CxnRfcSCpYZwIKMZyVPhAWnjbSeDKRNCqYszYAcbbKh6Ab3qmAyVHVYCg_I-203Dkv_rUXX0Ky9DSZ7jmgR_VC9LOo51O_B5AkC312yHP7zne_Ig8n5qPj6efzlNXnIPA0nbBwdkX3MGXhD9lZu_TaMmD9-TiL_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Optical+Machine+Structure+by+Backpropagation+Neural+Network+Based+on+Particle+Swarm+Optimization+and+Bayesian+Regularization+Algorithms&rft.jtitle=Materials&rft.au=Zhang%2C+Xinyong&rft.au=Sun%2C+Liwei&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=11&rft.spage=2998&rft_id=info:doi/10.3390%2Fma14112998&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon