Revisiting turbulence small-scale behavior using velocity gradient triple decomposition

Turbulence small-scale behavior has been commonly investigated in literature by decomposing the velocity-gradient tensor (Aij) into the symmetric strain-rate (Sij) and anti-symmetric rotation-rate (Wij) tensors. To develop further insight, we revisit some of the key studies using a triple decomposit...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics Vol. 22; no. 6; pp. 63015 - 63030
Main Authors: Das, Rishita, Girimaji, Sharath S
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Turbulence small-scale behavior has been commonly investigated in literature by decomposing the velocity-gradient tensor (Aij) into the symmetric strain-rate (Sij) and anti-symmetric rotation-rate (Wij) tensors. To develop further insight, we revisit some of the key studies using a triple decomposition of the velocity-gradient tensor. The additive triple decomposition formally segregates the contributions of normal-strain-rate (Nij), pure-shear (Hij) and rigid-body-rotation-rate (Rij). The decomposition not only highlights the key role of shear, but it also provides a more accurate account of the influence of normal-strain and pure rotation on important small-scale features. First, the local streamline topology and geometry are described in terms of the three constituent tensors in velocity-gradient invariants' space. Using direct numerical simulation (DNS) data sets of forced isotropic turbulence, the velocity-gradient and pressure field fluctuations are examined at different Reynolds numbers. At all Reynolds numbers, shear contributes the most and rigid-body-rotation the least toward the velocity-gradient magnitude (A2 ≡ AijAij). Especially, shear contribution is dominant in regions of high values of A2 (intermittency). It is shown that the high-degree of enstrophy intermittency reported in literature is due to the shear contribution toward vorticity rather than that of rigid-body-rotation. The study also provides an explanation for the non-intermittent nature of pressure-Laplacian, despite the strong intermittency of enstrophy and dissipation fields. The study further investigates the alignment of the rotation axis with normal strain-rate and pressure Hessian eigenvectors. Overall, it is demonstrated that triple decomposition offers unique and deeper understanding of velocity-gradient behavior in turbulence.
Bibliography:NJP-111662.R1
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ab8ab2