Ethyl alcohol production optimization by coupling genetic algorithm and multilayer perceptron neural network
In this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an optimization problem. A data-driven identification method based on MLPNN and optimal design of experiments is described in detail. The nonlinear m...
Saved in:
Published in: | Applied biochemistry and biotechnology Vol. 129-132; no. 1-3; pp. 969 - 984 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Springer Nature B.V
2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an optimization problem. A data-driven identification method based on MLPNN and optimal design of experiments is described in detail. The nonlinear model of an extractive ethanol process, represented by a MLPNN, is optimized using real-coded and binary-coded genetic algorithms to determine the optimal operational conditions. In order to check the validity of the computational modeling, the results were compared with the optimization of a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature. |
---|---|
AbstractList | In this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an optimization problem. A data-driven identification method based on MLPNN and optimal design of experiments is described in detail. The nonlinear model of an extractive ethanol process, represented by a MLPNN, is optimized using real-coded and binary-coded genetic algorithms to determine the optimal operational conditions. In order to check the validity of the computational modeling, the results were compared with the optimization of a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature. In this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an optimization problem. A data-driven identification method based on MLPNN and optimal design of experiments is described in detail. The nonlinear model of an extractive ethanol process, represented by a MLPNN, is optimized using real-coded and binary-coded genetic algorithms to determine the optimal operational conditions. In order to check the validity of the computational modeling, the results were compared with the optimization of a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature.[PUBLICATION ABSTRACT] |
Author | da Costa, Aline C Maciel, Maria Regina Wolf Rivera, Elmer Ccopa Maciel Filho, Rubens |
Author_xml | – sequence: 1 givenname: Elmer Ccopa surname: Rivera fullname: Rivera, Elmer Ccopa email: elmer@feq.unicamp.br organization: DPQ/FEQ/UNICAMP, Campinas, SP, Brasil Cx. Postal 6066, 13081-970. elmer@feq.unicamp.br – sequence: 2 givenname: Aline C surname: da Costa fullname: da Costa, Aline C – sequence: 3 givenname: Maria Regina Wolf surname: Maciel fullname: Maciel, Maria Regina Wolf – sequence: 4 givenname: Rubens surname: Maciel Filho fullname: Maciel Filho, Rubens |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16915705$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYO02Hb11UcZFPRpa25m8rVv29JaoeCLPodMJrObmknGTIay_vVm2wWlUH26J_A7J_dyztBRiMEi9AbwOdSCflpfrC9WUJMVrCSTL9ApJrxeEiLk0V_6BJ1N0x3GQATlL9EJMAmUY3qK_FXe7nylvYnb6KsxxW422cVQxTG7wf3SD492V5k4j96FTbWxwWZnimcTk8vbodKhq4bZZ-f1zqZqtMnYMafiC3ZO2peR72P68Qod99pP9vVhLtD366tvlzfL26-fv1yub5emaUReGkIbwG1DZGtJ2-JO84aB6UmPpQBZdEegs4yXExg3EjPRc62NAU5sj0m9QB8fc8s5P2c7ZTW4yVjvdbBxnpRguBaCSijkh3-STHBKZcH_B5a1KOGSFfD9E_AuzimUcxVhrOGYA9__--45CiSHklaqW6DzR8ikOE3J9mpMbtBppwCrfftq335RRIEq7RfD20Pq3A62-4Mf6q5_A7grrHE |
CitedBy_id | crossref_primary_10_1007_s13197_012_0695_y crossref_primary_10_1080_02664763_2012_753041 crossref_primary_10_1002_jctb_2391 crossref_primary_10_1016_j_cep_2010_02_012 crossref_primary_10_1002_jctb_2383 crossref_primary_10_1007_s12010_007_8062_6 crossref_primary_10_1021_acs_iecr_2c04239 crossref_primary_10_1016_j_cherd_2022_03_022 crossref_primary_10_3390_app9183664 |
ContentType | Journal Article |
Copyright | Humana Press Inc. 2006 Humana Press Inc 2006. |
Copyright_xml | – notice: Humana Press Inc. 2006 – notice: Humana Press Inc 2006. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7ST 7T7 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P P64 PQEST PQQKQ PQUKI Q9U RC3 SOI 7QO 7X8 |
DOI | 10.1385/ABAB:132:1:969 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts Environment Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student ProQuest Central Student Engineering Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 0273-2289 1559-0291 |
EndPage | 984 |
ExternalDocumentID | 1941103181 10_1385_ABAB_132_1_969 16915705 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VX 0VY 199 1N0 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3SX 3V. 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 78A 7X7 88A 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAEOY AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGJZZ AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU CGR COF CS3 CSCUP CUY CVF D1J DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS ECM EIF EIOEI EJD EMOBN ESBYG ESTFP F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2P M4Y M7P MA- ML0 N2Q N9A NB0 NDZJH NF0 NPM NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P P9N PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNS ROL RPX RSV S16 S1Z S26 S27 S28 S3A S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK6 WK8 YLTOR Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z91 Z92 ZMTXR ZXP ~02 ~A9 ~EX ~KM AAYXX CITATION 7ST 7T7 7TM 7XB 8FD 8FK C1K FR3 K9. P64 PQEST PQUKI Q9U RC3 SOI 7QO 7X8 |
ID | FETCH-LOGICAL-c448t-c25410b429be2bb0da7461cf2f09819461d21de6757067c9068f7aacc172ef023 |
ISSN | 0273-2289 |
IngestDate | Fri Oct 25 01:31:16 EDT 2024 Sat Oct 26 00:39:11 EDT 2024 Thu Oct 24 22:11:15 EDT 2024 Tue Nov 19 04:37:42 EST 2024 Wed Nov 06 08:56:07 EST 2024 Fri Nov 22 00:35:18 EST 2024 Wed Oct 16 00:49:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c448t-c25410b429be2bb0da7461cf2f09819461d21de6757067c9068f7aacc172ef023 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 16915705 |
PQID | 197119427 |
PQPubID | 54110 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_860388591 proquest_miscellaneous_68755960 proquest_miscellaneous_19452796 proquest_journals_2664707171 proquest_journals_197119427 crossref_primary_10_1385_ABAB_132_1_969 pubmed_primary_16915705 |
PublicationCentury | 2000 |
PublicationDate | 2006-00-00 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – year: 2006 text: 2006-00-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Totowa |
PublicationTitle | Applied biochemistry and biotechnology |
PublicationTitleAlternate | Appl Biochem Biotechnol |
PublicationYear | 2006 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
SSID | ssj0012857 |
Score | 1.8555747 |
Snippet | In this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 969 |
SubjectTerms | Algorithms Bacteria - metabolism Bioreactors - microbiology Computer applications Computer Simulation Design of experiments Ethanol Ethanol - metabolism Genetic algorithms Identification methods Models, Biological Models, Genetic Multilayer perceptrons Neural networks Neural Networks (Computer) Optimization Pattern Recognition, Automated - methods Quality Control Studies |
Title | Ethyl alcohol production optimization by coupling genetic algorithm and multilayer perceptron neural network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16915705 https://www.proquest.com/docview/197119427 https://www.proquest.com/docview/2664707171 https://search.proquest.com/docview/19452796 https://search.proquest.com/docview/68755960 https://search.proquest.com/docview/860388591 |
Volume | 129-132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa67gAcEAwYZQN8QOJQBRLX-eHesq6lEzChrQhuUX44rFLWVF174L_ns50mQVURHDg0ipzETvy-Pn9-fn6PkDcsz3kg3IGVgSxjgiIHVuIFuRW40k_dDKQ5VTbd6bV_-T04H_Nxp7ON4dqU_VdJowyyVjtn_0HadaUowDlkjiOkjuNfyX2MnldexzrzrXK_ykx82H4J5XBb7bpUpDMtN0u9Fx1VSR22tfhRrubrG5M0Q3saFjEYuQptrJxfVnhOhb-EUBfGebzNbGs6O1c5uEwSOV0RCtY79vsr5Q4SG7-yWzQxSstlPUBkMdQUWGs_1By4tuN-jqGICrW9aB4DFyqjRP9bWeQ1BufFjbb8Xm0SzM775v7f7Ro7Fk3lrq0WUeodN1opgm5ZjJm0Q-9kpbRdYdnMZP2qtXpjNtV7LActLS080RrwhclRtzOWDAIVdiM8C89UWIsBU0f86ofbobun4XX05XwSfbq4_HhADhm0HuuSw_Bi9mFSL2qxwASe3X5CFUMU7bxXrQzRxtAZCuV73-ZIeyY-mgDNHpGH1cyFhgZyj0lHLo7IvdFW1kfkQSu25RNSaCDSCoi0ASJtA5EmP-kWiLQCIq2BSIEf2gCRNkCkBoi0AuJT8nUyno2mVpXaw0o5D9ZWylzu2AnIUCJZkthZ7HPPSXOW2wIcFecZczKJ2awPOpUKG_rDj-M0Bd-WOXjmM9JdlAv5nFBwdulw5nPhSZ67WYwZeJ6nMcfcx5G50yNvt50ZLU0El0gv4wZupLodZyxyInR7j5xs-zqq_tF3kSN8By_E_B453b0Kest9ZRJBM6_ry-h3tewWL2S5UTVwF4Dw9t_h4ZVd4dk9QvfcEXgqapMr0MyxAUHzLZ5w0Evuiz-_3wm531gPT0l3vdrIl-TgLtu8qnD6C3V40vI |
link.rule.ids | 315,782,786,4028,27932,27933,27934 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethyl+alcohol+production+optimization+by+coupling+genetic+algorithm+and+multilayer+perceptron+neural+network&rft.jtitle=Applied+biochemistry+and+biotechnology&rft.au=Rivera%2C+Elmer+Ccopa&rft.au=da+Costa+Aline+C&rft.au=Maciel+Maria+Regina+Wolf&rft.au=Filho%2C+Rubens+Maciel&rft.date=2006&rft.pub=Springer+Nature+B.V&rft.issn=0273-2289&rft.eissn=1559-0291&rft.volume=132&rft.issue=1-3&rft.spage=969&rft.epage=984&rft_id=info:doi/10.1385%2FABAB%3A132%3A1%3A969&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-2289&client=summon |