Anticonvulsant effects of dextrorphan in rats: possible involvement in dextromethorphan-induced seizure protection

The major metabolite of the non-opioid anticonvulsant/antitussive dextromethorphan is dextrorphan. In the present study, the effects of dextrorphan were determined in an experimental model of seizure activity (maximal electroshock convulsions) (MES). Subcutaneous administration of dextrorphan produc...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) Vol. 42; no. 24; p. 2509
Main Authors: Tortella, F C, Ferkany, J W, Pontecorvo, M J
Format: Journal Article
Language:English
Published: Netherlands 1988
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The major metabolite of the non-opioid anticonvulsant/antitussive dextromethorphan is dextrorphan. In the present study, the effects of dextrorphan were determined in an experimental model of seizure activity (maximal electroshock convulsions) (MES). Subcutaneous administration of dextrorphan produced dose-related blockade of tonic hindlimb extension (THE) and a decrease in the duration of tonic forelimb extension (TFE). The anticonvulsant effect of dextrorphan was linear and maximally efficacious. Compared to the prototypical anticonvulsant drug diphenylhydantoin, dextrorphan was 2.5 times more potent (ED50's = 30 mumol/kg and 12 mumol/kg, respectively). Pretreatment with naloxone failed to antagonize dextrorphan-induced blockade of THE. Moreover, pretreatment with dextrophan failed to significantly enhance the anticonvulsant potency of diphenylhydantoin. It is likely that the anticonvulsant effects of dextrorphan are related to its actions at the phencyclidine/N-methyl-D-aspartate receptor complex, whereas the anticonvulsant effects of dextromethorphan have been attributed to binding to a specific dextromethorphan site in the brain. Therefore, we suggest that while metabolism to dextrorphan could possibly contribute to the anticonvulsant effects of dextromethorphan, it is probably through an unrelated receptor mechanism.
ISSN:0024-3205
DOI:10.1016/0024-3205(88)90350-5