Support vector machines combined to observers for fault diagnosis in chemical reactors

A hybrid data/model‐based approach is proposed for fault detection and isolation for chemical reactions in jacketed stirred vessels. Using data‐based methods in high nonlinear systems requires training data to include a wide range of varying operations to ensure correct fault isolation. If such data...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering Vol. 92; no. 4; pp. 685 - 695
Main Authors: Sheibat-Othman, Nida, Laouti, Nassim, Valour, Jean-Pierre, Othman, Sami
Format: Journal Article
Language:English
Published: Blackwell Publishing Ltd 01-04-2014
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A hybrid data/model‐based approach is proposed for fault detection and isolation for chemical reactions in jacketed stirred vessels. Using data‐based methods in high nonlinear systems requires training data to include a wide range of varying operations to ensure correct fault isolation. If such data is not available, a model‐based approach can be used to enhance fault isolation. But, observers require a relatively precise process model, which is also not always available. In this work, we propose to combine an observer with statistical data‐based methods (support vector machines, SVM) for fault detection in order to avoid at the time precise process modelling (necessary for model‐based approach) and great number of training data (necessary for data‐based approach). An interesting case study that falls in this category is a chemical stirred tank reactor, with high nonlinear reactions. Therefore, a simplified process model is used as a starting point to develop an observer for fault isolation. The used process model is corrected using information from SVM when no fault is detected. The methodology is validated experimentally in lab‐scale and pilot‐scale polymerisation reactors. For processes with linear dynamics, model‐free SVM classification was found sufficient to detect and isolate sensor and actuator faults.
AbstractList A hybrid data/model‐based approach is proposed for fault detection and isolation for chemical reactions in jacketed stirred vessels. Using data‐based methods in high nonlinear systems requires training data to include a wide range of varying operations to ensure correct fault isolation. If such data is not available, a model‐based approach can be used to enhance fault isolation. But, observers require a relatively precise process model, which is also not always available. In this work, we propose to combine an observer with statistical data‐based methods (support vector machines, SVM) for fault detection in order to avoid at the time precise process modelling (necessary for model‐based approach) and great number of training data (necessary for data‐based approach). An interesting case study that falls in this category is a chemical stirred tank reactor, with high nonlinear reactions. Therefore, a simplified process model is used as a starting point to develop an observer for fault isolation. The used process model is corrected using information from SVM when no fault is detected. The methodology is validated experimentally in lab‐scale and pilot‐scale polymerisation reactors. For processes with linear dynamics, model‐free SVM classification was found sufficient to detect and isolate sensor and actuator faults.
Author Sheibat-Othman, Nida
Valour, Jean-Pierre
Othman, Sami
Laouti, Nassim
Author_xml – sequence: 1
  givenname: Nida
  surname: Sheibat-Othman
  fullname: Sheibat-Othman, Nida
  email: nida.othman@lagep.univ-lyon1.fr
  organization: LAGEP, University of Lyon, CNRS, CPE Lyon, UMR 5007, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
– sequence: 2
  givenname: Nassim
  surname: Laouti
  fullname: Laouti, Nassim
  organization: LAGEP, University of Lyon, CNRS, CPE Lyon, UMR 5007, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
– sequence: 3
  givenname: Jean-Pierre
  surname: Valour
  fullname: Valour, Jean-Pierre
  organization: LAGEP, University of Lyon, CNRS, CPE Lyon, UMR 5007, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
– sequence: 4
  givenname: Sami
  surname: Othman
  fullname: Othman, Sami
  organization: LAGEP, University of Lyon, CNRS, CPE Lyon, UMR 5007, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
BackLink https://hal.science/hal-01901814$$DView record in HAL
BookMark eNqF0ctO3DAUBmCrAqkDZcMTeFmQAsfxJfaSRlxajdpKpQV1YzmOw5gm8WBnhvL2TUjLsqx80XfOsfXvoZ0-9A6hQwInBCA_tffWneRESvIGLYiiKgOibnfQAgBkxoCyt2gvpfvxmAMjC_Tj22a9DnHAW2eHEHFn7Mr3LmEbumrc1HgIOFTJxa2LCTcjacymHXDtzV0fkk_Y99iuXOetaXF0ZmqT3qHdxrTJHfxd99H3i_Pr8ipbfrn8WJ4tM8uYJBnNQQCRhNfAjOSKMCgqU_A6B0pkXTFg3NQub0SjSEMVSHCgclbTUdeiovvoaO67Mq1eR9-Z-KSD8frqbKmnu_H70wC2JaN9P9t1DA8blwbd-WRd25rehU3SpABVSAGCv045V0JwzmGkxzO1MaQUXfPyDAJ6ykRPmejnTEZMZvzoW_f0H6nLT-X5v5psrvFpcL9fakz8pUVBC65vPl_qkoqLn18_3GigfwBrVJ1r
CitedBy_id crossref_primary_10_1016_j_jprocont_2018_08_005
crossref_primary_10_1515_cppm_2020_0004
crossref_primary_10_1016_j_coche_2016_07_009
crossref_primary_10_3390_en16062668
crossref_primary_10_1002_cjce_22171
crossref_primary_10_1002_cjce_22603
crossref_primary_10_1016_j_jii_2022_100424
crossref_primary_10_1016_j_asoc_2019_105958
crossref_primary_10_1007_s12206_021_1105_z
crossref_primary_10_1016_j_compchemeng_2019_06_005
crossref_primary_10_1109_TIE_2020_3028813
crossref_primary_10_1109_TIE_2015_2419013
crossref_primary_10_1002_cjce_22994
crossref_primary_10_3390_electronics9091513
Cites_doi 10.1016/j.compchemeng.2008.08.008
10.1016/S0005-1098(99)00177-6
10.1109/9.256352
10.1016/S0016-0032(02)00027-3
10.1016/j.ces.2008.10.012
10.1016/j.jprocont.2010.06.023
10.1021/ie071496x
10.1006/mssp.2001.1454
10.1007/978-1-4757-2440-0
10.1016/S0009-2509(97)00190-5
10.1002/1099-1239(20001215)10:14<1193::AID-RNC523>3.0.CO;2-R
10.1016/S0967-0661(97)00048-8
10.1080/00207170050029287
10.1016/S0893-6080(03)00169-2
10.2298/CICEQ0803191L
10.1016/j.cej.2005.07.001
10.1016/j.compchemeng.2003.10.002
10.1109/TCST.2006.883192
10.1016/j.compchemeng.2009.12.008
10.1016/0005-1098(90)90018-D
10.1021/ie0502483
10.1016/S0098-1354(03)00188-1
10.1016/j.jprocont.2011.03.010
10.1021/ie010659t
10.1145/130385.130401
10.1016/j.asoc.2009.11.003
10.1080/10543414.2000.10744544
10.1002/aic.12392
10.1109/9.928586
10.1016/j.cie.2010.03.011
10.1002/aic.13816
10.1016/j.ymssp.2006.12.007
10.1016/j.compind.2010.05.013
10.1016/j.jprocont.2009.07.011
10.1016/j.engappai.2010.06.008
10.1016/j.compchemeng.2012.03.004
ContentType Journal Article
Copyright 2013 Canadian Society for Chemical Engineering
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Canadian Society for Chemical Engineering
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
1XC
DOI 10.1002/cjce.21881
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList

Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 695
ExternalDocumentID oai_HAL_hal_01901814v1
10_1002_cjce_21881
CJCE21881
ark_67375_WNG_C36FZPBW_0
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ISR
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WSB
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
1XC
ID FETCH-LOGICAL-c4481-320601815d04a8591407ba75d20318db4045ade2f6f91f39080e0924d3a85d6b3
IEDL.DBID 33P
ISSN 0008-4034
IngestDate Tue Oct 15 15:37:58 EDT 2024
Sat Aug 17 01:58:42 EDT 2024
Fri Aug 16 02:04:14 EDT 2024
Thu Nov 21 22:47:13 EST 2024
Sat Aug 24 00:43:17 EDT 2024
Wed Oct 30 09:53:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ACL, OK_US, PES, observer, chemical reactor, fault detection and isolation, support vector machines (SVM)
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4481-320601815d04a8591407ba75d20318db4045ade2f6f91f39080e0924d3a85d6b3
Notes istex:4E4CACB3B5F6051EF19F16BFCD4AF5576D9E005C
ArticleID:CJCE21881
ark:/67375/WNG-C36FZPBW-0
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-7997-8567
PQID 1559665550
PQPubID 23500
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01901814v1
proquest_miscellaneous_1709786065
proquest_miscellaneous_1559665550
crossref_primary_10_1002_cjce_21881
wiley_primary_10_1002_cjce_21881_CJCE21881
istex_primary_ark_67375_WNG_C36FZPBW_0
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationTitle Canadian journal of chemical engineering
PublicationTitleAlternate Can. J. Chem. Eng
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References A. Kulkarni, V. K. Jayaraman, B. D. Kulkarni, Comput. Chem. Eng. 2004, 28, 311-318.
I. Alcorta Garcia, P. M. Frank, Control Eng. Pract. 2007, 5, 663-670.
H. Hammouri, P. Kaboré, S. Othman, J. Biston, J. Franklin Inst. 2002, 339, 455-478.
N. Sheibat-Othman, S. Othman, Ind. Eng. Chem. Res. 2006, 45, 206-211.
P. Kaboré, S. Othman, T. F. McKenna, H. Hammouri, Int. J. Control 2000, 73, 787-803.
C. Bo, X. Qiao, G. Zhang, Y. Bai, S. Zhang, J. Process Contr. 2010, 20, 1133-1140.
J. Yu, AIChE. J. 2011, 57, 1817-1828.
C. De Persis, A. Isidori, IEEE T. Autom. Contr. 2001, 46, 853-865.
I. Yélamos, G. Escudero, M. Graells, L. Puigjaner, Comput. Chem. Eng. 2009, 33, 244-255.
M. Farza, H. Hammouri, S. Othman, K. Busawon, Chem. Eng. Sci. 1997, 52, 4251-4267.
M. Alamir, N. Sheibat-Othman, S. Othman, IEEE T. Contr. Syst. T. 2007, 15, 315-323.
J. A. Yu, Comput. Chem. Eng. 2012, 41, 134-144.
A. Widodo, B. S. Yang, Mech. Syst. Signal Pr. 2007, 21, 2560-2574.
S. K. Lahiri, K. C. Ghanta, Chem. Ind. Chem. Eng. Q. 2008, 14, 191-203.
N. Sheibat-Othman, S. Othman, O. Boyron, M. Alamir, J. Process Contr. 2011, 21, 861-873.
C. C. Hsu, M. C. Chen, L. S. Chen, Comput. Ind. Eng. 2010, 59, 145-156.
V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York 1995.
Ph. Guinot, N. Othman, G. Févotte, T. F. McKenna, Polym. React. Eng. 2000, 8, 115-134.
L. H. Chiang, M. E. Kotanchek, A. K. Kordon, Comput. Chem. Eng. 2004, 28, 1389-1401.
S. Simani, C. Fantuzzi, R. J. Patton, "XIV, 298," Advances in Industrial Control, Springer-Verlag, London, UK 2002. ISBN: 1852336854.
V. Cherkassky, Y. Ma, Neural Netw. 2004, 17, 113-126.
V. N. Vapnik, A. Chervonenkis, Automat. Rem. Contr. 1964, 25, 821-837.
R. J. Patton, J. Chen, Int. J. Robust Nonlin. 2000, 10, 1193-1208.
Y. Huang, G. V. Reklaitis, V. Venkatasubramanian, Ind. Eng. Chem. Res. 2003, 42, 3361-3371.
J. Yu, AIChE J. 2013, 59, 407-419.
K. Y. Chen, L. S. Chen, M. C. Chen, C. L. Lee, Comput. Ind. 2011, 62, 42-50.
L. B. Jack, K. Nandi, Mech. Syst. Signal Pr. 2002, 16, 373-390.
S. X. Ding, Model-Based Fault Diagnosis Techniques, Springer, Berlin 2008.
P. M. Frank, Automatica 1990, 26, 459-474.
S. S. Rodil, M. J. Fuente, App. Art. Intell. 2010, 23, 1127-1139.
Y. Zhang, Chem. Eng. Sci. 2009, 64, 801-811.
S. Mahadevan, S. Shah, J. Process Contr. 2009, 19, 1627-1639.
O. A. Z. Sotomayor, D. Odloak, Chem. Eng. J. 2005, 112, 93-108.
S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and Kernel Methods Matlab Toolbox. Perception Systems and Information, INSA de Rouen, France 2005.
I. Aydin, M. Karakose, E. Akin, Appl. Soft Comp. 2011, 11, 120-129.
I. Monroy, R. Benitez, G. Escudero, M. Graells, Comput. Chem. Eng. 2010, 34, 631-642.
R. Isermann, Fault-Diagnosis Systems From Fault Detection to Fault Tolerance, Springer-Verlag, Berlin-Heidelberg 2006.
C. Edwards, S. K. Spurgeon, R. J. Patton, Automatica 2000, 36, 541-553.
J. P. Gauthier, H. Hammouri, S. Othman, IEEE T. Autom. Contr. 1992, 37, 875-880.
Y. Zhang, Ind. Eng. Chem. Res. 2008, 47, 6961-6971.
2002; 16
2010; 34
2010; 59
2009; 64
2005; 112
2004; 28
2000; 8
2011; 62
2008; 14
2008
2000; 73
2011; 11
2006
1995
2011; 57
1964; 25
2005
2002; 339
1992; 37
2002
2001; 46
2007; 15
2010; 23
2009; 33
2010; 20
2013; 59
2000; 36
1990; 26
2006; 45
1997; 52
2004; 17
2000; 10
2008; 47
2011; 21
2007; 5
2007; 21
2009; 19
2003; 42
2012; 41
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Canu S. (e_1_2_7_36_1) 2005
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
Vapnik V. N. (e_1_2_7_30_1) 1964; 25
e_1_2_7_33_1
Isermann R. (e_1_2_7_19_1) 2006
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Simani S. (e_1_2_7_20_1) 2002
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Ding S. X. (e_1_2_7_18_1) 2008
References_xml – volume: 33
  start-page: 244
  year: 2009
  end-page: 255
  publication-title: Comput. Chem. Eng.
– volume: 14
  start-page: 191
  year: 2008
  end-page: 203
  publication-title: Chem. Ind. Chem. Eng. Q.
– volume: 62
  start-page: 42
  year: 2011
  end-page: 50
  publication-title: Comput. Ind.
– volume: 19
  start-page: 1627
  year: 2009
  end-page: 1639
  publication-title: J. Process Contr.
– volume: 36
  start-page: 541
  year: 2000
  end-page: 553
  publication-title: Automatica
– year: 2005
– volume: 34
  start-page: 631
  year: 2010
  end-page: 642
  publication-title: Comput. Chem. Eng.
– volume: 20
  start-page: 1133
  year: 2010
  end-page: 1140
  publication-title: J. Process Contr.
– volume: 59
  start-page: 145
  year: 2010
  end-page: 156
  publication-title: Comput. Ind. Eng.
– volume: 15
  start-page: 315
  year: 2007
  end-page: 323
  publication-title: IEEE T. Contr. Syst. T.
– volume: 45
  start-page: 206
  year: 2006
  end-page: 211
  publication-title: Ind. Eng. Chem. Res.
– volume: 64
  start-page: 801
  year: 2009
  end-page: 811
  publication-title: Chem. Eng. Sci.
– volume: 26
  start-page: 459
  year: 1990
  end-page: 474
  publication-title: Automatica
– volume: 23
  start-page: 1127
  year: 2010
  end-page: 1139
  publication-title: App. Art. Intell.
– volume: 73
  start-page: 787
  year: 2000
  end-page: 803
  publication-title: Int. J. Control
– volume: 21
  start-page: 2560
  year: 2007
  end-page: 2574
  publication-title: Mech. Syst. Signal Pr.
– volume: 46
  start-page: 853
  year: 2001
  end-page: 865
  publication-title: IEEE T. Autom. Contr.
– volume: 25
  start-page: 821
  year: 1964
  end-page: 837
  publication-title: Automat. Rem. Contr.
– volume: 28
  start-page: 311
  year: 2004
  end-page: 318
  publication-title: Comput. Chem. Eng.
– volume: 42
  start-page: 3361
  year: 2003
  end-page: 3371
  publication-title: Ind. Eng. Chem. Res.
– volume: 16
  start-page: 373
  year: 2002
  end-page: 390
  publication-title: Mech. Syst. Signal Pr.
– volume: 47
  start-page: 6961
  year: 2008
  end-page: 6971
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 120
  year: 2011
  end-page: 129
  publication-title: Appl. Soft Comp.
– volume: 28
  start-page: 1389
  year: 2004
  end-page: 1401
  publication-title: Comput. Chem. Eng.
– volume: 112
  start-page: 93
  year: 2005
  end-page: 108
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 1817
  year: 2011
  end-page: 1828
  publication-title: AIChE. J.
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  publication-title: Neural Netw.
– volume: 59
  start-page: 407
  year: 2013
  end-page: 419
  publication-title: AIChE J.
– year: 2002
– year: 2008
– year: 2006
– volume: 41
  start-page: 134
  year: 2012
  end-page: 144
  publication-title: Comput. Chem. Eng.
– volume: 21
  start-page: 861
  year: 2011
  end-page: 873
  publication-title: J. Process Contr.
– volume: 339
  start-page: 455
  year: 2002
  end-page: 478
  publication-title: J. Franklin Inst.
– year: 1995
– volume: 10
  start-page: 1193
  year: 2000
  end-page: 1208
  publication-title: Int. J. Robust Nonlin.
– volume: 37
  start-page: 875
  year: 1992
  end-page: 880
  publication-title: IEEE T. Autom. Contr.
– volume: 5
  start-page: 663
  year: 2007
  end-page: 670
  publication-title: Control Eng. Pract.
– volume: 52
  start-page: 4251
  year: 1997
  end-page: 4267
  publication-title: Chem. Eng. Sci.
– volume: 8
  start-page: 115
  year: 2000
  end-page: 134
  publication-title: Polym. React. Eng.
– ident: e_1_2_7_11_1
  doi: 10.1016/j.compchemeng.2008.08.008
– ident: e_1_2_7_23_1
  doi: 10.1016/S0005-1098(99)00177-6
– volume-title: Fault‐Diagnosis Systems From Fault Detection to Fault Tolerance
  year: 2006
  ident: e_1_2_7_19_1
  contributor:
    fullname: Isermann R.
– ident: e_1_2_7_34_1
  doi: 10.1109/9.256352
– ident: e_1_2_7_28_1
  doi: 10.1016/S0016-0032(02)00027-3
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ces.2008.10.012
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jprocont.2010.06.023
– ident: e_1_2_7_5_1
  doi: 10.1021/ie071496x
– volume: 25
  start-page: 821
  year: 1964
  ident: e_1_2_7_30_1
  publication-title: Automat. Rem. Contr.
  contributor:
    fullname: Vapnik V. N.
– ident: e_1_2_7_2_1
  doi: 10.1006/mssp.2001.1454
– ident: e_1_2_7_31_1
  doi: 10.1007/978-1-4757-2440-0
– volume-title: Advances in Industrial Control
  year: 2002
  ident: e_1_2_7_20_1
  contributor:
    fullname: Simani S.
– volume-title: Model‐Based Fault Diagnosis Techniques
  year: 2008
  ident: e_1_2_7_18_1
  contributor:
    fullname: Ding S. X.
– ident: e_1_2_7_33_1
  doi: 10.1016/S0009-2509(97)00190-5
– ident: e_1_2_7_22_1
  doi: 10.1002/1099-1239(20001215)10:14<1193::AID-RNC523>3.0.CO;2-R
– ident: e_1_2_7_26_1
  doi: 10.1016/S0967-0661(97)00048-8
– ident: e_1_2_7_27_1
  doi: 10.1080/00207170050029287
– ident: e_1_2_7_42_1
  doi: 10.1016/S0893-6080(03)00169-2
– ident: e_1_2_7_17_1
  doi: 10.2298/CICEQ0803191L
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cej.2005.07.001
– ident: e_1_2_7_9_1
  doi: 10.1016/j.compchemeng.2003.10.002
– ident: e_1_2_7_37_1
  doi: 10.1109/TCST.2006.883192
– ident: e_1_2_7_14_1
  doi: 10.1016/j.compchemeng.2009.12.008
– ident: e_1_2_7_25_1
  doi: 10.1016/0005-1098(90)90018-D
– ident: e_1_2_7_38_1
  doi: 10.1021/ie0502483
– ident: e_1_2_7_10_1
  doi: 10.1016/S0098-1354(03)00188-1
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jprocont.2011.03.010
– ident: e_1_2_7_24_1
  doi: 10.1021/ie010659t
– ident: e_1_2_7_32_1
  doi: 10.1145/130385.130401
– ident: e_1_2_7_41_1
  doi: 10.1016/j.asoc.2009.11.003
– ident: e_1_2_7_35_1
  doi: 10.1080/10543414.2000.10744544
– ident: e_1_2_7_7_1
  doi: 10.1002/aic.12392
– volume-title: SVM and Kernel Methods Matlab Toolbox. Perception Systems and Information
  year: 2005
  ident: e_1_2_7_36_1
  contributor:
    fullname: Canu S.
– ident: e_1_2_7_29_1
  doi: 10.1109/9.928586
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cie.2010.03.011
– ident: e_1_2_7_15_1
  doi: 10.1002/aic.13816
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ymssp.2006.12.007
– ident: e_1_2_7_40_1
  doi: 10.1016/j.compind.2010.05.013
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jprocont.2009.07.011
– ident: e_1_2_7_16_1
  doi: 10.1016/j.engappai.2010.06.008
– ident: e_1_2_7_6_1
  doi: 10.1016/j.compchemeng.2012.03.004
SSID ssj0002041
Score 2.173906
Snippet A hybrid data/model‐based approach is proposed for fault detection and isolation for chemical reactions in jacketed stirred vessels. Using data‐based methods...
A hybrid data/model-based approach is proposed for fault detection and isolation for chemical reactions in jacketed stirred vessels. Using data-based methods...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 685
SubjectTerms Automatic
Chemical and Process Engineering
chemical reactor
Engineering Sciences
Fault detection
fault detection and isolation
Faults
Nonlinear dynamics
observer
Observers
Polymerization
Reactors
Support vector machines
support vector machines (SVM)
Training
Title Support vector machines combined to observers for fault diagnosis in chemical reactors
URI https://api.istex.fr/ark:/67375/WNG-C36FZPBW-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.21881
https://search.proquest.com/docview/1559665550
https://search.proquest.com/docview/1709786065
https://hal.science/hal-01901814
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG6iucRDNIni-gidKDkIk-3txzzAi252s4QggkYll6ZfQ8xjVpxdyc-3qmd31Isg3oahZmiqurq_6q76ipBdIULqOMuTUiqTSJXxxJbIhCmEcNwLqTzWDo9OsqOL_MsAaXL257UwDT9Ee-CGnhHXa3RwY-vuHWmo--3CZ9igYt01hAmxfkMct8swZ3LWLi-HIEnIlpuUd-8-fbAbLfzCXMiXqN7_DwDnfdga953h8vNGvEJez_AmPWgmyBvyIlRvydI9FsJ35Aw7ewIKpzfxBJ_-i_mVoabwf4ibg6eTMR1bPL4FrEgB5dLSTP9OqG_S9C5rellRN2MeoIBCYwufVfJjODjtj5JZu4XEQYzWSwRHbpa8pzyTBmntINazJlOeo-N7KwH9GR94mZZFrxQFYM3AIHzzAqR9asUaWazGVVgntLBWGl446ZWTzORF8MZw5uEHjjGbdsjOXO36qmHV0A1_MteoJR211CEfwSKtABJhjw6-a3yHFfAwVHkDQp-iwVoxc_0Hk9Uypc-Pvuq-SIc_jw_PNeuQD3OLanAhvBcxVRhPa403s2mqIFZ7RCbDgheI9lSH7EUjPzJw3f_WH8SnjacIb5JXAMdkzAlPt8ji5HoatslC7afv49S-Bc87-Fw
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9gAcyltseZmHOCCFev3I48ChLLsssKwqUVrExXJsRxRoturuVvx8Zpxs2l4qIW5RNEmsGU_8zXjmM8ALKUPqBM-TSmmbKJ2JpKyICVNK6YSXSnvqHR5_yabf8ndDosl5s-qFafghuoQbeUb8X5ODU0J6-4w11P104TWuUNR4vaFSnInUwSF3ux-x4Ko9MC_HMEmqjp1UbJ89e2E9WvtB1ZAbpOA_FyDneeAaV57Rjf8c803YbCEn22nmyC24EurbcP0cEeEd2KfDPRGIs9OYxGdHscQyzBl-AEPn4NlixmYlZXARLjIEuqyyy98L5ptKvcM5O6yZa8kHGALReIrPXfg6Gu4Nxkl74kLiMEzrJ1IQPUve154rS8x2GO6VNtNekO_7UiEAtD6IKq2KfiULhJuBYwTnJUr7tJT3YL2e1eE-sKIslRWFU147xW1eBG-t4B5f4Dgv0x48X-ndHDfEGqahUBaGtGSilnrwDE3SCRAX9nhnYugeNcHjUNUpCr2MFuvE7MkvqlfLtDmYvjcDmY6-7749MLwHT1cmNehFtDVi6zBbzg1tzqapxnDtEpmMel4w4NM9eBWtfMnAzeDjYBivtv5F-AlcHe99npjJh-mnB3AN0VlbJvQQ1hcny_AI1uZ--TjO87-DXPyB
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxEB7RVkLwAOUS4SjmEA9ISx0fe0i8lDQhQBVF4mjFi-W1vaLQbqomqfj5zHg32_alEuJttZpdWTMe-xt75huAV1KG1AmeJ5XSNlE6E0lZEROmlNIJL5X2VDs8_pJNDvLdIdHkvFvVwjT8EN2BG3lGXK_JwU98tX1OGup-ufAWNyiqu95QiMOJOV_KabcOC67afnk5RklSdeSkYvv820vb0dpPSobcIP3-uYQ4L-LWuPGMbv_fkDfhVgs42U4zQ-7AtVDfhZsXaAjvwXdq7YkwnJ3FI3x2HBMsw5zh_zFwDp4tZmxW0vktgkWGMJdVdnm0YL7J0zucs8OauZZ6gCEMjT187sO30fDrYJy0_RYSh0FaP5GCyFnyvvZcWeK1w2CvtJn2gjzflwrhn_VBVGlV9CtZINgMHOM3L1Hap6V8AOv1rA4PgRVlqawonPLaKW7zInhrBff4A8d5mfbg5Urt5qSh1TANgbIwpCUTtdSDF2iRToCYsMc7e4beUQk8DlWdodDraLBOzJ7-pmy1TJv9yQczkOnox_T9vuE9eL6yqEEfoosRW4fZcm7oajZNNQZrV8hkVPGC00z34E008hUDN4NPg2F8evQvws_g-nR3ZPY-Tj4_hhsIzdocoSewvjhdhqewNvfLrTjL_wJwJ_sn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machines+combined+to+observers+for+fault+diagnosis+in+chemical+reactors&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Sheibat%E2%80%90Othman%2C+Nida&rft.au=Laouti%2C+Nassim&rft.au=Valour%2C+Jean%E2%80%90Pierre&rft.au=Othman%2C+Sami&rft.date=2014-04-01&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=92&rft.issue=4&rft.spage=685&rft.epage=695&rft_id=info:doi/10.1002%2Fcjce.21881&rft.externalDBID=10.1002%252Fcjce.21881&rft.externalDocID=CJCE21881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon