SMAD4 contributes to chondrocyte and osteocyte development

Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine Vol. 26; no. 1; pp. 1 - 15
Main Authors: Pakravan, Katayoon, Razmara, Ehsan, Mahmud Hussen, Bashdar, Sattarikia, Fatemeh, Sadeghizadeh, Majid, Babashah, Sadegh
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01-01-2022
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors—ie DNA methylation, histone modifications and noncoding RNAs—make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype‐phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.17080