UPRmt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans
As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPR mt ) is a signaling pathway mediated by the transcription fac...
Saved in:
Published in: | Nature communications Vol. 12; no. 1; p. 479 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
20-01-2021
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPR
mt
) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism
Caenorhabditis elegans
we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPR
mt
activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPR
mt
activation.
The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in
C. elegans
that ATFS-1 mitochondrial import is reduced when mitochondrial proteins are highly expressed, activating the unfolded protein response and causing expansion. |
---|---|
AbstractList | The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in C. elegans that ATFS-1 mitochondrial import is reduced when mitochondrial proteins are highly expressed, activating the unfolded protein response and causing expansion. As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPR mt ) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPR mt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPR mt activation. As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPRmt) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPRmt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPRmt activation.The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in C. elegans that ATFS-1 mitochondrial import is reduced when mitochondrial proteins are highly expressed, activating the unfolded protein response and causing expansion. As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPR mt ) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPR mt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPR mt activation. The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in C. elegans that ATFS-1 mitochondrial import is reduced when mitochondrial proteins are highly expressed, activating the unfolded protein response and causing expansion. |
ArticleNumber | 479 |
Author | Yang, Qiyuan Haynes, Cole M. Shpilka, Tomer Du, YunGuang Melber, Andrew Zhu, Lihua Julie Lavelle, Joshua Weidberg, Hilla Strittmatter, Lara Liu, Pengpeng Li, Rui Kim, Sookyung Uma Naresh, Nandhitha Yu, Jun |
Author_xml | – sequence: 1 givenname: Tomer surname: Shpilka fullname: Shpilka, Tomer organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 2 givenname: YunGuang surname: Du fullname: Du, YunGuang organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 3 givenname: Qiyuan surname: Yang fullname: Yang, Qiyuan organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 4 givenname: Andrew surname: Melber fullname: Melber, Andrew organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 5 givenname: Nandhitha surname: Uma Naresh fullname: Uma Naresh, Nandhitha organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 6 givenname: Joshua surname: Lavelle fullname: Lavelle, Joshua organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 7 givenname: Sookyung orcidid: 0000-0001-6674-940X surname: Kim fullname: Kim, Sookyung organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 8 givenname: Pengpeng surname: Liu fullname: Liu, Pengpeng organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 9 givenname: Hilla surname: Weidberg fullname: Weidberg, Hilla organization: Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia – sequence: 10 givenname: Rui orcidid: 0000-0002-6678-785X surname: Li fullname: Li, Rui organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 11 givenname: Jun surname: Yu fullname: Yu, Jun organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 12 givenname: Lihua Julie orcidid: 0000-0001-7416-0590 surname: Zhu fullname: Zhu, Lihua Julie organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School – sequence: 13 givenname: Lara surname: Strittmatter fullname: Strittmatter, Lara organization: Electron Microscopy Core, University of Massachusetts Medical School – sequence: 14 givenname: Cole M. orcidid: 0000-0003-2110-5648 surname: Haynes fullname: Haynes, Cole M. email: cole.haynes@umassmed.edu organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School |
BookMark | eNp9kktv1DAURiNUREvpH2AViQ2bgF-JnQ0SGvGoVAmE6Nry42biIbEH2zNl_j2eSQW0C7yxZZ_v6Or6Pq_OfPBQVS8xeoMRFW8Tw6zjDSKoIYgL1hyeVBcEMdxgTujZP-fz6iqlDSqL9lgw9qw6p5RxijG5qPa3X7_NuU5GTZDq2eVgxuBtdGqqPeS7EH_U8GurfHLB13cuj_U2hgzO1-ng8wjJpXrv1KOom7ch5rpQKwU-xFFp63JBYYJ1kb2ong5qSnB1v19Wtx8_fF99bm6-fLpevb9pDGM8N0RrbJXVArpWWwoakOgwblsigFgmOoIsZkIpPjBFO9MOUBqCkdadMJgyelldL14b1EZuo5tVPMignDxdhLiWKmZnJpAEt7QfENEWOoZaIXTfoYGyFjgxLZjiere4tjs9gzXgc1TTA-nDF-9GuQ57yQXmXXcs5vW9IIafO0hZzi4ZmCblIeySJIz3nBW2LeirR-gm7KIvrTpRuD_-ZqHIQpkYUoow_CkGI3mcErlMiSxNkacpkYcSoksoFdivIf5V_yf1G0wMwvY |
CitedBy_id | crossref_primary_10_1080_87559129_2023_2172429 crossref_primary_10_1083_jcb_202310005 crossref_primary_10_1016_j_isci_2021_103118 crossref_primary_10_1016_j_conb_2022_102673 crossref_primary_10_3390_cells12010020 crossref_primary_10_1146_annurev_cellbio_120420_015303 crossref_primary_10_1016_j_redox_2021_102049 crossref_primary_10_1007_s10735_024_10205_5 crossref_primary_10_1083_jcb_202205045 crossref_primary_10_3390_ijms24021482 crossref_primary_10_1126_sciadv_adn0014 crossref_primary_10_15252_embj_2022112309 crossref_primary_10_1016_j_isci_2023_107136 crossref_primary_10_1038_s41598_023_35196_3 crossref_primary_10_1016_j_bbabio_2022_148588 crossref_primary_10_1016_j_molmet_2022_101503 crossref_primary_10_3389_fonc_2021_744331 crossref_primary_10_1002_aac2_12070 crossref_primary_10_1016_j_freeradbiomed_2024_01_050 crossref_primary_10_1002_anie_202219170 crossref_primary_10_1186_s13578_022_00747_0 crossref_primary_10_1111_febs_16323 crossref_primary_10_1093_genetics_iyac160 crossref_primary_10_1111_febs_16126 crossref_primary_10_3389_fragi_2022_860404 crossref_primary_10_1038_s41556_021_00840_5 crossref_primary_10_1016_j_celrep_2022_111789 crossref_primary_10_1007_s11357_023_00766_w crossref_primary_10_1186_s13023_022_02331_8 crossref_primary_10_1016_j_semcdb_2023_02_002 crossref_primary_10_1002_ange_202219170 crossref_primary_10_3389_fcimb_2023_1135203 crossref_primary_10_1007_s11357_021_00365_7 crossref_primary_10_1007_s00018_024_05286_0 crossref_primary_10_3389_fcell_2022_974083 crossref_primary_10_1016_j_arr_2023_101941 crossref_primary_10_1016_j_phrs_2021_105603 crossref_primary_10_1038_s41467_022_28272_1 crossref_primary_10_1038_s41467_022_29479_y crossref_primary_10_1016_j_cell_2023_12_010 crossref_primary_10_3389_fphar_2022_887045 crossref_primary_10_3389_fphar_2023_1209890 crossref_primary_10_1016_j_semcdb_2023_04_006 crossref_primary_10_1016_j_celrep_2022_111875 crossref_primary_10_1042_BCJ20190584 crossref_primary_10_1016_j_brainres_2022_148116 crossref_primary_10_3389_fphys_2021_718982 crossref_primary_10_1038_s41419_021_03979_z crossref_primary_10_1126_sciadv_adh8228 crossref_primary_10_7554_eLife_71634 |
Cites_doi | 10.1534/genetics.106.061580 10.1126/science.1223560 10.1038/nature25143 10.1101/gr.2505604 10.1002/j.1460-2075.1991.tb04966.x 10.1126/science.aan4146 10.1083/jcb.202002179 10.1534/genetics.115.179382 10.1126/science.1074240 10.1038/nature17989 10.1371/journal.pgen.1002760 10.1016/S1534-5807(01)00071-5 10.1038/nature09706 10.1093/emboj/cdf445 10.1016/j.it.2003.11.004 10.1038/s41580-018-0092-0 10.1016/j.mito.2014.11.001 10.1016/j.devcel.2007.07.016 10.1016/j.molcel.2020.02.012 10.1016/j.molcel.2019.11.013 10.1016/j.cell.2010.12.016 10.1016/S1097-2765(00)80391-3 10.1038/nmeth.2019 10.1007/978-1-4939-7737-6_14 10.1016/j.molcel.2010.01.015 10.12688/f1000research.15931.2 10.1083/jcb.200809125 10.1038/cr.2018.16 10.1093/bioinformatics/btq281 10.7554/eLife.49158 10.1371/journal.pone.0107671 10.1080/10618600.1996.10474713 10.1093/bioinformatics/btp616 10.1101/gr.136515.111 10.1016/j.cell.2016.08.042 10.1038/nprot.2016.106 10.1016/j.celrep.2019.07.049 10.1016/j.molcel.2015.02.008 10.1038/nrm.2017.110 10.1534/genetics.118.301532 10.1016/j.cell.2017.02.004 10.1073/pnas.1817259116 10.1074/mcp.M114.043083 10.1242/jcs.01275 10.1073/pnas.1218778110 10.1074/jbc.M611782200 10.1093/nar/gkaa1011 10.1073/pnas.0506580102 10.1016/S0960-9822(02)00762-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-20784-y |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 479 |
ExternalDocumentID | oai_doaj_org_article_21539f02bde640588b960f345e72c5ec 10_1038_s41467_020_20784_y |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c447t-2bb1dadb8e65bd3ebe086115528e2d48620d148aa7f4a36c5fe02010bb68c1343 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 14:48:27 EDT 2024 Tue Sep 17 20:43:23 EDT 2024 Tue Aug 27 04:17:23 EDT 2024 Sat Nov 09 16:36:46 EST 2024 Fri Nov 22 02:25:04 EST 2024 Fri Oct 11 20:52:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-2bb1dadb8e65bd3ebe086115528e2d48620d148aa7f4a36c5fe02010bb68c1343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7416-0590 0000-0002-6678-785X 0000-0003-2110-5648 0000-0001-6674-940X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817664/ |
PMID | 33473112 |
PQID | 2479190003 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21539f02bde640588b960f345e72c5ec pubmedcentral_primary_oai_pubmedcentral_nih_gov_7817664 proquest_miscellaneous_2479741765 proquest_journals_2479190003 crossref_primary_10_1038_s41467_020_20784_y springer_journals_10_1038_s41467_020_20784_y |
PublicationCentury | 2000 |
PublicationDate | 2021-01-20 |
PublicationDateYYYYMMDD | 2021-01-20 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1011 (2020). YonedaTCompartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperonesJ. Cell Sci.2004117405540661:CAS:528:DC%2BD2cXotlGrtrw%3D1528042810.1242/jcs.01275 WingettSWAndrewsSFastQ Screen: a tool for multi-genome mapping and quality controlF1000Res20187133830254741612437710.12688/f1000research.15931.2 BenedettiCHaynesCMYangYHardingHPRonDUbiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein responseGenetics20061742292391:CAS:528:DC%2BD28XhtFGgsrnE16816413156981610.1534/genetics.106.061580 NargundAMPellegrinoMWFioreseCJBakerBMHaynesCMMitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activationScience20123375875902012Sci...337..587N1:CAS:528:DC%2BC38XhtFWhsbbO22700657351829810.1126/science.1223560 FengJBussiereFHekimiSMitochondrial electron transport is a key determinant of life span in Caenorhabditis elegansDev. Cell200116336441:CAS:528:DC%2BD3MXovVSju7w%3D1170918410.1016/S1534-5807(01)00071-5 BlankenbergDManipulation of FASTQ data with GalaxyBioinformatics201026178317851:CAS:528:DC%2BC3cXotleqsL0%3D20562416289451910.1093/bioinformatics/btq281 SchindelinJFiji: an open-source platform for biological-image analysisNat. Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ2274377210.1038/nmeth.2019 StadlerMArtilesKPakJFireAContributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targetsGenome Res.201222241824261:CAS:528:DC%2BC38XhvVWgsbfF22855835351467110.1101/gr.136515.111 BerendzenKMNeuroendocrine coordination of mitochondrial stress signaling and proteostasisCell201616615531563 e15101:CAS:528:DC%2BC28XhsFSltL3F27610575592297910.1016/j.cell.2016.08.042 RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO1991030810.1093/bioinformatics/btp616 RauthanMRanjiPAguilera PradenasNPitotCPilonMThe mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathwayProc. Natl Acad. Sci. USA2013110598159862013PNAS..110.5981R1:CAS:528:DC%2BC3sXnsFWmsLs%3D2353018910.1073/pnas.12187781103625262 IhakaRGentlemanRR: A language for data analysis and graphicsJ. Comput. Graph. Stat.19965299314 FukasawaYMitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sitesMol. Cell Proteomics201514111311261:CAS:528:DC%2BC2MXlslCmu74%3D25670805439025610.1074/mcp.M114.043083 Tan, J. X. & Finkel, T. Mitochondria as intracellular signaling platforms in health and disease. J. Cell Biol. 219, https://doi.org/10.1083/jcb.202002179 (2020). SorrentinoVEnhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicityNature20175521871932017Natur.552..187S1:CAS:528:DC%2BC2sXhvFGlsbzK29211722573049710.1038/nature25143 PaixAFolkmannARasolosonDSeydouxGHigh efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexesGenetics201520147541:CAS:528:DC%2BC28XltlSjsbc%3D26187122456627510.1534/genetics.115.179382 LandSCTeeARHypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motifJ. Biol. Chem.200728220534205431:CAS:528:DC%2BD2sXnsFWnu7w%3D1750237910.1074/jbc.M611782200 ValenciIYonaiLBar-YaacovDMishmarDBen-ZviAParkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegansMitochondrion20152064701:CAS:528:DC%2BC2cXitVSns7jI2546201910.1016/j.mito.2014.11.001 PfannerNWarscheidBWiedemannNMitochondrial proteins: from biogenesis to functional networksNat. Rev. Mol. Cell Biol.2019202672841:CAS:528:DC%2BC1MXlvFShs7s%3D30626975668436810.1038/s41580-018-0092-0 ShpilkaTHaynesCMThe mitochondrial UPR: mechanisms, physiological functions and implications in ageingNat. Rev. Mol. Cell Biol.2018191091201:CAS:528:DC%2BC2sXhvVKqt7fK2916542610.1038/nrm.2017.110 GroveCUsing WormBase: a genome biology resource for Caenorhabditis elegans and related nematodesMethods Mol. Biol.201817573994701:CAS:528:DC%2BC1cXitl2msrjM29761466642480110.1007/978-1-4939-7737-6_14 HaynesCMYangYBlaisSPNeubertTARonDThe matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegansMol. Cell2010375295401:CAS:528:DC%2BC3cXlt1Kku7o%3D20188671284653710.1016/j.molcel.2010.01.015 RollandSGCompromised mitochondrial protein import acts as a signal for UPR(mt)Cell Rep.20192816591669 e16551:CAS:528:DC%2BC1MXhsF2ms7%2FF3141223710.1016/j.celrep.2019.07.049 Deng, P. et al. Mitochondrial UPR repression during Pseudomonas aeruginosa infection requires the bZIP protein ZIP-3. Proc. Natl Acad. Sci. USA, https://doi.org/10.1073/pnas.1817259116 (2019). SchalmSSBlenisJIdentification of a conserved motif required for mTOR signalingCurr. Biol.2002126326391:CAS:528:DC%2BD38XjtVeiu7o%3D1196714910.1016/S0960-9822(02)00762-5 PhuLDynamic regulation of mitochondrial import by the ubiquitin systemMol. Cell20207711071123 e11101:CAS:528:DC%2BB3cXotFeltrw%3D3214268410.1016/j.molcel.2020.02.012 LabrousseAMZappaterraMDRubeDAvan der BliekAMC. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membraneMol. Cell199948158261:CAS:528:DyaK1MXnslOisrk%3D1061902810.1016/S1097-2765(00)80391-3 Zhang, Y. et al. Neuronal TORC1 modulates longevity via AMPK and cell nonautonomous regulation of mitochondrial dynamics in C. elegans. Elife8, https://doi.org/10.7554/eLife.49158 (2019). OrdureauAGlobal landscape and dynamics of Parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic dignalingMol. Cell20207711241142 e11101:CAS:528:DC%2BB3cXotFeltr8%3D32142685709848610.1016/j.molcel.2019.11.013 BakerBMNargundAMSunTHaynesCMProtective coupling of mitochondrial function and protein synthesis via the eIF2alpha kinase GCN-2PLoS Genet.20128e10027601:CAS:528:DC%2BC38Xpt1WrtLw%3D22719267337525710.1371/journal.pgen.1002760 GatsiRProhibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegansPLoS ONE20149e1076712014PLoSO...9j7671G25265021418043710.1371/journal.pone.01076711:CAS:528:DC%2BC2cXhvVKjs7bL NarendraDTanakaASuenDFYouleRJParkin is recruited selectively to impaired mitochondria and promotes their autophagyJ. Cell Biol.20081837958031:CAS:528:DC%2BD1cXhsVOjtrjJ19029340259282610.1083/jcb.200809125 DillinACrawfordDKKenyonCTiming requirements for insulin/IGF-1 signaling in C. elegansScience20022988308342002Sci...298..830D1:CAS:528:DC%2BD38XotFSntbw%3D1239959110.1126/science.1074240 SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S1:CAS:528:DC%2BD2MXht1ShtrnO10.1073/pnas.0506580102161995171239896 Weidberg, H. & Amon, A. MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science360, https://doi.org/10.1126/science.aan4146 (2018). SaxtonRASabatiniDMmTOR signaling in growth, metabolism, and diseaseCell20171689609761:CAS:528:DC%2BC2sXkt1Ogtb4%3D28283069539498710.1016/j.cell.2017.02.004 DokshinGAGhantaKSPiscopoKMMelloCCRobust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegansGenetics20182107817871:CAS:528:DC%2BC1MXjvFeitLo%3D30213854621821610.1534/genetics.118.301532 RualJFToward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi libraryGenome Res.200414216221681:CAS:528:DC%2BD2cXptlGjsrY%3D1548933952893310.1101/gr.2505604 LinYFMaintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein responseNature20165334164192016Natur.533..416L1:CAS:528:DC%2BC28Xnt1Ogs7k%3D27135930487334210.1038/nature17989 ZhaoQA mitochondrial specific stress response in mammalian cellsEMBO J.200221441144191:CAS:528:DC%2BD38Xms1Knu7w%3D1219814312618510.1093/emboj/cdf445 DurieuxJWolffSDillinAThe cell-non-autonomous nature of electron transport chain-mediated longevityCell201114479911:CAS:528:DC%2BC3MXksFGisQ%3D%3D21215371306250210.1016/j.cell.2010.12.016 KoopmanMA screening-based platform for the assessment of cellular respiration in Caenorhabditis elegansNat. Protoc.201611179818161:CAS:528:DC%2BC28XhsVCqur3K27583642504049210.1038/nprot.2016.106 MelloCCKramerJMStinchcombDAmbrosVEfficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequencesEMBO J.199110395939701:CAS:528:DyaK38XhsVOm193591445313710.1002/j.1460-2075.1991.tb04966.x NargundAMFioreseCJPellegrinoMWDengPHaynesCMMitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)Mol. Cell2015581231331:CAS:528:DC%2BC2MXksVaisL4%3D25773600438543610.1016/j.molcel.2015.02.008 HaynesCMPetrovaKBenedettiCYangYRonDClpP mediates activation of a mitochondrial unfolded protein response in C. elegansDev. Cell2007134674801:CAS:528:DC%2BD2sXht1SjsrjM1792522410.1016/j.devcel.2007.07.016 GassJNGunnKESriburiRBrewerJWStressed-out B cells? Plasma-cell differentiation and the unfolded protein responseTrends Immunol.20042517241:CAS:528:DC%2BD3sXhtVSjtL7E1469828010.1016/j.it.2003.11.004 MairWLifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREBNature20114704044082011Natur.470..404M1:CAS:528:DC%2BC3MXitVCksr0%3D21331044309890010.1038/nature09706 Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-018-0092-0 (2019). MelberAHaynesCMUPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communicationCell Res.2018282812951:CAS:528:DC%2BC1cXisVKhtb4%3D29424373583577510.1038/cr.2018.16 GA Dokshin (20784_CR38) 2018; 210 SC Land (20784_CR26) 2007; 282 V Sorrentino (20784_CR6) 2017; 552 T Shpilka (20784_CR10) 2018; 19 D Blankenberg (20784_CR48) 2010; 26 JF Rual (20784_CR40) 2004; 14 M Rauthan (20784_CR13) 2013; 110 D Narendra (20784_CR15) 2008; 183 SS Schalm (20784_CR25) 2002; 12 JN Gass (20784_CR34) 2004; 25 Q Zhao (20784_CR31) 2002; 21 MD Robinson (20784_CR43) 2010; 26 CC Mello (20784_CR39) 1991; 10 KM Berendzen (20784_CR4) 2016; 166 SG Rolland (20784_CR18) 2019; 28 W Mair (20784_CR24) 2011; 470 BM Baker (20784_CR12) 2012; 8 C Benedetti (20784_CR32) 2006; 174 J Feng (20784_CR27) 2001; 1 Y Fukasawa (20784_CR16) 2015; 14 A Melber (20784_CR17) 2018; 28 20784_CR9 SW Wingett (20784_CR47) 2018; 7 R Gatsi (20784_CR23) 2014; 9 C Grove (20784_CR45) 2018; 1757 R Ihaka (20784_CR49) 1996; 5 A Ordureau (20784_CR35) 2020; 77 N Pfanner (20784_CR3) 2019; 20 J Durieux (20784_CR28) 2011; 144 20784_CR50 CM Haynes (20784_CR19) 2007; 13 A Paix (20784_CR37) 2015; 201 20784_CR14 M Koopman (20784_CR42) 2016; 11 M Stadler (20784_CR30) 2012; 22 AM Nargund (20784_CR8) 2015; 58 YF Lin (20784_CR11) 2016; 533 AM Labrousse (20784_CR29) 1999; 4 I Valenci (20784_CR41) 2015; 20 T Yoneda (20784_CR33) 2004; 117 L Phu (20784_CR36) 2020; 77 J Schindelin (20784_CR44) 2012; 9 RA Saxton (20784_CR20) 2017; 168 A Subramanian (20784_CR46) 2005; 102 A Dillin (20784_CR21) 2002; 298 20784_CR22 CM Haynes (20784_CR7) 2010; 37 20784_CR2 20784_CR1 AM Nargund (20784_CR5) 2012; 337 |
References_xml | – volume: 174 start-page: 229 year: 2006 ident: 20784_CR32 publication-title: Genetics doi: 10.1534/genetics.106.061580 contributor: fullname: C Benedetti – volume: 337 start-page: 587 year: 2012 ident: 20784_CR5 publication-title: Science doi: 10.1126/science.1223560 contributor: fullname: AM Nargund – volume: 552 start-page: 187 year: 2017 ident: 20784_CR6 publication-title: Nature doi: 10.1038/nature25143 contributor: fullname: V Sorrentino – volume: 14 start-page: 2162 year: 2004 ident: 20784_CR40 publication-title: Genome Res. doi: 10.1101/gr.2505604 contributor: fullname: JF Rual – volume: 10 start-page: 3959 year: 1991 ident: 20784_CR39 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb04966.x contributor: fullname: CC Mello – ident: 20784_CR50 doi: 10.1126/science.aan4146 – ident: 20784_CR1 doi: 10.1083/jcb.202002179 – volume: 201 start-page: 47 year: 2015 ident: 20784_CR37 publication-title: Genetics doi: 10.1534/genetics.115.179382 contributor: fullname: A Paix – volume: 298 start-page: 830 year: 2002 ident: 20784_CR21 publication-title: Science doi: 10.1126/science.1074240 contributor: fullname: A Dillin – volume: 533 start-page: 416 year: 2016 ident: 20784_CR11 publication-title: Nature doi: 10.1038/nature17989 contributor: fullname: YF Lin – volume: 8 start-page: e1002760 year: 2012 ident: 20784_CR12 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002760 contributor: fullname: BM Baker – volume: 1 start-page: 633 year: 2001 ident: 20784_CR27 publication-title: Dev. Cell doi: 10.1016/S1534-5807(01)00071-5 contributor: fullname: J Feng – volume: 470 start-page: 404 year: 2011 ident: 20784_CR24 publication-title: Nature doi: 10.1038/nature09706 contributor: fullname: W Mair – volume: 21 start-page: 4411 year: 2002 ident: 20784_CR31 publication-title: EMBO J. doi: 10.1093/emboj/cdf445 contributor: fullname: Q Zhao – volume: 25 start-page: 17 year: 2004 ident: 20784_CR34 publication-title: Trends Immunol. doi: 10.1016/j.it.2003.11.004 contributor: fullname: JN Gass – volume: 20 start-page: 267 year: 2019 ident: 20784_CR3 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0092-0 contributor: fullname: N Pfanner – volume: 20 start-page: 64 year: 2015 ident: 20784_CR41 publication-title: Mitochondrion doi: 10.1016/j.mito.2014.11.001 contributor: fullname: I Valenci – volume: 13 start-page: 467 year: 2007 ident: 20784_CR19 publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.07.016 contributor: fullname: CM Haynes – volume: 77 start-page: 1107 year: 2020 ident: 20784_CR36 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.012 contributor: fullname: L Phu – volume: 77 start-page: 1124 year: 2020 ident: 20784_CR35 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.013 contributor: fullname: A Ordureau – volume: 144 start-page: 79 year: 2011 ident: 20784_CR28 publication-title: Cell doi: 10.1016/j.cell.2010.12.016 contributor: fullname: J Durieux – volume: 4 start-page: 815 year: 1999 ident: 20784_CR29 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80391-3 contributor: fullname: AM Labrousse – volume: 9 start-page: 676 year: 2012 ident: 20784_CR44 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 contributor: fullname: J Schindelin – volume: 1757 start-page: 399 year: 2018 ident: 20784_CR45 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7737-6_14 contributor: fullname: C Grove – volume: 37 start-page: 529 year: 2010 ident: 20784_CR7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.015 contributor: fullname: CM Haynes – volume: 7 start-page: 1338 year: 2018 ident: 20784_CR47 publication-title: F1000Res doi: 10.12688/f1000research.15931.2 contributor: fullname: SW Wingett – volume: 183 start-page: 795 year: 2008 ident: 20784_CR15 publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 contributor: fullname: D Narendra – volume: 28 start-page: 281 year: 2018 ident: 20784_CR17 publication-title: Cell Res. doi: 10.1038/cr.2018.16 contributor: fullname: A Melber – volume: 26 start-page: 1783 year: 2010 ident: 20784_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq281 contributor: fullname: D Blankenberg – ident: 20784_CR22 doi: 10.7554/eLife.49158 – volume: 9 start-page: e107671 year: 2014 ident: 20784_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0107671 contributor: fullname: R Gatsi – volume: 5 start-page: 299 year: 1996 ident: 20784_CR49 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1996.10474713 contributor: fullname: R Ihaka – volume: 26 start-page: 139 year: 2010 ident: 20784_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: MD Robinson – volume: 22 start-page: 2418 year: 2012 ident: 20784_CR30 publication-title: Genome Res. doi: 10.1101/gr.136515.111 contributor: fullname: M Stadler – volume: 166 start-page: 1553 year: 2016 ident: 20784_CR4 publication-title: Cell doi: 10.1016/j.cell.2016.08.042 contributor: fullname: KM Berendzen – volume: 11 start-page: 1798 year: 2016 ident: 20784_CR42 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.106 contributor: fullname: M Koopman – volume: 28 start-page: 1659 year: 2019 ident: 20784_CR18 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.049 contributor: fullname: SG Rolland – volume: 58 start-page: 123 year: 2015 ident: 20784_CR8 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.008 contributor: fullname: AM Nargund – volume: 19 start-page: 109 year: 2018 ident: 20784_CR10 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.110 contributor: fullname: T Shpilka – volume: 210 start-page: 781 year: 2018 ident: 20784_CR38 publication-title: Genetics doi: 10.1534/genetics.118.301532 contributor: fullname: GA Dokshin – volume: 168 start-page: 960 year: 2017 ident: 20784_CR20 publication-title: Cell doi: 10.1016/j.cell.2017.02.004 contributor: fullname: RA Saxton – ident: 20784_CR14 doi: 10.1073/pnas.1817259116 – volume: 14 start-page: 1113 year: 2015 ident: 20784_CR16 publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M114.043083 contributor: fullname: Y Fukasawa – volume: 117 start-page: 4055 year: 2004 ident: 20784_CR33 publication-title: J. Cell Sci. doi: 10.1242/jcs.01275 contributor: fullname: T Yoneda – volume: 110 start-page: 5981 year: 2013 ident: 20784_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1218778110 contributor: fullname: M Rauthan – ident: 20784_CR9 doi: 10.1038/s41580-018-0092-0 – volume: 282 start-page: 20534 year: 2007 ident: 20784_CR26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M611782200 contributor: fullname: SC Land – ident: 20784_CR2 doi: 10.1093/nar/gkaa1011 – volume: 102 start-page: 15545 year: 2005 ident: 20784_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 contributor: fullname: A Subramanian – volume: 12 start-page: 632 year: 2002 ident: 20784_CR25 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00762-5 contributor: fullname: SS Schalm |
SSID | ssj0000391844 |
Score | 2.5879543 |
Snippet | As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network... The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in C. elegans that ATFS-1 mitochondrial... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 479 |
SubjectTerms | 14 14/19 14/28 14/34 14/35 14/63 38/15 38/89 49/88 49/91 631/136/334/1582/712 631/337/470/1981 631/80/642/333 631/80/642/333/1465 64/11 82/1 96/106 Caenorhabditis elegans Cell growth Humanities and Social Sciences Imports Mitochondria multidisciplinary Muscles Nematodes Protein biosynthesis Protein folding Protein synthesis Protein transport Proteins Science Science (multidisciplinary) Signal transduction Transcription factors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BJSQuiE8RKMhI3CCqYzuxcyylVU8IAZW4WXbsqHuot2p2K_bfd8bJLmQlxIVr7DixZ8Z-Y4_fALzvHDrHXtSlEpUsVc156SMCuTaiCyR532hPF4XPv-svP83nU6LJ2aX6opiwkR54HLgjXJJk23PhQ2wQXBjjEXP3UtVRi66OXZ59efOHM5XnYNmi66KmWzJcmqNB5TmBvCWBy6IqN7OVKBP2z1Dmfozk3kFpXn_OHsOjCTiy4_GHn8C9mJ7CgzGV5OYZ3F58_Xa1YgMOeRzYFdopzmspkHqxNIZ6s_gLTZ92xxjtvrJM0bBIbNgkRIHDYmC3C7f36oKIq1YMa524mJY3l84HYkFilK4CG3sOF2enP07OyymnQtkppVel8L4KLngTm9oHiSJEn6YiHjYTRVDo3_CAHpJzuldONhSLxunA3PvGdJVU8gUcpGWKL4FxLQKhmYAoR7m-NSEE4YX0lW_7RroCPmzH116P1Bk2H3lLY0dpWGzaZmnYTQGfSAS7mkR7nR-gMthJGey_lKGAw60A7WSLgxVKtxXlRpUFvNsVoxXR0YhLcbke6yC20k1dgJ4JfvZD85K0uMx83NoQy6Yq4ONWRX5__O8dfvU_OvwaHgoKsuEVavUhHKxu1vEN3B_C-m02iDsrYBBs priority: 102 providerName: Directory of Open Access Journals |
Title | UPRmt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans |
URI | https://link.springer.com/article/10.1038/s41467-020-20784-y https://www.proquest.com/docview/2479190003 https://search.proquest.com/docview/2479741765 https://pubmed.ncbi.nlm.nih.gov/PMC7817664 https://doaj.org/article/21539f02bde640588b960f345e72c5ec |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pj9QgFH5xNtHsxfgzVtcNJt60Oy3QQo867mYvmo26iTcChbpNdpjNdGbj_Pc-aLvaSbx4LRRa3gO-Dx4fAG9rjeTY0CLlNGcpL7IsNQ6BXOWQArGsKYUJB4XPv4kvP-Sn0yCTU4xnYWLQfm3aE3-9PPHtVYytvFnW8zFObH7xeSFkkDXk8xnMEBv-RdHj8MsqZC18OCCTMTnveBwOAlGiOCPydHcIDxjjguU5ncxHUbZ_gjX3IyX3tkvjLHT2CB4O8JF86D_zMdxz_gnc7y-U3D2F28uLr8sN6bDhXUeW2FtxdPM2OBnxfcA3cb9wAAhrZCSswZIo1NB60u08YsGu7chtq_debYN81YZgroV2frW-0sYGLSQSLq3Awp7B5dnp98V5OtyskNaci01Kjcmttka6sjCWoSGR2eRBjU06ajmynMwiT9JaNFyzMkSkZWHb3JhS1jnj7Dkc-JV3L4BkgtqAaSxiHa6bSlprqaHM5KZqSqYTeDe2r7rpBTRU3PhmUvWGUVi0ioZRuwQ-BhPc5Qzi1_HBav1TDS6gEKWwqsmosa5EvCmlQRrWMF44QevC1QkcjQZUQ4_sFOWiysMNqSyBN3fJ2JfCBon2brXt8yDCEmWRgJgYfvJB0xR00qjKPThlAu9HF_lT-b9_-OV_V_QKDmmIr8ly9OojONist-41zDq7PY4LC8exW_wGlD0SgQ |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIqAXvhGBAkbiBuk6thMnR1haLaKtKmglbpYdOzQS6602uxX77xk72cJW4tJr7NhJZsZ-Lx4_A7yrNZJjw_JUsIynIqc0NQ6BXOWQAnHaFNKEjcKT7_L4R_l5P8jk5Ou9MDFpvzbtnv813fPtecytvJjWo3We2OjkaCzLIGsoRltwG-OV0n9IehyAeYW8RQxbZCgvR52IA0KgSgznRJGuduAu50LyLGMbM1IU7t9Am9dzJa8tmMZ56ODBDd_gIdwfgCf52Bc_glvOP4Y7_VGUqydweXbybbogHZrMdWSKcY7jorfBPYnvU8WJ-41DR_i7RsLfWxIlHlpPupVHFNm1Hbls9bVb2yB8tSBYa6ydn83PtbFBRYmE4y6wsadwdrB_Op6kw5kMaS2EXKTMmMxqa0pX5MZydAHkRFnQcSsdswL5EbXIsLSWjdC8CLlsNCy4G1OUdcYFfwbbfubdcyBUMhvQkEWUJHRTldZaZhg3mamagusE3q_toi566Q0Vl8x5qXqDKmxaRYOqVQKfgumuagbZ7HhhNv-phk-vEN_wqqHMWFcgUi1LgwSu4SJ3ktW5qxPYXRteDbHcKSZklYWzVXkCb6-KMQrD0or2brbs6yA2k0WegNxwmI0H2ixB54h63oMzJPBh7Vp_O___C7-4cUdv4N7k9OhQHX45_voSdljI0qEZRsYubC_mS_cKtjq7fB2D6g8Ojicb |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xIaa9jN8iY4CReIOsie3EySN0q4aAqQIm8WbZscMiUbdq2on-95ydtNBKvMBr4thJ7s7-vvjyHcCrSiE51jSLOU1ZzLMkibVFIFdapEAsqXOh_Y_CF1_E5bfi7NzL5GxKfYWk_Uo3p-7H5NQ11yG3cjapBus8scH401AUXtaQD2amHuzBbYzZhP5B1MMkzErkLrz_TSZhxaDlYVLwdIniusjj1SEcMMYFS1O6tSoF8f4txLmbL7mzaRrWotHd_3iKe3DUA1DytmtyH25Z9wDudCUpVw_h5mr8ebIgLZrOtmSC8Y7zozPeTYnrUsaJ_YlTiP_KRvxXXBKkHhpH2pVDNNk2Lblp1M6ljRfAWhBsNVTWTefXShuvpkR82Qvs7BFcjc6_Di_ivjZDXHEuFjHVOjXK6MLmmTYMXQG5Uer13ApLDUeelBhkWkqJmiuW-5y2xG-8a50XVco4ewz7bursEyCJoMajIoNoiau6LIwxVFOmU13WOVMRvF7bRs46CQ4Zts5ZITujSuxaBqPKVQTvvPk2Lb18djgwnX-X_euXiHNYWSdUG5sjYi0KjUSuZjyzglaZrSI4WRtf9jHdSspFmfoaqyyCl5vTGI1-i0U5O112bRCjiTyLQGw5zdYNbZ9BBwm63r1DRPBm7V6_B__7Ax__80Av4GB8NpIf319-eAqH1CfrJCkGxwnsL-ZL-wz2WrN8HuLqFz9oKZs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UPRmt+scales+mitochondrial+network+expansion+with+protein+synthesis+via+mitochondrial+import+in+Caenorhabditis+elegans&rft.jtitle=Nature+communications&rft.au=Shpilka%2C+Tomer&rft.au=Du%2C+YunGuang&rft.au=Yang%2C+Qiyuan&rft.au=Melber%2C+Andrew&rft.date=2021-01-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-20784-y&rft.externalDocID=10_1038_s41467_020_20784_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |