Using the low-resolution properties of correlated images to improve the computational efficiency of eigenspace decomposition

Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high-resolution images. While reducing t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 15; no. 8; pp. 2376 - 2387
Main Authors: Saitwal, K., Maciejewski, A.A., Roberts, R.G., Draper, B.A.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-08-2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high-resolution images. While reducing the resolution of the images will reduce the computational expense, it is not known a priori how this will affect the quality of the resulting eigendecomposition. The work presented here provides an analysis of how different resolution reduction techniques affect the eigendecomposition. A computationally efficient algorithm for calculating the eigendecomposition based on this analysis is proposed. Examples show that this algorithm performs well on arbitrary video sequences.
AbstractList Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high-resolution images. While reducing the resolution of the images will reduce the computational expense, it is not known a priori how this will affect the quality of the resulting eigendecomposition. The work presented here provides an analysis of how different resolution reduction techniques affect the eigendecomposition. A computationally efficient algorithm for calculating the eigendecomposition based on this analysis is proposed. Examples show that this algorithm performs well on arbitrary video sequences.
Author Draper, B.A.
Roberts, R.G.
Maciejewski, A.A.
Saitwal, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Saitwal
  fullname: Saitwal, K.
  organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
– sequence: 2
  givenname: A.A.
  surname: Maciejewski
  fullname: Maciejewski, A.A.
  organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
– sequence: 3
  givenname: R.G.
  surname: Roberts
  fullname: Roberts, R.G.
– sequence: 4
  givenname: B.A.
  surname: Draper
  fullname: Draper, B.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17989928$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16900691$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2LFDEQxYOsuB969iBIIyheejaVpNPJURZ3XVjQw3gO6XRlzNLTaZNuZcE_3rQzsOLBQ0hR_N5Lqt45ORnjiIS8BLoBoPpye_tlwyiVG9U2jMMTcgZaQE2pYCelpk1btyD0KTnP-Z5SEA3IZ-QUpC4iDWfk19ccxl01f8NqiD_rhDkOyxziWE0pTpjmgLmKvnIxJRzsjH0V9nZXmnMsVYF-4B-1i_tpme0qtUOF3gcXcHQPqxjDDsc8WYdVjysYc1jB5-Spt0PGF8f7gmyvP26vPtV3n29urz7c1U4IOdeetVxSoRD8enTnOo-C00ZIZdu2s071mnUdcC1Yp5ueMeQIjFHlewv8grw72Jbffl8wz2YfssNhsCPGJRupWt5wEAV8_18QZFmmYIKygr75B72PSyqjZ6Nky1e_9eHLA-RSzDmhN1Mq20sPBqhZ8zMlP7PmZw75FcXro-3S7bF_5I-BFeDtEbDZ2cEnO7qQH7lWK62ZKtyrAxcQ8S-bRgGl_Ddm8q8N
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s10044_008_0135_9
crossref_primary_10_1109_TIP_2009_2026622
crossref_primary_10_1109_TSMCB_2010_2052920
crossref_primary_10_1109_ACCESS_2017_2720578
crossref_primary_10_1109_TNNLS_2012_2224671
Cites_doi 10.1137/0915047
10.1109/CVPR.1999.784729
10.1109/CVPR.1997.609431
10.1109/ROBOT.1994.351072
10.1109/IROS.2004.1389818
10.1109/OMNVIS.2000.853802
10.1109/34.908974
10.1364/JOSAA.4.000519
10.1006/gmip.1997.0425
10.1109/83.605417
10.1109/29.35393
10.1162/jocn.1991.3.1.71
10.1109/TPAMI.1987.4767879
10.1137/1.9780898719574
10.1109/34.598228
10.1109/34.598227
10.1007/BF01421486
10.1109/IROS.1994.407577
10.1109/TPAMI.1982.4767324
10.1109/34.982883
10.1109/ROBOT.2004.1308019
10.1109/34.254061
10.1109/83.877214
10.1109/CVPR.1994.323814
10.1109/83.382496
10.1109/CVPR.1999.784728
10.1109/TPAMI.1982.4767295
10.1023/A:1007939232436
10.1016/0167-8655(95)00109-3
10.1109/34.387485
10.1109/34.41390
10.1016/S0167-8655(97)00017-2
10.1109/70.538979
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TIP.2006.875231
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Government
EISSN 1941-0042
EndPage 2387
ExternalDocumentID 2350324011
10_1109_TIP_2006_875231
16900691
17989928
1658100
Genre orig-research
Evaluation Studies
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
ABPTK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c446t-f2736048e1f8e1f9bcbfe4305468a77bac8d92bb13942b95d22e3e12208fda13
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Fri Aug 16 22:38:16 EDT 2024
Fri Aug 16 07:30:50 EDT 2024
Thu Oct 10 17:13:39 EDT 2024
Fri Aug 23 01:07:23 EDT 2024
Sat Sep 28 07:41:45 EDT 2024
Sun Oct 22 16:04:31 EDT 2023
Wed Jun 26 19:20:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Video coding
Performance evaluation
Computer vision
High resolution
Image resolution
Data compression
Video signal
Artificial vision
Image sampling
Low resolution
Algorithm
Computational complexity
eigenspace
Video signal processing
Image quality
Algorithm performance
correlation
Image sequence
A priori estimation
image sequences
Singular value decomposition
singular value decomposition (SVD)
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-f2736048e1f8e1f9bcbfe4305468a77bac8d92bb13942b95d22e3e12208fda13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://mountainscholar.org/bitstream/10217/620/1/ECEaam00046.pdf
PMID 16900691
PQID 867335311
PQPubID 85429
PageCount 12
ParticipantIDs pascalfrancis_primary_17989928
proquest_miscellaneous_1671442402
ieee_primary_1658100
proquest_miscellaneous_68735314
crossref_primary_10_1109_TIP_2006_875231
pubmed_primary_16900691
proquest_journals_867335311
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
golub (ref33) 1996
ref37
ref15
ref14
ref31
ref30
fukunaga (ref1) 1990
ref11
ref32
davis (ref36) 1979
ref10
ref2
ref17
ref16
ref19
ref18
stewart (ref24) 1973
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1137/0915047
– ident: ref17
  doi: 10.1109/CVPR.1999.784729
– ident: ref13
  doi: 10.1109/CVPR.1997.609431
– ident: ref18
  doi: 10.1109/ROBOT.1994.351072
– ident: ref37
  doi: 10.1109/IROS.2004.1389818
– year: 1996
  ident: ref33
  publication-title: Matrix Computations
  contributor:
    fullname: golub
– ident: ref15
  doi: 10.1109/OMNVIS.2000.853802
– ident: ref2
  doi: 10.1109/34.908974
– ident: ref3
  doi: 10.1364/JOSAA.4.000519
– ident: ref30
  doi: 10.1006/gmip.1997.0425
– ident: ref11
  doi: 10.1109/83.605417
– ident: ref27
  doi: 10.1109/29.35393
– ident: ref5
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref26
  doi: 10.1109/TPAMI.1987.4767879
– ident: ref34
  doi: 10.1137/1.9780898719574
– ident: ref6
  doi: 10.1109/34.598228
– year: 1990
  ident: ref1
  publication-title: Introduction to statistical pattern recognition
  contributor:
    fullname: fukunaga
– ident: ref23
  doi: 10.1109/34.598227
– year: 1973
  ident: ref24
  publication-title: Introduction to Matrix Computation
  contributor:
    fullname: stewart
– year: 1979
  ident: ref36
  publication-title: Circulant Matrices
  contributor:
    fullname: davis
– ident: ref20
  doi: 10.1007/BF01421486
– ident: ref16
  doi: 10.1109/IROS.1994.407577
– ident: ref25
  doi: 10.1109/TPAMI.1982.4767324
– ident: ref9
  doi: 10.1109/34.982883
– ident: ref35
  doi: 10.1109/ROBOT.2004.1308019
– ident: ref7
  doi: 10.1109/34.254061
– ident: ref32
  doi: 10.1109/83.877214
– ident: ref8
  doi: 10.1109/CVPR.1994.323814
– ident: ref31
  doi: 10.1109/83.382496
– ident: ref14
  doi: 10.1109/CVPR.1999.784728
– ident: ref29
  doi: 10.1109/TPAMI.1982.4767295
– ident: ref19
  doi: 10.1023/A:1007939232436
– ident: ref10
  doi: 10.1016/0167-8655(95)00109-3
– ident: ref12
  doi: 10.1109/34.387485
– ident: ref4
  doi: 10.1109/34.41390
– ident: ref21
  doi: 10.1016/S0167-8655(97)00017-2
– ident: ref22
  doi: 10.1109/70.538979
SSID ssj0014516
Score 1.9636075
Snippet Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications....
SourceID proquest
crossref
pubmed
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2376
SubjectTerms Algorithm design and analysis
Algorithms
Application software
Applied sciences
Artificial Intelligence
Coding, codes
Collaborative work
Computation
Computational complexity
Computational efficiency
Computer science; control theory; systems
Computer vision
Correlation
data compression
Dealing
Detection, estimation, filtering, equalization, prediction
eigenspace
Exact sciences and technology
Government
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image resolution
image sampling
image sequences
Information Storage and Retrieval - methods
Information, signal and communications theory
Mathematical analysis
Numerical Analysis, Computer-Assisted
Object recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Pixel
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
Singular value decomposition
singular value decomposition (SVD)
Statistics as Topic
Subtraction Technique
Telecommunications and information theory
video coding
Video Recording - methods
Title Using the low-resolution properties of correlated images to improve the computational efficiency of eigenspace decomposition
URI https://ieeexplore.ieee.org/document/1658100
https://www.ncbi.nlm.nih.gov/pubmed/16900691
https://www.proquest.com/docview/867335311
https://search.proquest.com/docview/1671442402
https://search.proquest.com/docview/68735314
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61PZUDpVugaWkxEgcOhCbOw_YRQav2gpDYA7codsYSUtlUza648OM7Y7u7rUQPHFaKFMeydmbsbx7-BuB9422rlXV5WTlJDkqDZFJNnfemNV5abmzFMd3LH-rbT_31nGlyPq7vwiBiKD7DT_wYcvnD6FYcKjsr6bgsC3LQt5XR8a7WOmPADWdDZrNRuSLYn2h8ysKcza--x6wDYXOCM8wTSj5h0Zry0WEUuqtwbWQ_0d_jY1-Lp4FnOIAu9v5v6S_geQKa4nPUjH3YwsUM9hLoFMmkpxk8e8BIOIPdTe_dA_gb6gkEQURxPf7JyTFPeipuOIR_y1ysYvTCcYePawKtg_j1m_anSSxHeuJoBYavXWgdkcKOAgNrBV_55I-R6UBpW3MoBuSBqYrsJcwvzudfLvPUrSF35FIuc09AqKX9AEvPP2Od9ciEYnWre6Vs7_RgpLUEOWtpTTNIiRWWUhbaD31ZvYKdxbjAQxB829cjHSK-6WvrVK9qWzXasW9JcNZk8OFeat1N5OTogi9TmI5kzZ012y7KOoMDlsVmWBRDBqePpLx5T4pljNQZHN-LvUtGPXW6VVVFexbN-m79lqyRUyz9AsfVRPOT7tWcscrg7RNjyDZ4ljqD11GfHqwuquXRv1d9DLsxAMTlh29gZ3m7whPYnobVabCFO6OhBtw
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOVAOLWwphEJrJA4cSJs4D8dHBK22olRI7IFbFDtjqVLZVM2uuPDjO2O7u61EDxxWihTHsnZm7G8e_gbgQ-VM3Shj07ywkhyUCsmkqjLtdK2dNNzYimO605_q_Ffz9Zhpcj6t7sIgoi8-w0N-9Ln8frBLDpUd5XRc5hk56E-qUtUq3NZa5Qy45azPbVYqVQT8I5FPnumj2emPkHcgdE6AhplCySvMap3fO458fxWujuxG-oNc6GzxMPT0R9DJ9v8t_jlsRagpPgfdeAGPcD6B7Qg7RTTqcQLP7nASTmBz3X13B_76igJBIFFcDn9Scs2jpoorDuJfMxurGJyw3OPjkmBrLy5-0w41isVATxyvQP-19c0jYuBRoOet4Euf_DEyIShtbBZFjzww1pG9hNnJ8ezLNI39GlJLTuUidQSFatoRMHf808Yah0wpVtZNp5TpbNNraQyBzlIaXfVSYoG5lFnj-i4vdmFjPszxNQi-7-uQjhFXdaWxqlOlKarGsndJgFYn8PFWau1VYOVovTeT6ZZkzb016zbIOoEdlsV6WBBDAvv3pLx-rzS5oLJJYO9W7G0067FtalUUtGvRrO9Xb8keOcnSzXFYjjQ_6V7JOasEDh4YQ9bBs5QJvAr6dGd1QS3f_HvVB_B0Ovt-1p6dnn_bg80QDuJixLewsbhe4jt4PPbLfW8XN5A1Ci0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+low-resolution+properties+of+correlated+images+to+improve+the+computational+efficiency+of+eigenspace+decomposition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Saitwal%2C+K.&rft.au=Maciejewski%2C+A.A.&rft.au=Roberts%2C+R.G.&rft.au=Draper%2C+B.A.&rft.date=2006-08-01&rft.pub=IEEE&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=15&rft.issue=8&rft.spage=2376&rft.epage=2387&rft_id=info:doi/10.1109%2FTIP.2006.875231&rft_id=info%3Apmid%2F16900691&rft.externalDocID=1658100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon