Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures

We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With o...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief Vol. 39; p. 107631
Main Authors: Hozzová, Jana, Filipovič, Jiří, Nezarat, Amin, Ol’ha, Jaroslav, Petrovič, Filip
Format: Journal Article
Language:English
Published: Elsevier Inc 01-12-2021
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
AbstractList We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1] . With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance.Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way.During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
ArticleNumber 107631
Author Hozzová, Jana
Petrovič, Filip
Ol’ha, Jaroslav
Nezarat, Amin
Filipovič, Jiří
Author_xml – sequence: 1
  givenname: Jana
  surname: Hozzová
  fullname: Hozzová, Jana
  email: hozzova@mail.muni.cz
– sequence: 2
  givenname: Jiří
  orcidid: 0000-0002-5703-9673
  surname: Filipovič
  fullname: Filipovič, Jiří
  email: fila@mail.muni.cz
– sequence: 3
  givenname: Amin
  surname: Nezarat
  fullname: Nezarat, Amin
  email: aminnezarat@mail.muni.cz
– sequence: 4
  givenname: Jaroslav
  orcidid: 0000-0003-1824-468X
  surname: Ol’ha
  fullname: Ol’ha, Jaroslav
  email: 348646@mail.muni.cz
– sequence: 5
  givenname: Filip
  surname: Petrovič
  fullname: Petrovič, Filip
  email: fillo@mail.muni.cz
BookMark eNp9kk9vFCEYxiemxtbaD-CNo5ddYYBh0MSk2Wpt0kQT3TNh4J0d1llYgdnGs19cdqcx9uIJeOH5vX94XlZnPnioqtcELwkmzdvt0rpuWeOalLNoKHlWXdSU1wvKsDz7Z39eXaW0xRgTzkqQv6jOKWuFoLK-qH5_Ax3N4PwGrdY318gEC0hPOeTJH4Nprw0k9ODygAYd7YOOgPYQ-xB32hsogslniOkdsjpr1MewQx14M-x0_JFQnPyJEzw66OjClNDt1zU65cxg8hQhvaqe93pMcPW4XlbrTx-_rz4v7r_c3q2u7xeGsSYvAFthGuCyBioJ0ZwK1gEvvVAhRdtzXtNGCtkaACs5I5Z3sqe0ZZ0QRnB6Wd3NXBv0Vu2jKyX-UkE7dQqEuFE6ZmdGUKS1HLSUhgFmpCPa9oQZ03bUcsOaprA-zKz91O3AGvA56vEJ9OmNd4PahINqm1IRlwXw5hEQw88JUlY7lwyMo_ZQpqTqBrdYck6OT8n81MSQUoT-bxqC1dELaquKF9TRC2r2QtG8nzVQBnpwEFUyrnwLWBfL2EvH7j_qP5Okvk8
Cites_doi 10.1016/j.jpdc.2021.10.003
10.1016/j.future.2020.02.069
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.dib.2021.107631
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2352-3409
EndPage 107631
ExternalDocumentID oai_doaj_org_article_18d5ea99c4e041b1adf14cc8b3d5c466
10_1016_j_dib_2021_107631
S2352340921009069
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
7X8
5PM
ID FETCH-LOGICAL-c446t-e0d7c6e592e3911a5374be534837978f552369798ceed9541d5b9f3384b77c753
IEDL.DBID RPM
ISSN 2352-3409
IngestDate Tue Oct 22 14:47:38 EDT 2024
Tue Sep 17 21:10:01 EDT 2024
Fri Oct 25 01:06:45 EDT 2024
Thu Sep 26 19:24:08 EDT 2024
Tue Jul 25 20:56:55 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tuning spaces
Performance counters
Auto-tuning
Cuda
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e0d7c6e592e3911a5374be534837978f552369798ceed9541d5b9f3384b77c753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5703-9673
0000-0003-1824-468X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633859/
PMID 34877392
PQID 2608095519
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_18d5ea99c4e041b1adf14cc8b3d5c466
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633859
proquest_miscellaneous_2608095519
crossref_primary_10_1016_j_dib_2021_107631
elsevier_sciencedirect_doi_10_1016_j_dib_2021_107631
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Data in brief
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nugteren, Codreanu (bib0004) 2015
Filipovič, Petrovič, Benkner (bib0005) 2017
F. Petrovič, J. Filipovič, D. Střelák, J. Hozzová, R. Trembecký, Kernel tuning toolkit, 2021.
Filipovič, Hozzová, Nezarat, Ol’ha, Petrovič (bib0001) 2022; 160
Nugteren (bib0006) 2018
Petrovič, Střelák, Hozzová, Ol’ha, Trembecký, Benkner, Filipovič (bib0003) 2020; 108
doi
10.1016/j.dib.2021.107631_bib0002
Petrovič (10.1016/j.dib.2021.107631_bib0003) 2020; 108
Filipovič (10.1016/j.dib.2021.107631_bib0001) 2022; 160
Nugteren (10.1016/j.dib.2021.107631_bib0004) 2015
Filipovič (10.1016/j.dib.2021.107631_bib0005) 2017
Nugteren (10.1016/j.dib.2021.107631_bib0006) 2018
References_xml – volume: 108
  start-page: 161
  year: 2020
  end-page: 177
  ident: bib0003
  article-title: A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic autotuning with kernel tuning toolkit
  publication-title: Future Gener. Comput. Syst.
  contributor:
    fullname: Filipovič
– volume: 160
  start-page: 16
  year: 2022
  end-page: 35
  ident: bib0001
  article-title: Using hardware performance counters to speed up autotuning convergence on GPUs
  publication-title: J. Parallel Distrib. Comput.
  contributor:
    fullname: Petrovič
– year: 2017
  ident: bib0005
  article-title: Autotuning of OpenCL kernels with global optimizations
  publication-title: Proceedings of the 1st Workshop on AutotuniNg and aDaptivity AppRoaches for Energy Efficient HPC Systems (ANDARE ’17)
  contributor:
    fullname: Benkner
– start-page: 5:1
  year: 2018
  end-page: 5:10
  ident: bib0006
  article-title: CLBlast: a tuned OpenCL BLAS library
  publication-title: Proceedings of the International Workshop on OpenCL, IWOCL ’18
  contributor:
    fullname: Nugteren
– year: 2015
  ident: bib0004
  article-title: CLTune: a generic auto-tuner for OpenCL kernels
  publication-title: Proceedings of the IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)
  contributor:
    fullname: Codreanu
– ident: 10.1016/j.dib.2021.107631_bib0002
– year: 2017
  ident: 10.1016/j.dib.2021.107631_bib0005
  article-title: Autotuning of OpenCL kernels with global optimizations
  contributor:
    fullname: Filipovič
– start-page: 5:1
  year: 2018
  ident: 10.1016/j.dib.2021.107631_bib0006
  article-title: CLBlast: a tuned OpenCL BLAS library
  contributor:
    fullname: Nugteren
– volume: 160
  start-page: 16
  year: 2022
  ident: 10.1016/j.dib.2021.107631_bib0001
  article-title: Using hardware performance counters to speed up autotuning convergence on GPUs
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2021.10.003
  contributor:
    fullname: Filipovič
– volume: 108
  start-page: 161
  year: 2020
  ident: 10.1016/j.dib.2021.107631_bib0003
  article-title: A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic autotuning with kernel tuning toolkit
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.02.069
  contributor:
    fullname: Petrovič
– year: 2015
  ident: 10.1016/j.dib.2021.107631_bib0004
  article-title: CLTune: a generic auto-tuner for OpenCL kernels
  contributor:
    fullname: Nugteren
SSID ssj0001542355
Score 2.2514367
Snippet We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 107631
SubjectTerms Auto-tuning
Cuda
Data
Performance counters
Tuning spaces
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6I8hALFA0SB0CKWK_tOO6t9EFPCAlW4mb5FXVBZKvNhv4A_nhn4qTdXOiFU5S34xln5rNnvmHsbYwyzb33hZQIUaRXuvBCxKKKaC64CIsy0Dzk-Tf95Ud1cko0OTelvigmLNMD5477yKuokjMm4DMl99zFmssQKi-iCrLMZNvzcgdM5fxgdBP6kqe4WRQCUcy4pNkHd8WVR2y44LiPA4xPjFLP3T-xTTu-5zRycscUnT1iDwcfEo5y2_fZvdQ8ZvvDKG3h3UAl_f4J-5ujidE8wfHy5AgogR1ct11vO5oPAfyd0B00GQuUfnXlNgkub3MJoC8lgR7iIVAoKVAyCnh8zcVvt_nVwqbrKx7BuoE_CLrXXQufvy5hd3WifcqWZ6ffj8-LoexCERAbbos0jzqUSZlFEvgrdEpo6ZMSxD2PmLNWiF1Lo01F9tUoyaPypkaoK73WAeHPM7bXrJv0nEEt3VxVSdWxTlKgXfQmel2mOmqZlCtn7MPY7_Yys2vYMezsp0UhWRKSzUKasU8kmZsLiRi7P4DqYgd1sXepy4zJUa528DGy74CPWv3r3W9GHbA4_mhRxTUJe9UiHqyIxo-bGdMT5Zg0dHqmWV30TN5Vid2mzIv_8WUv2QNqcA61ecX2tpsuHbD7bexe92PjGhLkFWo
  priority: 102
  providerName: Directory of Open Access Journals
Title Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
URI https://dx.doi.org/10.1016/j.dib.2021.107631
https://search.proquest.com/docview/2608095519
https://pubmed.ncbi.nlm.nih.gov/PMC8633859
https://doaj.org/article/18d5ea99c4e041b1adf14cc8b3d5c466
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbonrgglocoj8pIHAAp26a245jb0t1lEQKtBJW4WX6FLdCkShr4AfxxZpwEmgsHjnk4tjzjzHzjb8aEPPOeh4W1NuEcIAq3QiaWMZ_kHsxFytwycxiHvPwoP3zOz86xTI4YcmEiad_ZzUn5fXtSbq4jt3K3dfOBJza_er_KMwBWQs0nZAK-4QFE71KDwUMQYtjBjFwuv7EABZcpXMN6wtNhGDjqkqnlyBzFqv0jq3TgdY45kwdG6OI2udV7j_S0G-UxuRHKO-S4X58Nfd4XkX5xl_zqeMRgmOhqfXZKMXWdmnZf7VuMhFD4kWALDMNSTLz6aepAd3-zCGg8RAJ8w1cUSaQU01CohW6ut6b-1tC6jWcd0aqkPwBuV21D31yt6eG-RHOPrC_OP60uk_7AhcQBKtwnYeGly4JQy8DgJ2gEk9wGwbDqPKDNQgBqzZRUOVpWJXjqhVUFyIJbKR0An_vkqKzK8IDQgpuFyIMofBE4A4tolbcyC4WXPAiTTcnLYd71rquroQfC2VcN8tIoL93Ja0peo2T-vIglseONqv6ie8XQae5FMEo5UD6e2tT4IuXO5ZZ54XgGPfJBrrr3LjqvAT61-VffTwcd0LDycDvFlAFmVQMSzLGAX6qmRI6UYzTQ8RNQ6VjDu1fhh__d8hG5iaPsmDWPydG-bsMTMml8OwNk8PbdLEYXZnFt_AaB-hVN
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcAFKA91eRQjcQCkdJO1Hce9tduWRbRVJboSN8uv0AU2WSUb-AH88Y6dBDYXDj3macczk5nP_maM0FtrqYu11hGlAFGoZjzShNgos-AuEmImqfHzkLMv_OJrdnziy-SwPhcmkPaNXuwXP5f7xeI6cCtXSzPueWLjy_NplgKwYmK8he6CvcbxBkhvk4MhRmCsX8MMbC670AAGJwkcg0X5_WEIhOqciMnAIYW6_QO_tBF3DlmTG27o9OEtP-ARetDFnfiwvbyD7rjiMdrpLLvG77ry0--foD8tAxlcGp7Ojw-xT3rHqlmX68bPoWD4Bfkn_AQu9ilbv1Xl8Opf_gEO209AVHmAPf0U-wQWrKGZ66WqftS4asIuSbgs8C8A6mVT44-Xc7y5olE_RfPTk6vpLOq2aogM4Ml15GLLTeqYmDgCv0_FCKfaMeLr1QNOzRng3VRwkXmfLBhNLNMih0GgmnMDkOkZ2i7Kwu0inFMVs8yx3OaOEvClWljNU5dbTh1T6Qh96OUlV21FDtlT1b5LkLP0cpatnEfoyEv0742-mHY4UVbfZCcRmWSWOSWEAbWliU6UzRNqTKaJZYam0CLt9UF2cUkbb8CrFv9r-02vOxJs1i_EqMLBqErAkJkv_ZeIEeIDpRp0dHgFdClU_-505_mtn3yN7s2uzs_k2aeLzy_Qfd_jlp_zEm2vq8a9Qlu1bfaCTd0AtcMo8Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJcgOWh7fIyEgdAyraJ7TjmtrRbFgGrSlCJm-VX2MI2qZIGfgB_nLGTLM2FAxzzdJKZycxnfzOD0HNrqZtorSNKAaJQzXikCbFRZsFdxMQkqfHzkGef-PmXbHbqy-RctfoKpH2jV8fF5fq4WF0EbuVmbcY9T2y8-DjNUgBWTIw3Nh_voetgs5NkB6i3CcIQJzDWr2MGRpddaQCESQzbYFW-RwyBcJ0TkQycUqjdP_BNO7HnkDm544rmt__jJe6gW138iU_aUw7QNVfcRQedhdf4RVeG-uU99KtlIoNrw9Pl7AT75Hesmm25bfxcCoZfkb_CT-Rin7r1U1UOb_7kIeDQhgKiy9fY01CxT2TBGoa5WKvqe42rJnRLwmWBfwBgL5sav10s8e7KRn0fLeenn6dnUdeyITKAK7eRm1huUsdE4gj8RhUjnGrHiK9bD3g1Z4B7U8FF5n2zYDS2TIscPgTVnBuATg_QflEW7hDhnKoJyxzLbe4oAZ-qhdU8dbnl1DGVjtCrXmZy01bmkD1l7ZsEWUsva9nKeoTeeKleneiLaocdZfVVdlKRcWaZU0IYUF8a61jZPKbGZJpYZmgKI9JeJ2QXn7RxB9xq9bexn_X6I8F2_YKMKhx8VQlYMvMlAGMxQnygWIMHHR4BfQpVwDv9OfrnK5-iG4vZXH54d_7-IbrpH7il6TxC-9uqcY_RXm2bJ8GsfgPoGStx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+CUDA+code+autotuning+spaces+with+hardware+performance+counters%3A+data+from+benchmarks+running+on+various+GPU+architectures&rft.jtitle=Data+in+brief&rft.au=Hozzov%C3%A1%2C+Jana&rft.au=Filipovi%C4%8D%2C+Ji%C5%99%C3%AD&rft.au=Nezarat%2C+Amin&rft.au=Ol%E2%80%99ha%2C+Jaroslav&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=39&rft_id=info:doi/10.1016%2Fj.dib.2021.107631&rft.externalDocID=S2352340921009069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon