Cell ID and Timing Estimation Techniques for Underwater Acoustic Cellular Systems in High-Doppler Environments

In an underwater acoustic cellular (UAC) system, underwater equipment or sensor nodes need to detect the identity of an underwater base station (UBS) and synchronise it with a serving UBS. It is known that, in an underwater acoustic channel, the temporal variability of the ocean coupled with the low...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4147
Main Authors: Asim, Muhammad, Khan, Mohammed Saquib, Im, Tae Ho, Cho, Yong Soo
Format: Journal Article
Language:English
Published: Basel MDPI AG 26-07-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In an underwater acoustic cellular (UAC) system, underwater equipment or sensor nodes need to detect the identity of an underwater base station (UBS) and synchronise it with a serving UBS. It is known that, in an underwater acoustic channel, the temporal variability of the ocean coupled with the low speed of sound in water may induce a significant Doppler shift. In this paper, two different types of cell search techniques (CSTs) are proposed to detect the cell ID and correct timing of the UBS in UAC systems with a Doppler shift: CST based on linear frequency modulation with full bandwidth in the time domain (LFM-FT) and CST based on linear frequency modulation in the frequency domain (LFM-FF). The performances (auto-correlation, cross-correlation, ambiguity function, and cross ambiguity function) of the proposed techniques are analysed and compared with simulation results. It is demonstrated by simulation that the proposed techniques perform better than previous techniques in both AWGN and multipath channels when a Doppler shift exists. It is also shown that the LFM-FF-CST achieves the best performance in the presence of a Doppler shift and is suitable for mobile UAC systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20154147