The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars?
The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected ev...
Saved in:
Published in: | The Astrophysical journal Vol. 904; no. 2; pp. 145 - 150 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
The American Astronomical Society
01-12-2020
IOP Publishing |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color-color space and can be identified unambiguously. |
---|---|
AbstractList | The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to
. However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 mag
AB
, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color–color space and can be identified unambiguously. The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to \(z\approx 15\). However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color–color space and can be identified unambiguously. The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color-color space and can be identified unambiguously. |
Author | Bromm, Volker Drory, Niv Schauer, Anna T. P. |
Author_xml | – sequence: 1 givenname: Anna T. P. orcidid: 0000-0002-2220-8086 surname: Schauer fullname: Schauer, Anna T. P. email: anna.schauer@utexas.edu organization: University of Texas at Austin Department of Astronomy, Austin, TX 78712, USA – sequence: 2 givenname: Niv orcidid: 0000-0002-7339-3170 surname: Drory fullname: Drory, Niv organization: University of Texas at Austin McDonald Observatory, Austin, TX 78712, USA – sequence: 3 givenname: Volker orcidid: 0000-0003-0212-2979 surname: Bromm fullname: Bromm, Volker organization: University of Texas at Austin Department of Astronomy, Austin, TX 78712, USA |
BookMark | eNp1kMFLwzAUxoNMcJvePQbEm3Vpk6apF5HNaXGo4Ma8xTR9dR21qWl22H9vS0Uvevp4j-_7Hu83QoPKVIDQqU8uqWDRxA-p8BgNo4lKU03SAzT8WQ3QkBDCPE6j1yM0apptNwZxPERvyw3gVemKD-Wg3OOFsu-Al1BCo00NV3i9UQ4_FFWGTY7nShdl4fZ4ZvAa8CNAhp3BM3CgHX429a5UrjAVTpIEvzhlm-tjdJirsoGTbx2j1fx2Ob33Fk93yfRm4WnGuPNSHqvM11kepjzNNcso0JTQiAsFeRBQn2nOVRa3QgQEhLEsCOIUhBC-EjmhY3TW99bWfO6gcXJrdrZqT8qA8VAQQXjUukjv0tY0jYVc1rZ93e6lT2THUXbQZAdN9hzbyHkfKUz926nqrYwJk4H0WSjrLG99F3_4_q39AmbVgiw |
CitedBy_id | crossref_primary_10_3847_1538_4357_ac5aac crossref_primary_10_1093_mnras_stab2057 crossref_primary_10_3847_1538_4357_acac30 crossref_primary_10_3847_2041_8213_ac7f9a crossref_primary_10_1093_mnras_stac176 crossref_primary_10_1093_mnras_stab2697 crossref_primary_10_1093_mnras_stad3198 crossref_primary_10_1146_annurev_astro_071221_053453 crossref_primary_10_3847_1538_4357_ac746b crossref_primary_10_1093_mnras_stac867 crossref_primary_10_3847_1538_4357_abe40d crossref_primary_10_3847_1538_4357_acbcc6 crossref_primary_10_3847_2041_8213_ad19c4 crossref_primary_10_1093_mnras_stad2553 crossref_primary_10_1098_rsta_2019_0561 crossref_primary_10_1007_s41115_023_00018_w crossref_primary_10_3847_1538_4357_accc2c crossref_primary_10_1051_0004_6361_202142187 crossref_primary_10_1093_mnras_stab2028 crossref_primary_10_1093_mnras_stad1903 crossref_primary_10_1093_mnras_stab2744 crossref_primary_10_3847_2041_8213_ac8ea6 |
Cites_doi | 10.1086/323947 10.1088/0004-637X/737/2/75 10.1126/science.1198027 10.1117/12.925447 10.1088/0004-637X/740/1/13 10.1093/mnras/stz863 10.1093/mnras/stu1408 10.1142/S0218271814300171 10.1093/mnras/stz873 10.1093/mnras/sty1576 10.1093/mnras/sty040 10.1046/j.1365-8711.2001.04915.x 10.1093/mnras/stw1728 10.3847/1538-4357/ab994e 10.1086/320549 10.1007/s11214-006-8315-7 10.1093/mnras/stx264 10.1103/PhysRevD.82.083520 10.1093/mnras/stv044 10.1093/mnras/stv492 10.1088/0004-637X/736/2/147 10.1093/mnras/stx1906 10.1086/588034 10.3847/0004-637X/819/2/129 10.1051/0004-6361:20011619 10.3847/1538-4357/ab7dc3 10.1086/592734 10.3847/2041-8213/ab1e51 10.1088/0004-637X/781/2/60 10.1117/12.615554 10.1093/mnras/stz079 10.1093/mnras/stz1529 10.1093/mnrasl/slaa041 10.1126/science.1063991 10.1088/0004-637X/773/2/83 10.1093/mnras/stz013 |
ContentType | Journal Article |
Copyright | 2020. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Dec 01, 2020 |
Copyright_xml | – notice: 2020. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Dec 01, 2020 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/abbc0b |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars? |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_abbc0b apjabbc0b |
GrantInformation_xml | – fundername: NASA grantid: HST-HF2-51418.001-A |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-c446t-b69ad1cdf5b6bfc4d3e3b03768aef22314c66ad94c608e2044d229be8881a8f03 |
ISSN | 0004-637X |
IngestDate | Thu Oct 10 19:00:47 EDT 2024 Thu Nov 21 23:26:26 EST 2024 Wed Aug 21 03:38:28 EDT 2024 Thu Jan 07 14:56:14 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-b69ad1cdf5b6bfc4d3e3b03768aef22314c66ad94c608e2044d229be8881a8f03 |
Notes | Galaxies and Cosmology AAS25716 |
ORCID | 0000-0003-0212-2979 0000-0002-7339-3170 0000-0002-2220-8086 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/abbc0b/pdf |
PQID | 2465808067 |
PQPubID | 4562441 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_abbc0b proquest_journals_2465808067 iop_journals_10_3847_1538_4357_abbc0b |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2020 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Chiaki (apjabbc0bbib9) 2018; 475 Tseliakhovich (apjabbc0bbib32) 2010; 82 Schaerer (apjabbc0bbib27) 2002; 382 Stacy (apjabbc0bbib31) 2016; 462 Oesch (apjabbc0bbib23) 2016; 819 Greif (apjabbc0bbib15) 2011b; 736 Hirano (apjabbc0bbib19) 2015; 448 Vanzella (apjabbc0bbib33) 2020; 494 Beichman (apjabbc0bbib4) 2012; 8442 Bromm (apjabbc0bbib5) 2002; 564 Fialkov (apjabbc0bbib11) 2014; 23 Angel (apjabbc0bbib2) 2008; 680 Clark (apjabbc0bbib10) 2011; 331 Ceverino (apjabbc0bbib8) 2019; 484 Pillepich (apjabbc0bbib24) 2014; 444 Schauer (apjabbc0bbib30) 2019b; 877 Fialkov (apjabbc0bbib12) 2019; 486 Jaacks (apjabbc0bbib20) 2019; 488 Bromm (apjabbc0bbib7) 2001b; 552 Greif (apjabbc0bbib14) 2011a; 737 Gardner (apjabbc0bbib13) 2006; 123 Mužić (apjabbc0bbib22) 2017; 471 Hartwig (apjabbc0bbib17) 2018; 479 Hirano (apjabbc0bbib18) 2014; 781 Jeon (apjabbc0bbib21) 2019; 485 Schauer (apjabbc0bbib28) 2017; 467 Zackrisson (apjabbc0bbib36) 2015; 449 Zackrisson (apjabbc0bbib37) 2011; 740 Bromm (apjabbc0bbib6) 2001a; 328 Visbal (apjabbc0bbib34) 2020; 897 Barrow (apjabbc0bbib3) 2017; 469 Schauer (apjabbc0bbib29) 2019a; 484 Rieke (apjabbc0bbib25) 2005; 5904 Abel (apjabbc0bbib1) 2002; 295 Hainline (apjabbc0bbib16) 2020; 892 Saumon (apjabbc0bbib26) 2008; 689 Xu (apjabbc0bbib35) 2013; 773 |
References_xml | – volume: 564 start-page: 23 year: 2002 ident: apjabbc0bbib5 publication-title: ApJ doi: 10.1086/323947 contributor: fullname: Bromm – volume: 737 start-page: 75 year: 2011a ident: apjabbc0bbib14 publication-title: ApJ doi: 10.1088/0004-637X/737/2/75 contributor: fullname: Greif – volume: 331 start-page: 1040 year: 2011 ident: apjabbc0bbib10 publication-title: Sci doi: 10.1126/science.1198027 contributor: fullname: Clark – volume: 469 start-page: 4863 year: 2017 ident: apjabbc0bbib3 publication-title: MNRAS doi: 10.1117/12.925447 contributor: fullname: Barrow – volume: 740 start-page: 13 year: 2011 ident: apjabbc0bbib37 publication-title: ApJ doi: 10.1088/0004-637X/740/1/13 contributor: fullname: Zackrisson – volume: 485 start-page: 5939 year: 2019 ident: apjabbc0bbib21 publication-title: MNRAS doi: 10.1093/mnras/stz863 contributor: fullname: Jeon – volume: 444 start-page: 237 year: 2014 ident: apjabbc0bbib24 publication-title: MNRAS doi: 10.1093/mnras/stu1408 contributor: fullname: Pillepich – volume: 23 start-page: 1430017 year: 2014 ident: apjabbc0bbib11 publication-title: IJMPD doi: 10.1142/S0218271814300171 contributor: fullname: Fialkov – volume: 486 start-page: 1763 year: 2019 ident: apjabbc0bbib12 publication-title: MNRAS doi: 10.1093/mnras/stz873 contributor: fullname: Fialkov – volume: 479 start-page: 2202 year: 2018 ident: apjabbc0bbib17 publication-title: MNRAS doi: 10.1093/mnras/sty1576 contributor: fullname: Hartwig – volume: 475 start-page: 4378 year: 2018 ident: apjabbc0bbib9 publication-title: MNRAS doi: 10.1093/mnras/sty040 contributor: fullname: Chiaki – volume: 328 start-page: 969 year: 2001a ident: apjabbc0bbib6 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04915.x contributor: fullname: Bromm – volume: 462 start-page: 1307 year: 2016 ident: apjabbc0bbib31 publication-title: MNRAS doi: 10.1093/mnras/stw1728 contributor: fullname: Stacy – volume: 897 start-page: 95 year: 2020 ident: apjabbc0bbib34 publication-title: ApJ doi: 10.3847/1538-4357/ab994e contributor: fullname: Visbal – volume: 552 start-page: 464 year: 2001b ident: apjabbc0bbib7 publication-title: ApJ doi: 10.1086/320549 contributor: fullname: Bromm – volume: 123 start-page: 485 year: 2006 ident: apjabbc0bbib13 publication-title: SSRv doi: 10.1007/s11214-006-8315-7 contributor: fullname: Gardner – volume: 467 start-page: 2288 year: 2017 ident: apjabbc0bbib28 publication-title: MNRAS doi: 10.1093/mnras/stx264 contributor: fullname: Schauer – volume: 82 start-page: 083520 year: 2010 ident: apjabbc0bbib32 publication-title: PhRvD doi: 10.1103/PhysRevD.82.083520 contributor: fullname: Tseliakhovich – volume: 448 start-page: 568 year: 2015 ident: apjabbc0bbib19 publication-title: MNRAS doi: 10.1093/mnras/stv044 contributor: fullname: Hirano – volume: 449 start-page: 3057 year: 2015 ident: apjabbc0bbib36 publication-title: MNRAS doi: 10.1093/mnras/stv492 contributor: fullname: Zackrisson – volume: 736 start-page: 147 year: 2011b ident: apjabbc0bbib15 publication-title: ApJ doi: 10.1088/0004-637X/736/2/147 contributor: fullname: Greif – volume: 471 start-page: 3699 year: 2017 ident: apjabbc0bbib22 publication-title: MNRAS doi: 10.1093/mnras/stx1906 contributor: fullname: Mužić – volume: 680 start-page: 1582 year: 2008 ident: apjabbc0bbib2 publication-title: ApJ doi: 10.1086/588034 contributor: fullname: Angel – volume: 819 start-page: 129 year: 2016 ident: apjabbc0bbib23 publication-title: ApJ doi: 10.3847/0004-637X/819/2/129 contributor: fullname: Oesch – volume: 382 start-page: 28 year: 2002 ident: apjabbc0bbib27 publication-title: A&A doi: 10.1051/0004-6361:20011619 contributor: fullname: Schaerer – volume: 892 start-page: 125 year: 2020 ident: apjabbc0bbib16 publication-title: ApJ doi: 10.3847/1538-4357/ab7dc3 contributor: fullname: Hainline – volume: 689 start-page: 1327 year: 2008 ident: apjabbc0bbib26 publication-title: ApJ doi: 10.1086/592734 contributor: fullname: Saumon – volume: 877 start-page: L5 year: 2019b ident: apjabbc0bbib30 publication-title: ApJL doi: 10.3847/2041-8213/ab1e51 contributor: fullname: Schauer – volume: 781 start-page: 60 year: 2014 ident: apjabbc0bbib18 publication-title: ApJ doi: 10.1088/0004-637X/781/2/60 contributor: fullname: Hirano – volume: 5904 start-page: 1 year: 2005 ident: apjabbc0bbib25 publication-title: Proc. SPIE doi: 10.1117/12.615554 contributor: fullname: Rieke – volume: 8442 start-page: 84422N year: 2012 ident: apjabbc0bbib4 publication-title: Proc. SPIE doi: 10.1117/12.925447 contributor: fullname: Beichman – volume: 484 start-page: 1366 year: 2019 ident: apjabbc0bbib8 publication-title: MNRAS doi: 10.1093/mnras/stz079 contributor: fullname: Ceverino – volume: 488 start-page: 2202 year: 2019 ident: apjabbc0bbib20 publication-title: MNRAS doi: 10.1093/mnras/stz1529 contributor: fullname: Jaacks – volume: 494 start-page: L81 year: 2020 ident: apjabbc0bbib33 publication-title: MNRAS doi: 10.1093/mnrasl/slaa041 contributor: fullname: Vanzella – volume: 295 start-page: 93 year: 2002 ident: apjabbc0bbib1 publication-title: Sci doi: 10.1126/science.1063991 contributor: fullname: Abel – volume: 773 start-page: 83 year: 2013 ident: apjabbc0bbib35 publication-title: ApJ doi: 10.1088/0004-637X/773/2/83 contributor: fullname: Xu – volume: 484 start-page: 3510 year: 2019a ident: apjabbc0bbib29 publication-title: MNRAS doi: 10.1093/mnras/stz013 contributor: fullname: Schauer |
SSID | ssj0004299 |
Score | 2.5592408 |
Snippet | The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with... The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with... The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to \(z\approx 15\).... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | Astrophysics Color Early universe Infrared telescopes James Webb Space Telescope Population III stars Primary mirrors Red shift Space telescopes Star & galaxy formation Star formation |
Title | The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars? |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/abbc0b https://www.proquest.com/docview/2465808067 |
Volume | 904 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfaISRe0BiglY3JD4CEomz5cL54QYh2WgFVldaxvQXbcUShxFE_kPbfcxfnoxsIjQde0shNHevuV9_v7LszIS-CPMaCOcLOsMwliyQmK0tmBzx3pCvB6Ge4NHB2Hk2u4uGIjXq9Jmqpa_uvmoY20DVmzv6DtttOoQHuQedwBa3D9c56v1is58BE1eLa-oSR3tZMYdkmXVaJ6Fit2_oIvjgSxVMu5xUTH2rrEsMdgYACHR0q3Fywpu3xXtZ4PEZmulzdCgWsTnVerZe6bDS-Pcxqi-cr39RnZhcFt2bH1vS45c9LbfbxJ_OfWysDPyqUftaL73XwcL0u4d2O8Zh1iTGFGUaVZo0lTnRb46SdlZkd-tGVsUndRAxULtqeqRNzUnENSe9PFsAHa4uLEc3P0dQJIR3R2bs2CpGX38x3fXLPg3kKp8nzD5MurdZLau_JDM_scuMbTtr-T0wPN1hNf67L30x7xVdmu-Rh7WjQdwYhj0hPFXtkvxHRNX1Ft7S22iP3p-buMfkCQqUdhGgFIdpC6A1FAFEEENU5bQBEh5peKooAomtNDYBoByAKAKIVgN4-IReno9n7M7s-iMOWjIVrW4QJz1yZ5YEIRS5Z5itfOGCaYq5y4Jcuk2HIswQ-nFh5DmOZ5yVCxXHs8jh3_Kdkp9CF2idUJp7wo0jGbpgwLhyQHg-AIiO1TwInHJDXjSDT0tRbScFPRaGnKPQUhZ4aoQ_IS5B0WqN69Zfnjm48B3pPAUqpB35vkJZZPiCHjbK6pzwG5Bz8qTB6dsf3HJAH3R_hkOyslxv1nPRX2eaoAtYvi8SUHA |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ultimately+Large+Telescope%3A+What+Kind+of+Facility+Do+We+Need+to+Detect+Population+III+Stars%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Schauer%2C+Anna+T.+P.&rft.au=Drory%2C+Niv&rft.au=Bromm%2C+Volker&rft.date=2020-12-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=904&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fabbc0b&rft.externalDocID=apjabbc0b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |