The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars?

The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected ev...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal Vol. 904; no. 2; pp. 145 - 150
Main Authors: Schauer, Anna T. P., Drory, Niv, Bromm, Volker
Format: Journal Article
Language:English
Published: Philadelphia The American Astronomical Society 01-12-2020
IOP Publishing
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color-color space and can be identified unambiguously.
AbstractList The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 mag AB , corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color–color space and can be identified unambiguously.
The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to \(z\approx 15\). However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color–color space and can be identified unambiguously.
The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalos with luminosities too faint to be detected even by the longest exposure times. In this paper, we investigate the basic properties of the Ultimately Large Telescope, a facility that can detect Population III star formation regions at high redshift. Observations will take place in the near-infrared and therefore a Moon-based facility is proposed. An instrument needs to reach magnitudes as faint as 39 magAB, corresponding to a primary mirror size of about 100 m in diameter. Assuming JWST NIRCam filters, we estimate that Population III sources will have unique signatures in a color-color space and can be identified unambiguously.
Author Bromm, Volker
Drory, Niv
Schauer, Anna T. P.
Author_xml – sequence: 1
  givenname: Anna T. P.
  orcidid: 0000-0002-2220-8086
  surname: Schauer
  fullname: Schauer, Anna T. P.
  email: anna.schauer@utexas.edu
  organization: University of Texas at Austin Department of Astronomy, Austin, TX 78712, USA
– sequence: 2
  givenname: Niv
  orcidid: 0000-0002-7339-3170
  surname: Drory
  fullname: Drory, Niv
  organization: University of Texas at Austin McDonald Observatory, Austin, TX 78712, USA
– sequence: 3
  givenname: Volker
  orcidid: 0000-0003-0212-2979
  surname: Bromm
  fullname: Bromm, Volker
  organization: University of Texas at Austin Department of Astronomy, Austin, TX 78712, USA
BookMark eNp1kMFLwzAUxoNMcJvePQbEm3Vpk6apF5HNaXGo4Ma8xTR9dR21qWl22H9vS0Uvevp4j-_7Hu83QoPKVIDQqU8uqWDRxA-p8BgNo4lKU03SAzT8WQ3QkBDCPE6j1yM0apptNwZxPERvyw3gVemKD-Wg3OOFsu-Al1BCo00NV3i9UQ4_FFWGTY7nShdl4fZ4ZvAa8CNAhp3BM3CgHX429a5UrjAVTpIEvzhlm-tjdJirsoGTbx2j1fx2Ob33Fk93yfRm4WnGuPNSHqvM11kepjzNNcso0JTQiAsFeRBQn2nOVRa3QgQEhLEsCOIUhBC-EjmhY3TW99bWfO6gcXJrdrZqT8qA8VAQQXjUukjv0tY0jYVc1rZ93e6lT2THUXbQZAdN9hzbyHkfKUz926nqrYwJk4H0WSjrLG99F3_4_q39AmbVgiw
CitedBy_id crossref_primary_10_3847_1538_4357_ac5aac
crossref_primary_10_1093_mnras_stab2057
crossref_primary_10_3847_1538_4357_acac30
crossref_primary_10_3847_2041_8213_ac7f9a
crossref_primary_10_1093_mnras_stac176
crossref_primary_10_1093_mnras_stab2697
crossref_primary_10_1093_mnras_stad3198
crossref_primary_10_1146_annurev_astro_071221_053453
crossref_primary_10_3847_1538_4357_ac746b
crossref_primary_10_1093_mnras_stac867
crossref_primary_10_3847_1538_4357_abe40d
crossref_primary_10_3847_1538_4357_acbcc6
crossref_primary_10_3847_2041_8213_ad19c4
crossref_primary_10_1093_mnras_stad2553
crossref_primary_10_1098_rsta_2019_0561
crossref_primary_10_1007_s41115_023_00018_w
crossref_primary_10_3847_1538_4357_accc2c
crossref_primary_10_1051_0004_6361_202142187
crossref_primary_10_1093_mnras_stab2028
crossref_primary_10_1093_mnras_stad1903
crossref_primary_10_1093_mnras_stab2744
crossref_primary_10_3847_2041_8213_ac8ea6
Cites_doi 10.1086/323947
10.1088/0004-637X/737/2/75
10.1126/science.1198027
10.1117/12.925447
10.1088/0004-637X/740/1/13
10.1093/mnras/stz863
10.1093/mnras/stu1408
10.1142/S0218271814300171
10.1093/mnras/stz873
10.1093/mnras/sty1576
10.1093/mnras/sty040
10.1046/j.1365-8711.2001.04915.x
10.1093/mnras/stw1728
10.3847/1538-4357/ab994e
10.1086/320549
10.1007/s11214-006-8315-7
10.1093/mnras/stx264
10.1103/PhysRevD.82.083520
10.1093/mnras/stv044
10.1093/mnras/stv492
10.1088/0004-637X/736/2/147
10.1093/mnras/stx1906
10.1086/588034
10.3847/0004-637X/819/2/129
10.1051/0004-6361:20011619
10.3847/1538-4357/ab7dc3
10.1086/592734
10.3847/2041-8213/ab1e51
10.1088/0004-637X/781/2/60
10.1117/12.615554
10.1093/mnras/stz079
10.1093/mnras/stz1529
10.1093/mnrasl/slaa041
10.1126/science.1063991
10.1088/0004-637X/773/2/83
10.1093/mnras/stz013
ContentType Journal Article
Copyright 2020. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Dec 01, 2020
Copyright_xml – notice: 2020. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Dec 01, 2020
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/abbc0b
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars?
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_abbc0b
apjabbc0b
GrantInformation_xml – fundername: NASA
  grantid: HST-HF2-51418.001-A
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c446t-b69ad1cdf5b6bfc4d3e3b03768aef22314c66ad94c608e2044d229be8881a8f03
ISSN 0004-637X
IngestDate Thu Oct 10 19:00:47 EDT 2024
Thu Nov 21 23:26:26 EST 2024
Wed Aug 21 03:38:28 EDT 2024
Thu Jan 07 14:56:14 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-b69ad1cdf5b6bfc4d3e3b03768aef22314c66ad94c608e2044d229be8881a8f03
Notes Galaxies and Cosmology
AAS25716
ORCID 0000-0003-0212-2979
0000-0002-7339-3170
0000-0002-2220-8086
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/abbc0b/pdf
PQID 2465808067
PQPubID 4562441
PageCount 6
ParticipantIDs crossref_primary_10_3847_1538_4357_abbc0b
proquest_journals_2465808067
iop_journals_10_3847_1538_4357_abbc0b
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2020
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Chiaki (apjabbc0bbib9) 2018; 475
Tseliakhovich (apjabbc0bbib32) 2010; 82
Schaerer (apjabbc0bbib27) 2002; 382
Stacy (apjabbc0bbib31) 2016; 462
Oesch (apjabbc0bbib23) 2016; 819
Greif (apjabbc0bbib15) 2011b; 736
Hirano (apjabbc0bbib19) 2015; 448
Vanzella (apjabbc0bbib33) 2020; 494
Beichman (apjabbc0bbib4) 2012; 8442
Bromm (apjabbc0bbib5) 2002; 564
Fialkov (apjabbc0bbib11) 2014; 23
Angel (apjabbc0bbib2) 2008; 680
Clark (apjabbc0bbib10) 2011; 331
Ceverino (apjabbc0bbib8) 2019; 484
Pillepich (apjabbc0bbib24) 2014; 444
Schauer (apjabbc0bbib30) 2019b; 877
Fialkov (apjabbc0bbib12) 2019; 486
Jaacks (apjabbc0bbib20) 2019; 488
Bromm (apjabbc0bbib7) 2001b; 552
Greif (apjabbc0bbib14) 2011a; 737
Gardner (apjabbc0bbib13) 2006; 123
Mužić (apjabbc0bbib22) 2017; 471
Hartwig (apjabbc0bbib17) 2018; 479
Hirano (apjabbc0bbib18) 2014; 781
Jeon (apjabbc0bbib21) 2019; 485
Schauer (apjabbc0bbib28) 2017; 467
Zackrisson (apjabbc0bbib36) 2015; 449
Zackrisson (apjabbc0bbib37) 2011; 740
Bromm (apjabbc0bbib6) 2001a; 328
Visbal (apjabbc0bbib34) 2020; 897
Barrow (apjabbc0bbib3) 2017; 469
Schauer (apjabbc0bbib29) 2019a; 484
Rieke (apjabbc0bbib25) 2005; 5904
Abel (apjabbc0bbib1) 2002; 295
Hainline (apjabbc0bbib16) 2020; 892
Saumon (apjabbc0bbib26) 2008; 689
Xu (apjabbc0bbib35) 2013; 773
References_xml – volume: 564
  start-page: 23
  year: 2002
  ident: apjabbc0bbib5
  publication-title: ApJ
  doi: 10.1086/323947
  contributor:
    fullname: Bromm
– volume: 737
  start-page: 75
  year: 2011a
  ident: apjabbc0bbib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/2/75
  contributor:
    fullname: Greif
– volume: 331
  start-page: 1040
  year: 2011
  ident: apjabbc0bbib10
  publication-title: Sci
  doi: 10.1126/science.1198027
  contributor:
    fullname: Clark
– volume: 469
  start-page: 4863
  year: 2017
  ident: apjabbc0bbib3
  publication-title: MNRAS
  doi: 10.1117/12.925447
  contributor:
    fullname: Barrow
– volume: 740
  start-page: 13
  year: 2011
  ident: apjabbc0bbib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/740/1/13
  contributor:
    fullname: Zackrisson
– volume: 485
  start-page: 5939
  year: 2019
  ident: apjabbc0bbib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stz863
  contributor:
    fullname: Jeon
– volume: 444
  start-page: 237
  year: 2014
  ident: apjabbc0bbib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1408
  contributor:
    fullname: Pillepich
– volume: 23
  start-page: 1430017
  year: 2014
  ident: apjabbc0bbib11
  publication-title: IJMPD
  doi: 10.1142/S0218271814300171
  contributor:
    fullname: Fialkov
– volume: 486
  start-page: 1763
  year: 2019
  ident: apjabbc0bbib12
  publication-title: MNRAS
  doi: 10.1093/mnras/stz873
  contributor:
    fullname: Fialkov
– volume: 479
  start-page: 2202
  year: 2018
  ident: apjabbc0bbib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1576
  contributor:
    fullname: Hartwig
– volume: 475
  start-page: 4378
  year: 2018
  ident: apjabbc0bbib9
  publication-title: MNRAS
  doi: 10.1093/mnras/sty040
  contributor:
    fullname: Chiaki
– volume: 328
  start-page: 969
  year: 2001a
  ident: apjabbc0bbib6
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04915.x
  contributor:
    fullname: Bromm
– volume: 462
  start-page: 1307
  year: 2016
  ident: apjabbc0bbib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1728
  contributor:
    fullname: Stacy
– volume: 897
  start-page: 95
  year: 2020
  ident: apjabbc0bbib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab994e
  contributor:
    fullname: Visbal
– volume: 552
  start-page: 464
  year: 2001b
  ident: apjabbc0bbib7
  publication-title: ApJ
  doi: 10.1086/320549
  contributor:
    fullname: Bromm
– volume: 123
  start-page: 485
  year: 2006
  ident: apjabbc0bbib13
  publication-title: SSRv
  doi: 10.1007/s11214-006-8315-7
  contributor:
    fullname: Gardner
– volume: 467
  start-page: 2288
  year: 2017
  ident: apjabbc0bbib28
  publication-title: MNRAS
  doi: 10.1093/mnras/stx264
  contributor:
    fullname: Schauer
– volume: 82
  start-page: 083520
  year: 2010
  ident: apjabbc0bbib32
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.82.083520
  contributor:
    fullname: Tseliakhovich
– volume: 448
  start-page: 568
  year: 2015
  ident: apjabbc0bbib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stv044
  contributor:
    fullname: Hirano
– volume: 449
  start-page: 3057
  year: 2015
  ident: apjabbc0bbib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stv492
  contributor:
    fullname: Zackrisson
– volume: 736
  start-page: 147
  year: 2011b
  ident: apjabbc0bbib15
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/2/147
  contributor:
    fullname: Greif
– volume: 471
  start-page: 3699
  year: 2017
  ident: apjabbc0bbib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1906
  contributor:
    fullname: Mužić
– volume: 680
  start-page: 1582
  year: 2008
  ident: apjabbc0bbib2
  publication-title: ApJ
  doi: 10.1086/588034
  contributor:
    fullname: Angel
– volume: 819
  start-page: 129
  year: 2016
  ident: apjabbc0bbib23
  publication-title: ApJ
  doi: 10.3847/0004-637X/819/2/129
  contributor:
    fullname: Oesch
– volume: 382
  start-page: 28
  year: 2002
  ident: apjabbc0bbib27
  publication-title: A&A
  doi: 10.1051/0004-6361:20011619
  contributor:
    fullname: Schaerer
– volume: 892
  start-page: 125
  year: 2020
  ident: apjabbc0bbib16
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7dc3
  contributor:
    fullname: Hainline
– volume: 689
  start-page: 1327
  year: 2008
  ident: apjabbc0bbib26
  publication-title: ApJ
  doi: 10.1086/592734
  contributor:
    fullname: Saumon
– volume: 877
  start-page: L5
  year: 2019b
  ident: apjabbc0bbib30
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab1e51
  contributor:
    fullname: Schauer
– volume: 781
  start-page: 60
  year: 2014
  ident: apjabbc0bbib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/781/2/60
  contributor:
    fullname: Hirano
– volume: 5904
  start-page: 1
  year: 2005
  ident: apjabbc0bbib25
  publication-title: Proc. SPIE
  doi: 10.1117/12.615554
  contributor:
    fullname: Rieke
– volume: 8442
  start-page: 84422N
  year: 2012
  ident: apjabbc0bbib4
  publication-title: Proc. SPIE
  doi: 10.1117/12.925447
  contributor:
    fullname: Beichman
– volume: 484
  start-page: 1366
  year: 2019
  ident: apjabbc0bbib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stz079
  contributor:
    fullname: Ceverino
– volume: 488
  start-page: 2202
  year: 2019
  ident: apjabbc0bbib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1529
  contributor:
    fullname: Jaacks
– volume: 494
  start-page: L81
  year: 2020
  ident: apjabbc0bbib33
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa041
  contributor:
    fullname: Vanzella
– volume: 295
  start-page: 93
  year: 2002
  ident: apjabbc0bbib1
  publication-title: Sci
  doi: 10.1126/science.1063991
  contributor:
    fullname: Abel
– volume: 773
  start-page: 83
  year: 2013
  ident: apjabbc0bbib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/2/83
  contributor:
    fullname: Xu
– volume: 484
  start-page: 3510
  year: 2019a
  ident: apjabbc0bbib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stz013
  contributor:
    fullname: Schauer
SSID ssj0004299
Score 2.5592408
Snippet The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with...
The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to . However, even with...
The launch of the James Webb Space Telescope (JWST) will open up a new window for observations at the highest redshifts, reaching out to \(z\approx 15\)....
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Astrophysics
Color
Early universe
Infrared telescopes
James Webb Space Telescope
Population III stars
Primary mirrors
Red shift
Space telescopes
Star & galaxy formation
Star formation
Title The Ultimately Large Telescope: What Kind of Facility Do We Need to Detect Population III Stars?
URI https://iopscience.iop.org/article/10.3847/1538-4357/abbc0b
https://www.proquest.com/docview/2465808067
Volume 904
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfaISRe0BiglY3JD4CEomz5cL54QYh2WgFVldaxvQXbcUShxFE_kPbfcxfnoxsIjQde0shNHevuV9_v7LszIS-CPMaCOcLOsMwliyQmK0tmBzx3pCvB6Ge4NHB2Hk2u4uGIjXq9Jmqpa_uvmoY20DVmzv6DtttOoQHuQedwBa3D9c56v1is58BE1eLa-oSR3tZMYdkmXVaJ6Fit2_oIvjgSxVMu5xUTH2rrEsMdgYACHR0q3Fywpu3xXtZ4PEZmulzdCgWsTnVerZe6bDS-Pcxqi-cr39RnZhcFt2bH1vS45c9LbfbxJ_OfWysDPyqUftaL73XwcL0u4d2O8Zh1iTGFGUaVZo0lTnRb46SdlZkd-tGVsUndRAxULtqeqRNzUnENSe9PFsAHa4uLEc3P0dQJIR3R2bs2CpGX38x3fXLPg3kKp8nzD5MurdZLau_JDM_scuMbTtr-T0wPN1hNf67L30x7xVdmu-Rh7WjQdwYhj0hPFXtkvxHRNX1Ft7S22iP3p-buMfkCQqUdhGgFIdpC6A1FAFEEENU5bQBEh5peKooAomtNDYBoByAKAKIVgN4-IReno9n7M7s-iMOWjIVrW4QJz1yZ5YEIRS5Z5itfOGCaYq5y4Jcuk2HIswQ-nFh5DmOZ5yVCxXHs8jh3_Kdkp9CF2idUJp7wo0jGbpgwLhyQHg-AIiO1TwInHJDXjSDT0tRbScFPRaGnKPQUhZ4aoQ_IS5B0WqN69Zfnjm48B3pPAUqpB35vkJZZPiCHjbK6pzwG5Bz8qTB6dsf3HJAH3R_hkOyslxv1nPRX2eaoAtYvi8SUHA
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ultimately+Large+Telescope%3A+What+Kind+of+Facility+Do+We+Need+to+Detect+Population+III+Stars%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Schauer%2C+Anna+T.+P.&rft.au=Drory%2C+Niv&rft.au=Bromm%2C+Volker&rft.date=2020-12-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=904&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fabbc0b&rft.externalDocID=apjabbc0b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon