Out-of-Distribution Detection for Deep Neural Networks With Isolation Forest and Local Outlier Factor
Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands...
Saved in:
Published in: | IEEE access Vol. 9; pp. 132980 - 132989 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) input samples, i.e., samples that fall outside of the distribution of the training dataset. We present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with a runtime monitor based on either Isolation Forest (IF) or Local Outlier Factor (LOF). Performance evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, as well as computational efficiency during testing. |
---|---|
AbstractList | Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) input samples, i.e., samples that fall outside of the distribution of the training dataset. We present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with a runtime monitor based on either Isolation Forest (IF) or Local Outlier Factor (LOF). Performance evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, as well as computational efficiency during testing. |
Author | Jiang, Lili Freidovich, Leonid B. Gu, Zonghua Zhao, Qingling Luan, Siyu |
Author_xml | – sequence: 1 givenname: Siyu orcidid: 0000-0002-6955-4445 surname: Luan fullname: Luan, Siyu organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden – sequence: 2 givenname: Zonghua orcidid: 0000-0003-4228-2774 surname: Gu fullname: Gu, Zonghua organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden – sequence: 3 givenname: Leonid B. orcidid: 0000-0003-0730-9441 surname: Freidovich fullname: Freidovich, Leonid B. organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden – sequence: 4 givenname: Lili orcidid: 0000-0002-7788-3986 surname: Jiang fullname: Jiang, Lili organization: Department of Computing Science, Umeå University, Umeå, Sweden – sequence: 5 givenname: Qingling surname: Zhao fullname: Zhao, Qingling email: ada_zhao@njust.edu.cn organization: College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-191334$$DView record from Swedish Publication Index |
BookMark | eNpVkU1vGyEQhlGVSk2T_IJcVup5XT534WjZcWvJag5JkyMCPLS4m8UFVlH_fYk3ilouM4yeeSR4P6KzMY6A0DXBC0Kw-rxcrW7u7hYUU7JgBEsuyDt0TkmnWiZYd_ZP_wFd5XzA9cg6Ev05gtuptNG365BLCnYqIY7NGgq4U-djqjc4Nt9gSmaopTzH9Cs3j6H8bLY5DubEbWKCXBoz7ptddBWs2iFAajbGlZgu0XtvhgxXr_UCfd_c3K--trvbL9vVctc6zrvSGoeVEsqZvcK-76Uz2MpOdoZKbrH3vfXMWGGgswo445QzZyzjkhIPnjl2gbazdx_NQR9TeDLpj44m6NMgph_apBLcANpYRXrsMXEMuLRc7nuhpDJKcOkxVtXVzq78DMfJ_mdbh4flyTY9TZoowhiv_KeZP6b4e6q_oQ9xSmN9rqail5RJQbpKsZlyKeacwL95CdYvceo5Tv0Sp36Ns25dz1sBAN42lKC8I4L9BYicnWA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11265_023_01852_0 crossref_primary_10_1007_s11265_023_01893_5 crossref_primary_10_1109_TII_2022_3227628 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_1016_j_rineng_2024_102037 crossref_primary_10_3390_en16093817 crossref_primary_10_1109_OJITS_2023_3236531 crossref_primary_10_1016_j_eng_2023_10_011 crossref_primary_10_1016_j_sysarc_2023_102861 crossref_primary_10_1145_3540198 crossref_primary_10_1109_ACCESS_2021_3131402 crossref_primary_10_1007_s11042_023_15087_5 crossref_primary_10_7717_peerj_cs_1572 crossref_primary_10_1109_ACCESS_2022_3171229 |
Cites_doi | 10.1145/3338840.3355641 10.1609/aaai.v34i04.5966 10.1109/TSE.2019.2962027 10.23919/DATE.2019.8714971 10.1109/ACCESS.2021.3055015 10.1007/s10994-019-05855-6 10.1109/TITS.2021.3054625 10.1145/1541880.1541882 10.1109/IJCNN.2011.6033395 10.1145/136035.136043 10.1109/TCST.2018.2815545 10.3390/bdcc5010001 10.1109/CVPR.2018.00175 10.1002/rob.21918 10.1109/MDAT.2020.3015712 10.1007/978-3-030-59861-7_10 10.1145/342009.335388 10.1109/ICDM.2008.17 10.1109/MSP.2012.2211477 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADHXS ADTPV AOWAS D8T D93 ZZAVC DOA |
DOI | 10.1109/ACCESS.2021.3108451 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 132989 |
ExternalDocumentID | oai_doaj_org_article_ab9170f01c3e48b48d75989a9548f009 oai_DiVA_org_umu_191334 10_1109_ACCESS_2021_3108451 9524615 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangsu Provincial NSF grantid: BK20190448 – fundername: NSFC grantid: 61902185 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADHXS ADTPV AOWAS D8T D93 ZZAVC |
ID | FETCH-LOGICAL-c446t-ac09959cad90f778ca0b8686a284b0ff7bf3ab5ae6b9e434243cab34821fef3c3 |
IEDL.DBID | ESBDL |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:09:40 EDT 2024 Sat Aug 24 00:32:46 EDT 2024 Thu Oct 10 20:32:15 EDT 2024 Fri Aug 23 02:46:42 EDT 2024 Wed Jun 26 19:29:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-ac09959cad90f778ca0b8686a284b0ff7bf3ab5ae6b9e434243cab34821fef3c3 |
ORCID | 0000-0003-0730-9441 0000-0002-7788-3986 0000-0003-4228-2774 0000-0002-6955-4445 |
OpenAccessLink | https://ieeexplore.ieee.org/document/9524615 |
PQID | 2578238516 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2578238516 crossref_primary_10_1109_ACCESS_2021_3108451 swepub_primary_oai_DiVA_org_umu_191334 ieee_primary_9524615 doaj_primary_oai_doaj_org_article_ab9170f01c3e48b48d75989a9548f009 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 tang (ref1) 2020 feng (ref15) 2020 ref14 ref31 nawaz (ref9) 2019 ref30 ref33 ref32 liu (ref11) 2019 henne (ref16) 2020 ref2 ref19 michelmore (ref17) 2018 zhu (ref4) 2021 baier (ref10) 2008 pedregosa (ref28) 2011; 12 henzinger (ref22) 2019 ref24 ref25 hendrycks (ref20) 2016 ref21 cluzeau (ref12) 2020 ref27 dosovitskiy (ref23) 2020 ref29 ref8 (ref26) 2021 ref7 snoek (ref34) 2012; 25 ref3 ref6 ref5 hendrycks (ref18) 2018 |
References_xml | – ident: ref31 doi: 10.1145/3338840.3355641 – ident: ref19 doi: 10.1609/aaai.v34i04.5966 – year: 2016 ident: ref20 article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks publication-title: arXiv 1610 02136 contributor: fullname: hendrycks – ident: ref5 doi: 10.1109/TSE.2019.2962027 – ident: ref21 doi: 10.23919/DATE.2019.8714971 – start-page: 753 year: 2021 ident: ref4 article-title: Safety-assured design and adaptation of learning-enabled autonomous systems publication-title: Proc Asia South Pacific Design Automat Conf contributor: fullname: zhu – year: 2019 ident: ref9 article-title: A survey on theorem provers in formal methods publication-title: arXiv 1912 03028 contributor: fullname: nawaz – year: 2008 ident: ref10 publication-title: Principles of Model Checking contributor: fullname: baier – year: 2019 ident: ref22 article-title: Outside the box: Abstraction-based monitoring of neural networks publication-title: arXiv 1911 09032 contributor: fullname: henzinger – ident: ref14 doi: 10.1109/ACCESS.2021.3055015 – ident: ref27 doi: 10.1007/s10994-019-05855-6 – ident: ref3 doi: 10.1109/TITS.2021.3054625 – year: 2020 ident: ref12 article-title: Concepts of design assurance for neural networks (CoDANN) contributor: fullname: cluzeau – ident: ref25 doi: 10.1145/1541880.1541882 – ident: ref33 doi: 10.1109/IJCNN.2011.6033395 – ident: ref24 doi: 10.1145/136035.136043 – year: 2018 ident: ref18 article-title: Deep anomaly detection with outlier exposure publication-title: arXiv 1812 04606 contributor: fullname: hendrycks – year: 2021 ident: ref26 publication-title: Data Labelling Pricing-Google AI Platform – ident: ref29 doi: 10.1109/TCST.2018.2815545 – ident: ref30 doi: 10.3390/bdcc5010001 – ident: ref6 doi: 10.1109/CVPR.2018.00175 – volume: 25 start-page: 1 year: 2012 ident: ref34 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: snoek – start-page: 83 year: 2020 ident: ref16 article-title: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics publication-title: Proc SafeAI AAAI contributor: fullname: henne – year: 2018 ident: ref17 article-title: Evaluating uncertainty quantification in end-to-end autonomous driving control publication-title: arXiv 1811 06817 contributor: fullname: michelmore – year: 2020 ident: ref23 article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale publication-title: arXiv 2010 11929 contributor: fullname: dosovitskiy – year: 2019 ident: ref11 article-title: Algorithms for verifying deep neural networks publication-title: arXiv 1903 06758 [cs] contributor: fullname: liu – ident: ref2 doi: 10.1002/rob.21918 – ident: ref13 doi: 10.1109/MDAT.2020.3015712 – volume: 12 start-page: 2825 year: 2011 ident: ref28 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res contributor: fullname: pedregosa – ident: ref35 doi: 10.1007/978-3-030-59861-7_10 – ident: ref8 doi: 10.1145/342009.335388 – year: 2020 ident: ref15 article-title: A review and comparative study on probabilistic object detection in autonomous driving publication-title: arXiv 2011 10671 contributor: fullname: feng – year: 2020 ident: ref1 article-title: An overview of perception and decision-making in autonomous systems in the era of learning publication-title: arXiv 2001 02319 contributor: fullname: tang – ident: ref7 doi: 10.1109/ICDM.2008.17 – ident: ref32 doi: 10.1109/MSP.2012.2211477 |
SSID | ssj0000816957 |
Score | 2.3662899 |
Snippet | Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are... Deep Neural Networks (DNNs) are extensively deployed in today’s safety-critical autonomous systems thanks to their excellent performance. However, they are... |
SourceID | doaj swepub proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 132980 |
SubjectTerms | Artificial neural networks Data analysis deep neural networks Feature extraction isolation forest local outlier factor Machine learning Monitoring Neural networks Neurons Out-of-distribution outlier detection Outliers (statistics) Performance evaluation Runtime runtime monitoring Safety Safety critical Training Uncertainty |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKp3JAUIoIhcqHqics7LWTOMdllxWVKnooUG6WPwUHAmKT_98ZJ7vaPfXSY6LIH_Mczzxr_IaQbygYwnUSzEpvmYoVZ06FCUte2iB80CHgfeeb3_Xto55fo0zOutQX5oQN8sCD4S6tA0LBExdeRqWd0qEuG91YFCpLq6t7vN4gU3kP1qJqynqUGRK8uZzOZjAjIIQTATyVa1WKLVeUFfvHEivb0eamgmj2OosDsj-Gi3Q6DPOQfIjtJ7K3ISJ4ROKvvmOvic1RAnesXkXnscs5Vi2FoBSe4htFGQ5o6nbI-17SP8_dE_0BSy9jQ7FG57Kjtg30J_o3Cs1CfPpOF7kiz2dyv7i-m92wsXgC88DwOmY9Rykxb0PDU11rb7nTla4s-CPHU6pdktaVNlauiUqqiQKwHErdiBST9PKY7LavbTzB7CcgTbWKOsikokoQUU2CLAFhmyopbEEuVnY0b4NGhsncgjdmMLtBs5vR7AW5QluvP0WB6_wCYDcj7OZfsBfkCJFaN9KUKIxXFuRshZwZf8alwV0JIpNSVAX5PqC51fn8-WGaO-9fegP8VUp1-j_G-IV8xHkPBzZnZLd77-M52VmG_mterX8B7wTrpQ priority: 102 providerName: Directory of Open Access Journals |
Title | Out-of-Distribution Detection for Deep Neural Networks With Isolation Forest and Local Outlier Factor |
URI | https://ieeexplore.ieee.org/document/9524615 https://www.proquest.com/docview/2578238516 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-191334 https://doaj.org/article/ab9170f01c3e48b48d75989a9548f009 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwELaazaU99JVWJUlXPlQ9xY3BBsxxs-wqlaL0kL5ulvFDyaFslIX_3xnjrLJSL70BQgP2N2bmM_Y3hHxCwRCuQs6MsIZJX3HWSVewYIVxuXXKOdzvfHlTX_9W7Qplcs52e2G893Hxmf-Ch_FfvtvYEafKzpsS1c_KA3JY1BBJZ-RwdXPRXu3mVLCIRFPWSVwo5835YrmEdgANLHJgp1zJMt8LQFGnPxVW2c8xn-qGxlizfvV_b_mavEw5JV1MTvCGPPP9W_LiidLgEfHfxoFtAmtRJzeVuKKtH-JCrJ5C5gpn_p6iVgeYup4Wh2_pr7vhln4F_4wAUizkuR2o6R29wiBIwSwksQ90Hcv2vCM_1qvvy0uWKiwwCzRwYMZy1BuzxjU81LWyhneqUpWBoNXxEOouCNOVxldd46WQhQREO9TDyYMPwor3ZNZvev8Bl0gBs6qlV04E6WWAtKtwogQ3MKESucnI2WO36_tJSENHAsIbPaGkESWdUMrIBUKzuxVVsOMF6GqdBpU2HZBNHnhuhZeqk8rVZaMagyJ2AZLHjBwhPDsjCZmMnD4CrdOI3Wr8dEH6UuZVRj5P4O89vL37uYgPH_-MGkiuEPL43-ZPyHNsyTRPc0pmw8PoP5KDrRvnkfHPk9vO42bDv8di7Rc |
link.rule.ids | 230,315,782,786,798,866,887,2107,4029,27643,27933,27934,27935,54769,54944 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOQAHXqUiUMAHxKmhztpO7OOy29VWLMuB8rhZjh-iB7JVN_n_zDjuqitx4ZZE0Tj2N87M2ONvCHmPhCFMxaq03NlShJqVrfCTMjpufeW88h7POy-_Netfan6ONDmnu7MwIYSUfBY-4mXay_cbN-BS2ZmWyH4mD8h9KZpaj6e1disqWEJCyyZTC1VMn01nM-gFBIGTCmJTpoSs9sxPYunPZVX2Pcy7rKHJ0iye_N83PiWPs0dJp6MKPCP3QvecPLrDM3hEwtehLzexnCNLbi5wReehT2lYHQW_Fe7CNUWmDhC1HlPDt_TnVf-bXoB2JvgolvHc9tR2nq7QBFIQCy7sDV2koj0vyPfF-eVsWeb6CqWDILAvrWPINuas1yw2jXKWtapWtQWT1bIYmzZy20ob6lYHwcVEAJ4tsuFUMUTu-DE57DZdeIkJUhBXNSIoz6MIIoLTNfFcghLYWPPKFuT0dtjN9UijYVL4wbQZUTKIkskoFeQTQrN7FTmw0wMYapOnlLEthJosssrxIFQrlG-kVtoihV0E17EgRwjPTkhGpiAnt0CbPF-3Bn9c4LzIqi7IhxH8vcbnVz-mqfHhz2AgxOVcvPq3-HfkwfLyy8qsLtafX5OH2KtxxeaEHPY3Q3hDDrZ-eJtU9y9fZuz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-Distribution+Detection+for+Deep+Neural+Networks+With+Isolation+Forest+and+Local+Outlier+Factor&rft.jtitle=IEEE+access&rft.au=Luan%2C+Siyu&rft.au=Gu%2C+Zonghua&rft.au=Freidovich%2C+Leonid+B.&rft.au=Jiang%2C+Lili&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=132980&rft.epage=132989&rft_id=info:doi/10.1109%2FACCESS.2021.3108451&rft.externalDocID=9524615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |