Out-of-Distribution Detection for Deep Neural Networks With Isolation Forest and Local Outlier Factor

Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 132980 - 132989
Main Authors: Luan, Siyu, Gu, Zonghua, Freidovich, Leonid B., Jiang, Lili, Zhao, Qingling
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) input samples, i.e., samples that fall outside of the distribution of the training dataset. We present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with a runtime monitor based on either Isolation Forest (IF) or Local Outlier Factor (LOF). Performance evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, as well as computational efficiency during testing.
AbstractList Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) input samples, i.e., samples that fall outside of the distribution of the training dataset. We present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with a runtime monitor based on either Isolation Forest (IF) or Local Outlier Factor (LOF). Performance evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, as well as computational efficiency during testing.
Author Jiang, Lili
Freidovich, Leonid B.
Gu, Zonghua
Zhao, Qingling
Luan, Siyu
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0002-6955-4445
  surname: Luan
  fullname: Luan, Siyu
  organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
– sequence: 2
  givenname: Zonghua
  orcidid: 0000-0003-4228-2774
  surname: Gu
  fullname: Gu, Zonghua
  organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
– sequence: 3
  givenname: Leonid B.
  orcidid: 0000-0003-0730-9441
  surname: Freidovich
  fullname: Freidovich, Leonid B.
  organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
– sequence: 4
  givenname: Lili
  orcidid: 0000-0002-7788-3986
  surname: Jiang
  fullname: Jiang, Lili
  organization: Department of Computing Science, Umeå University, Umeå, Sweden
– sequence: 5
  givenname: Qingling
  surname: Zhao
  fullname: Zhao, Qingling
  email: ada_zhao@njust.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-191334$$DView record from Swedish Publication Index
BookMark eNpVkU1vGyEQhlGVSk2T_IJcVup5XT534WjZcWvJag5JkyMCPLS4m8UFVlH_fYk3ilouM4yeeSR4P6KzMY6A0DXBC0Kw-rxcrW7u7hYUU7JgBEsuyDt0TkmnWiZYd_ZP_wFd5XzA9cg6Ev05gtuptNG365BLCnYqIY7NGgq4U-djqjc4Nt9gSmaopTzH9Cs3j6H8bLY5DubEbWKCXBoz7ptddBWs2iFAajbGlZgu0XtvhgxXr_UCfd_c3K--trvbL9vVctc6zrvSGoeVEsqZvcK-76Uz2MpOdoZKbrH3vfXMWGGgswo445QzZyzjkhIPnjl2gbazdx_NQR9TeDLpj44m6NMgph_apBLcANpYRXrsMXEMuLRc7nuhpDJKcOkxVtXVzq78DMfJ_mdbh4flyTY9TZoowhiv_KeZP6b4e6q_oQ9xSmN9rqail5RJQbpKsZlyKeacwL95CdYvceo5Tv0Sp36Ns25dz1sBAN42lKC8I4L9BYicnWA
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11265_023_01852_0
crossref_primary_10_1007_s11265_023_01893_5
crossref_primary_10_1109_TII_2022_3227628
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_1016_j_rineng_2024_102037
crossref_primary_10_3390_en16093817
crossref_primary_10_1109_OJITS_2023_3236531
crossref_primary_10_1016_j_eng_2023_10_011
crossref_primary_10_1016_j_sysarc_2023_102861
crossref_primary_10_1145_3540198
crossref_primary_10_1109_ACCESS_2021_3131402
crossref_primary_10_1007_s11042_023_15087_5
crossref_primary_10_7717_peerj_cs_1572
crossref_primary_10_1109_ACCESS_2022_3171229
Cites_doi 10.1145/3338840.3355641
10.1609/aaai.v34i04.5966
10.1109/TSE.2019.2962027
10.23919/DATE.2019.8714971
10.1109/ACCESS.2021.3055015
10.1007/s10994-019-05855-6
10.1109/TITS.2021.3054625
10.1145/1541880.1541882
10.1109/IJCNN.2011.6033395
10.1145/136035.136043
10.1109/TCST.2018.2815545
10.3390/bdcc5010001
10.1109/CVPR.2018.00175
10.1002/rob.21918
10.1109/MDAT.2020.3015712
10.1007/978-3-030-59861-7_10
10.1145/342009.335388
10.1109/ICDM.2008.17
10.1109/MSP.2012.2211477
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1109/ACCESS.2021.3108451
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 132989
ExternalDocumentID oai_doaj_org_article_ab9170f01c3e48b48d75989a9548f009
oai_DiVA_org_umu_191334
10_1109_ACCESS_2021_3108451
9524615
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Provincial NSF
  grantid: BK20190448
– fundername: NSFC
  grantid: 61902185
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c446t-ac09959cad90f778ca0b8686a284b0ff7bf3ab5ae6b9e434243cab34821fef3c3
IEDL.DBID ESBDL
ISSN 2169-3536
IngestDate Tue Oct 22 15:09:40 EDT 2024
Sat Aug 24 00:32:46 EDT 2024
Thu Oct 10 20:32:15 EDT 2024
Fri Aug 23 02:46:42 EDT 2024
Wed Jun 26 19:29:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-ac09959cad90f778ca0b8686a284b0ff7bf3ab5ae6b9e434243cab34821fef3c3
ORCID 0000-0003-0730-9441
0000-0002-7788-3986
0000-0003-4228-2774
0000-0002-6955-4445
OpenAccessLink https://ieeexplore.ieee.org/document/9524615
PQID 2578238516
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2578238516
crossref_primary_10_1109_ACCESS_2021_3108451
swepub_primary_oai_DiVA_org_umu_191334
ieee_primary_9524615
doaj_primary_oai_doaj_org_article_ab9170f01c3e48b48d75989a9548f009
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
tang (ref1) 2020
feng (ref15) 2020
ref14
ref31
nawaz (ref9) 2019
ref30
ref33
ref32
liu (ref11) 2019
henne (ref16) 2020
ref2
ref19
michelmore (ref17) 2018
zhu (ref4) 2021
baier (ref10) 2008
pedregosa (ref28) 2011; 12
henzinger (ref22) 2019
ref24
ref25
hendrycks (ref20) 2016
ref21
cluzeau (ref12) 2020
ref27
dosovitskiy (ref23) 2020
ref29
ref8
(ref26) 2021
ref7
snoek (ref34) 2012; 25
ref3
ref6
ref5
hendrycks (ref18) 2018
References_xml – ident: ref31
  doi: 10.1145/3338840.3355641
– ident: ref19
  doi: 10.1609/aaai.v34i04.5966
– year: 2016
  ident: ref20
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
  publication-title: arXiv 1610 02136
  contributor:
    fullname: hendrycks
– ident: ref5
  doi: 10.1109/TSE.2019.2962027
– ident: ref21
  doi: 10.23919/DATE.2019.8714971
– start-page: 753
  year: 2021
  ident: ref4
  article-title: Safety-assured design and adaptation of learning-enabled autonomous systems
  publication-title: Proc Asia South Pacific Design Automat Conf
  contributor:
    fullname: zhu
– year: 2019
  ident: ref9
  article-title: A survey on theorem provers in formal methods
  publication-title: arXiv 1912 03028
  contributor:
    fullname: nawaz
– year: 2008
  ident: ref10
  publication-title: Principles of Model Checking
  contributor:
    fullname: baier
– year: 2019
  ident: ref22
  article-title: Outside the box: Abstraction-based monitoring of neural networks
  publication-title: arXiv 1911 09032
  contributor:
    fullname: henzinger
– ident: ref14
  doi: 10.1109/ACCESS.2021.3055015
– ident: ref27
  doi: 10.1007/s10994-019-05855-6
– ident: ref3
  doi: 10.1109/TITS.2021.3054625
– year: 2020
  ident: ref12
  article-title: Concepts of design assurance for neural networks (CoDANN)
  contributor:
    fullname: cluzeau
– ident: ref25
  doi: 10.1145/1541880.1541882
– ident: ref33
  doi: 10.1109/IJCNN.2011.6033395
– ident: ref24
  doi: 10.1145/136035.136043
– year: 2018
  ident: ref18
  article-title: Deep anomaly detection with outlier exposure
  publication-title: arXiv 1812 04606
  contributor:
    fullname: hendrycks
– year: 2021
  ident: ref26
  publication-title: Data Labelling Pricing-Google AI Platform
– ident: ref29
  doi: 10.1109/TCST.2018.2815545
– ident: ref30
  doi: 10.3390/bdcc5010001
– ident: ref6
  doi: 10.1109/CVPR.2018.00175
– volume: 25
  start-page: 1
  year: 2012
  ident: ref34
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: snoek
– start-page: 83
  year: 2020
  ident: ref16
  article-title: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics
  publication-title: Proc SafeAI AAAI
  contributor:
    fullname: henne
– year: 2018
  ident: ref17
  article-title: Evaluating uncertainty quantification in end-to-end autonomous driving control
  publication-title: arXiv 1811 06817
  contributor:
    fullname: michelmore
– year: 2020
  ident: ref23
  article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
  contributor:
    fullname: dosovitskiy
– year: 2019
  ident: ref11
  article-title: Algorithms for verifying deep neural networks
  publication-title: arXiv 1903 06758 [cs]
  contributor:
    fullname: liu
– ident: ref2
  doi: 10.1002/rob.21918
– ident: ref13
  doi: 10.1109/MDAT.2020.3015712
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref28
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
  contributor:
    fullname: pedregosa
– ident: ref35
  doi: 10.1007/978-3-030-59861-7_10
– ident: ref8
  doi: 10.1145/342009.335388
– year: 2020
  ident: ref15
  article-title: A review and comparative study on probabilistic object detection in autonomous driving
  publication-title: arXiv 2011 10671
  contributor:
    fullname: feng
– year: 2020
  ident: ref1
  article-title: An overview of perception and decision-making in autonomous systems in the era of learning
  publication-title: arXiv 2001 02319
  contributor:
    fullname: tang
– ident: ref7
  doi: 10.1109/ICDM.2008.17
– ident: ref32
  doi: 10.1109/MSP.2012.2211477
SSID ssj0000816957
Score 2.3662899
Snippet Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are...
Deep Neural Networks (DNNs) are extensively deployed in today’s safety-critical autonomous systems thanks to their excellent performance. However, they are...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 132980
SubjectTerms Artificial neural networks
Data analysis
deep neural networks
Feature extraction
isolation forest
local outlier factor
Machine learning
Monitoring
Neural networks
Neurons
Out-of-distribution
outlier detection
Outliers (statistics)
Performance evaluation
Runtime
runtime monitoring
Safety
Safety critical
Training
Uncertainty
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKp3JAUIoIhcqHqics7LWTOMdllxWVKnooUG6WPwUHAmKT_98ZJ7vaPfXSY6LIH_Mczzxr_IaQbygYwnUSzEpvmYoVZ06FCUte2iB80CHgfeeb3_Xto55fo0zOutQX5oQN8sCD4S6tA0LBExdeRqWd0qEuG91YFCpLq6t7vN4gU3kP1qJqynqUGRK8uZzOZjAjIIQTATyVa1WKLVeUFfvHEivb0eamgmj2OosDsj-Gi3Q6DPOQfIjtJ7K3ISJ4ROKvvmOvic1RAnesXkXnscs5Vi2FoBSe4htFGQ5o6nbI-17SP8_dE_0BSy9jQ7FG57Kjtg30J_o3Cs1CfPpOF7kiz2dyv7i-m92wsXgC88DwOmY9Rykxb0PDU11rb7nTla4s-CPHU6pdktaVNlauiUqqiQKwHErdiBST9PKY7LavbTzB7CcgTbWKOsikokoQUU2CLAFhmyopbEEuVnY0b4NGhsncgjdmMLtBs5vR7AW5QluvP0WB6_wCYDcj7OZfsBfkCJFaN9KUKIxXFuRshZwZf8alwV0JIpNSVAX5PqC51fn8-WGaO-9fegP8VUp1-j_G-IV8xHkPBzZnZLd77-M52VmG_mterX8B7wTrpQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Out-of-Distribution Detection for Deep Neural Networks With Isolation Forest and Local Outlier Factor
URI https://ieeexplore.ieee.org/document/9524615
https://www.proquest.com/docview/2578238516
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-191334
https://doaj.org/article/ab9170f01c3e48b48d75989a9548f009
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwELaazaU99JVWJUlXPlQ9xY3BBsxxs-wqlaL0kL5ulvFDyaFslIX_3xnjrLJSL70BQgP2N2bmM_Y3hHxCwRCuQs6MsIZJX3HWSVewYIVxuXXKOdzvfHlTX_9W7Qplcs52e2G893Hxmf-Ch_FfvtvYEafKzpsS1c_KA3JY1BBJZ-RwdXPRXu3mVLCIRFPWSVwo5835YrmEdgANLHJgp1zJMt8LQFGnPxVW2c8xn-qGxlizfvV_b_mavEw5JV1MTvCGPPP9W_LiidLgEfHfxoFtAmtRJzeVuKKtH-JCrJ5C5gpn_p6iVgeYup4Wh2_pr7vhln4F_4wAUizkuR2o6R29wiBIwSwksQ90Hcv2vCM_1qvvy0uWKiwwCzRwYMZy1BuzxjU81LWyhneqUpWBoNXxEOouCNOVxldd46WQhQREO9TDyYMPwor3ZNZvev8Bl0gBs6qlV04E6WWAtKtwogQ3MKESucnI2WO36_tJSENHAsIbPaGkESWdUMrIBUKzuxVVsOMF6GqdBpU2HZBNHnhuhZeqk8rVZaMagyJ2AZLHjBwhPDsjCZmMnD4CrdOI3Wr8dEH6UuZVRj5P4O89vL37uYgPH_-MGkiuEPL43-ZPyHNsyTRPc0pmw8PoP5KDrRvnkfHPk9vO42bDv8di7Rc
link.rule.ids 230,315,782,786,798,866,887,2107,4029,27643,27933,27934,27935,54769,54944
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOQAHXqUiUMAHxKmhztpO7OOy29VWLMuB8rhZjh-iB7JVN_n_zDjuqitx4ZZE0Tj2N87M2ONvCHmPhCFMxaq03NlShJqVrfCTMjpufeW88h7POy-_Netfan6ONDmnu7MwIYSUfBY-4mXay_cbN-BS2ZmWyH4mD8h9KZpaj6e1disqWEJCyyZTC1VMn01nM-gFBIGTCmJTpoSs9sxPYunPZVX2Pcy7rKHJ0iye_N83PiWPs0dJp6MKPCP3QvecPLrDM3hEwtehLzexnCNLbi5wReehT2lYHQW_Fe7CNUWmDhC1HlPDt_TnVf-bXoB2JvgolvHc9tR2nq7QBFIQCy7sDV2koj0vyPfF-eVsWeb6CqWDILAvrWPINuas1yw2jXKWtapWtQWT1bIYmzZy20ob6lYHwcVEAJ4tsuFUMUTu-DE57DZdeIkJUhBXNSIoz6MIIoLTNfFcghLYWPPKFuT0dtjN9UijYVL4wbQZUTKIkskoFeQTQrN7FTmw0wMYapOnlLEthJosssrxIFQrlG-kVtoihV0E17EgRwjPTkhGpiAnt0CbPF-3Bn9c4LzIqi7IhxH8vcbnVz-mqfHhz2AgxOVcvPq3-HfkwfLyy8qsLtafX5OH2KtxxeaEHPY3Q3hDDrZ-eJtU9y9fZuz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-Distribution+Detection+for+Deep+Neural+Networks+With+Isolation+Forest+and+Local+Outlier+Factor&rft.jtitle=IEEE+access&rft.au=Luan%2C+Siyu&rft.au=Gu%2C+Zonghua&rft.au=Freidovich%2C+Leonid+B.&rft.au=Jiang%2C+Lili&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=132980&rft.epage=132989&rft_id=info:doi/10.1109%2FACCESS.2021.3108451&rft.externalDocID=9524615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon