OPTIMAL INVESTMENT UNDER MULTIPLE DEFAULTS RISK: A BSDE-DECOMPOSITION APPROACH

We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional den...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of applied probability Vol. 23; no. 2; pp. 455 - 491
Main Authors: Jiao, Ying, Kharroubi, Idris, Pham, Huyên
Format: Journal Article
Language:English
Published: Hayward Institute of Mathematical Statistics 01-04-2013
Institute of Mathematical Statistics (IMS)
The Institute of Mathematical Statistics
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Itô-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
AbstractList We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Itô-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. [PUBLICATION ABSTRACT]
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
Author Kharroubi, Idris
Jiao, Ying
Pham, Huyên
Author_xml – sequence: 1
  givenname: Ying
  surname: Jiao
  fullname: Jiao, Ying
– sequence: 2
  givenname: Idris
  surname: Kharroubi
  fullname: Kharroubi, Idris
– sequence: 3
  givenname: Huyên
  surname: Pham
  fullname: Pham, Huyên
BackLink https://hal.science/hal-00816013$$DView record in HAL
BookMark eNpVkVFLwzAUhYMoOKcP_gCh4JMP1dwkTVLfYte5YteWtfM1ZF2KG3Od7Sb47-3YmPh0D4dzv8vlXKHzdb22CN0CfgQC7AnAVSqTxD9DPQJculJQcY56gD3sesDZJbpq2yXG2Ge-6KEkzYporGInSt7DvBiHSeFMk0E4ccbTuIiyOHQG4VB1OncmUf727CjnJR-E7iAM0nGW5lERpYmjsmySqmB0jS4qs2rtzXH20XQYFsHIjdPXKFCxWzLGt65P59gITC3lPpRUzih4sxkhxLNEepx5ncLcAAhezmzFrBCs4hSqqjISypL2kTpwN029tOXW7srVYq43zeLTND-6NgsdTOOjexymNhsNlGMuCSa4YzwcGB9m9W9zpGK99zCWwDHQb-iy96d7XzvbbvWy3jXr7kUNRArBwWfwRyybum0bW52wgPW-Hg2gD_V02btDdtlu6-YUJJQJJj1BfwFD2oRV
CitedBy_id crossref_primary_10_2139_ssrn_4092344
crossref_primary_10_3934_mine_2020025
crossref_primary_10_1111_mafi_12074
crossref_primary_10_1155_2018_8362912
crossref_primary_10_1137_120903336
crossref_primary_10_1137_15M1040293
crossref_primary_10_1016_j_spa_2015_02_010
crossref_primary_10_1137_18M1166274
crossref_primary_10_1137_19M1246365
crossref_primary_10_2139_ssrn_4607628
crossref_primary_10_2139_ssrn_1960550
crossref_primary_10_2139_ssrn_2342645
crossref_primary_10_3390_risks6010014
crossref_primary_10_1111_mafi_12219
crossref_primary_10_1155_2020_2418620
crossref_primary_10_1137_17M1154424
crossref_primary_10_7603_s40706_015_0022_5
crossref_primary_10_1016_j_spl_2014_08_008
crossref_primary_10_2139_ssrn_3198376
crossref_primary_10_1007_s00186_019_00659_9
crossref_primary_10_1016_j_spa_2014_10_017
crossref_primary_10_1007_s11579_018_0222_7
crossref_primary_10_1287_moor_2017_0856
crossref_primary_10_1287_moor_2016_0790
crossref_primary_10_1080_07362994_2015_1038569
crossref_primary_10_2139_ssrn_2766387
crossref_primary_10_1007_s00780_015_0272_0
crossref_primary_10_1142_S0219493716500155
crossref_primary_10_1137_16M1084092
crossref_primary_10_2139_ssrn_2876274
crossref_primary_10_1007_s13160_023_00622_6
crossref_primary_10_1186_s41546_018_0029_8
crossref_primary_10_1007_s00780_017_0349_z
crossref_primary_10_1016_j_eswa_2022_118739
crossref_primary_10_1007_s00245_016_9364_2
crossref_primary_10_1007_s11579_016_0182_8
crossref_primary_10_1214_21_AAP1735
crossref_primary_10_1111_mafi_12287
crossref_primary_10_3390_risks8030072
Cites_doi 10.1016/j.spa.2010.02.003
10.1007/BFb0088224
10.1111/1467-9965.00093
10.1007/s00780-010-0140-x
10.1214/EJP.v16-918
10.1214/aop/1019160253
10.1142/9789814304078_0004
10.1214/105051605000000188
10.1142/S0219024910006133
10.1142/S0219024909005567
10.1016/j.spa.2010.05.003
ContentType Journal Article
Copyright Copyright © 2013 Institute of Mathematical Statistics
Copyright Institute of Mathematical Statistics Apr 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright 2013 Institute of Mathematical Statistics
Copyright_xml – notice: Copyright © 2013 Institute of Mathematical Statistics
– notice: Copyright Institute of Mathematical Statistics Apr 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright 2013 Institute of Mathematical Statistics
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1214/11-AAP829
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2168-8737
EndPage 491
ExternalDocumentID oai_CULeuclid_euclid_aoap_1360682020
oai_HAL_hal_00816013v1
2891871341
10_1214_11_AAP829
23474857
GroupedDBID -~X
123
23M
2AX
2FS
2WC
5RE
6J9
85S
AAFWJ
ABBHK
ABFAN
ABPFR
ABXSQ
ABYAD
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACTMH
ACTWD
ACUBG
ADODI
ADULT
AELPN
AENEX
AEUPB
AFFOW
AFVYC
AFXHP
AFXKK
AIHXQ
ALMA_UNASSIGNED_HOLDINGS
CJ0
CS3
D0L
DQDLB
DSRWC
E3Z
EBS
ECEWR
EFSUC
EJD
F5P
GR0
HDK
HQ6
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
MS~
OK1
P2P
PQQKQ
PUASD
RBU
REI
RPE
SA0
SJN
TN5
TR2
UPT
WH7
XSW
ZCG
AAYXX
ABPQH
ADACV
AECCQ
AEILP
AETVE
CITATION
IPSME
JQ2
1XC
AS~
FEDTE
FVMVE
HGD
HVGLF
H~9
RNS
WHG
ABFLS
ABHAC
ADACO
AETEA
AS
MS
PQEST
RBV
X
XFK
ID FETCH-LOGICAL-c446t-93d0a703e3691c38b315bb2225e28564522506a1176cbef4e774f631fffa81cc3
IEDL.DBID JAS
ISSN 1050-5164
IngestDate Tue Jan 05 18:13:15 EST 2021
Tue Oct 15 15:21:01 EDT 2024
Thu Oct 10 15:47:27 EDT 2024
Thu Nov 21 22:10:35 EST 2024
Fri Feb 02 07:07:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-93d0a703e3691c38b315bb2225e28564522506a1176cbef4e774f631fffa81cc3
OpenAccessLink https://projecteuclid.org/journals/annals-of-applied-probability/volume-23/issue-2/Optimal-investment-under-multiple-defaults-risk--A-BSDE-decomposition/10.1214/11-AAP829.pdf
PQID 1287761941
PQPubID 105647
PageCount 37
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_aoap_1360682020
hal_primary_oai_HAL_hal_00816013v1
proquest_journals_1287761941
crossref_primary_10_1214_11_AAP829
jstor_primary_23474857
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Hayward
PublicationPlace_xml – name: Hayward
PublicationTitle The Annals of applied probability
PublicationYear 2013
Publisher Institute of Mathematical Statistics
Institute of Mathematical Statistics (IMS)
The Institute of Mathematical Statistics
Publisher_xml – name: Institute of Mathematical Statistics
– name: Institute of Mathematical Statistics (IMS)
– name: The Institute of Mathematical Statistics
References 11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 4
  doi: 10.1016/j.spa.2010.02.003
– ident: 16
  doi: 10.1007/BFb0088224
– ident: 15
  doi: 10.1111/1467-9965.00093
– ident: 5
– ident: 9
  doi: 10.1007/s00780-010-0140-x
– ident: 11
– ident: 13
  doi: 10.1214/EJP.v16-918
– ident: 12
  doi: 10.1214/aop/1019160253
– ident: 10
– ident: 3
  doi: 10.1142/9789814304078_0004
– ident: 6
  doi: 10.1214/105051605000000188
– ident: 1
  doi: 10.1142/S0219024910006133
– ident: 7
– ident: 8
– ident: 2
  doi: 10.1142/S0219024909005567
– ident: 14
  doi: 10.1016/j.spa.2010.05.003
SSID ssj0009497
Score 2.2769217
Snippet We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is...
SourceID projecteuclid
hal
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 455
SubjectTerms 60J75
91B28
93E20
Credit risk
Default
Density
Differential equations
Dynamic programming
Financial investments
Financial portfolios
Investment policy
Investment portfolios
Investment risk
Investment strategies
Martingales
Mathematical problems
Mathematics
multiple defaults
Optimal investment
Optimal strategies
Probability
progressive enlargement of filtrations
quadratic backward stochastic differential equations
Risk management
Stochastic control theory
Utility functions
Title OPTIMAL INVESTMENT UNDER MULTIPLE DEFAULTS RISK: A BSDE-DECOMPOSITION APPROACH
URI https://www.jstor.org/stable/23474857
https://www.proquest.com/docview/1287761941
https://hal.science/hal-00816013
http://projecteuclid.org/euclid.aoap/1360682020
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED6WPm0P-12WrR1ibI-iliXbUt-0xCFmTmLqZOzNSLLMBiUtS7O_f5LspJQy2JOFLGxxZ1nfne6-A_gsCOWZ0QwbalvMRKqwphnDQnRxJ6w2MfeJwvM6W_7g09zT5Hw55ML4sMoQFxhO8R1A0tf2IqYsYzzJRjDiZGDBvWfWZX0FlSiJcOLA_0AfFBN2QQiWsuIBPt5vOqOfPuSxjz70oZC9x8PuzfWv9tEfOWwzsxf_OcGX8HzAkUj2in8FT-z2NTxbHElYd29guarWxUKWqFh-z-u1Z-1HIacALTbluqjKHE3zmXTtGl0V9bdLJNHXeprjaT5ZLapVXXj3FZJVdbWSk_lb2Mzy9WSOh_IJ2Dgb7w4L2kbKLWhLU0EM5ZqSRGtv39mYexIZ14pSRUiWGm07Zh0S7FJKuq5TnBhDT-Fke7O17wClJmOJTi0nqmVaKC6sUjTSieKprz85hk8H-Ta3PUtG460LpwRnYjS9EtwgJ_njfc9rPZdl4_s8MHGWIf1DxnAapHscdhDtGC4faOrBcyabcugdLupG3TaEOuvMIZw4GsPZQa3NsEZ3bnY8C04c8v5fL_0AT-NQ_sJH6pzByd3vvT2H0a7dfwwf4V_sBNCY
link.rule.ids 230,315,782,786,817,887,27933,27934,58023,58256
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELboeAAexs-JjgEWgkdrcewk9t5MmyrRkjZaUsRbZDuOQJq6ia78_dhO2mlCSDzFcqzEuovj78533wHwmWPCEq0o0sR0iPJYIkUSijjvw54bpUPmEoWzOll-Z_PU0eR82efCuLBKHxfoT_EtQFLX5jwkNKEsSibgceQIywYe3HtuXTrUUAmiAEUW_o8EQiGm5xgjISrmAeT9tjP54YIeh_hDFww5-DzMTl__7P76J_uNZvH8P6f4AhyPSBKKQfUvwSOzeQWelQca1u1rsFxVTV6KAubLb2ndON5-6LMKYLkumrwqUjhPF8K2a3iV15cXUMCv9TxF83S2KqtVnTsHFhRVdbUSs-wNWC_SZpahsYAC0tbKu0OcdIG0S9qQmGNNmCI4UspZeCZkjkbGtoJYYpzEWpmeGosF-5jgvu8lw1qTE3C0udmYtwDGOqGRig3DsqOKS8aNlCRQkWSxq0A5BZ_28m1vB56M1tkXVgnWyGgHJdhBVvKH-47ZOhNF6_ocNLG2IfmNp-DES_cwbC_aKbh4oKkHz5mti7F3vMgbedtiYu0zi3HCYArO9mptx1W6tbNjiXfj4NN_vfQjeJI1ZdEW-fLyHXga-mIYLm7nDBzd_dqZ92Cy7XYf_Af5BwxB0-Y
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBZLB2M9dD9L07WbGLvsIGJZsiz3psUOMXUSUydjNyPJMhuUNCzN_v5JspNSRg87WcjCFu9J1vue3_seAF8STHisFUWamAbRhEmkSExRkrRhmxilQ-4ShadVPP_B08zR5Hzd58K4sEofF-j_4lsDSd2a0aZpRyGhMeVRPADPI4tqWMeF-8CvS7s6KkEUoMhCgJ5EKMR0hDESouTeiHw4egY_XeBjF4PoAiI7v4fZ6dtfzT_fZX_YTF79xzRfg5PeooSiWwJvwDOzfguOZwc61u07MF-Uy3wmCpjPv2fV0vH3Q59dAGerYpmXRQbTbCJsu4I3eXV9BQX8VqUZSrPxYlYuqtw5sqAoy5uFGE_fg9UkW46nqC-kgLRFe_coIU0g7dY2hCVYE64IjpRySM-E3NHJ2FbAJMYx08q01FibsGUEt20rOdaanIKj9d3anAHIdEwjxQzHsqEqkTwxUpJARZIzV4lyCD7vZVxvOr6M2uEMqwgLNupOEXaQlf7hvmO4noqidn3ORLEYkfzBQ3DqJXwYthftEFw90taj54xXRd_bX-Sd3NSYWJxmbZ0wGIKLvWrrfrdu7ex47N05-Pypl34CL8p0Uhf5_PoDeBn6mhgufOcCHN3_3plLMNg2u49-Tf4FWEHWbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPTIMAL+INVESTMENT+UNDER+MULTIPLE+DEFAULTS+RISK%3A+A+BSDE-DECOMPOSITION+APPROACH&rft.jtitle=The+Annals+of+applied+probability&rft.au=Jiao%2C+Ying&rft.au=Kharroubi%2C+Idris&rft.au=Pham%2C+Huy%C3%AAn&rft.date=2013-04-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=1050-5164&rft.eissn=2168-8737&rft.volume=23&rft.issue=2&rft.spage=455&rft.epage=491&rft_id=info:doi/10.1214%2F11-AAP829&rft.externalDocID=23474857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-5164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-5164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-5164&client=summon