OPTIMAL INVESTMENT UNDER MULTIPLE DEFAULTS RISK: A BSDE-DECOMPOSITION APPROACH
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional den...
Saved in:
Published in: | The Annals of applied probability Vol. 23; no. 2; pp. 455 - 491 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hayward
Institute of Mathematical Statistics
01-04-2013
Institute of Mathematical Statistics (IMS) The Institute of Mathematical Statistics |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Itô-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. |
---|---|
AbstractList | We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Itô-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. [PUBLICATION ABSTRACT] We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. |
Author | Kharroubi, Idris Jiao, Ying Pham, Huyên |
Author_xml | – sequence: 1 givenname: Ying surname: Jiao fullname: Jiao, Ying – sequence: 2 givenname: Idris surname: Kharroubi fullname: Kharroubi, Idris – sequence: 3 givenname: Huyên surname: Pham fullname: Pham, Huyên |
BackLink | https://hal.science/hal-00816013$$DView record in HAL |
BookMark | eNpVkVFLwzAUhYMoOKcP_gCh4JMP1dwkTVLfYte5YteWtfM1ZF2KG3Od7Sb47-3YmPh0D4dzv8vlXKHzdb22CN0CfgQC7AnAVSqTxD9DPQJculJQcY56gD3sesDZJbpq2yXG2Ge-6KEkzYporGInSt7DvBiHSeFMk0E4ccbTuIiyOHQG4VB1OncmUf727CjnJR-E7iAM0nGW5lERpYmjsmySqmB0jS4qs2rtzXH20XQYFsHIjdPXKFCxWzLGt65P59gITC3lPpRUzih4sxkhxLNEepx5ncLcAAhezmzFrBCs4hSqqjISypL2kTpwN029tOXW7srVYq43zeLTND-6NgsdTOOjexymNhsNlGMuCSa4YzwcGB9m9W9zpGK99zCWwDHQb-iy96d7XzvbbvWy3jXr7kUNRArBwWfwRyybum0bW52wgPW-Hg2gD_V02btDdtlu6-YUJJQJJj1BfwFD2oRV |
CitedBy_id | crossref_primary_10_2139_ssrn_4092344 crossref_primary_10_3934_mine_2020025 crossref_primary_10_1111_mafi_12074 crossref_primary_10_1155_2018_8362912 crossref_primary_10_1137_120903336 crossref_primary_10_1137_15M1040293 crossref_primary_10_1016_j_spa_2015_02_010 crossref_primary_10_1137_18M1166274 crossref_primary_10_1137_19M1246365 crossref_primary_10_2139_ssrn_4607628 crossref_primary_10_2139_ssrn_1960550 crossref_primary_10_2139_ssrn_2342645 crossref_primary_10_3390_risks6010014 crossref_primary_10_1111_mafi_12219 crossref_primary_10_1155_2020_2418620 crossref_primary_10_1137_17M1154424 crossref_primary_10_7603_s40706_015_0022_5 crossref_primary_10_1016_j_spl_2014_08_008 crossref_primary_10_2139_ssrn_3198376 crossref_primary_10_1007_s00186_019_00659_9 crossref_primary_10_1016_j_spa_2014_10_017 crossref_primary_10_1007_s11579_018_0222_7 crossref_primary_10_1287_moor_2017_0856 crossref_primary_10_1287_moor_2016_0790 crossref_primary_10_1080_07362994_2015_1038569 crossref_primary_10_2139_ssrn_2766387 crossref_primary_10_1007_s00780_015_0272_0 crossref_primary_10_1142_S0219493716500155 crossref_primary_10_1137_16M1084092 crossref_primary_10_2139_ssrn_2876274 crossref_primary_10_1007_s13160_023_00622_6 crossref_primary_10_1186_s41546_018_0029_8 crossref_primary_10_1007_s00780_017_0349_z crossref_primary_10_1016_j_eswa_2022_118739 crossref_primary_10_1007_s00245_016_9364_2 crossref_primary_10_1007_s11579_016_0182_8 crossref_primary_10_1214_21_AAP1735 crossref_primary_10_1111_mafi_12287 crossref_primary_10_3390_risks8030072 |
Cites_doi | 10.1016/j.spa.2010.02.003 10.1007/BFb0088224 10.1111/1467-9965.00093 10.1007/s00780-010-0140-x 10.1214/EJP.v16-918 10.1214/aop/1019160253 10.1142/9789814304078_0004 10.1214/105051605000000188 10.1142/S0219024910006133 10.1142/S0219024909005567 10.1016/j.spa.2010.05.003 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Institute of Mathematical Statistics Copyright Institute of Mathematical Statistics Apr 2013 Distributed under a Creative Commons Attribution 4.0 International License Copyright 2013 Institute of Mathematical Statistics |
Copyright_xml | – notice: Copyright © 2013 Institute of Mathematical Statistics – notice: Copyright Institute of Mathematical Statistics Apr 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright 2013 Institute of Mathematical Statistics |
DBID | AAYXX CITATION JQ2 1XC |
DOI | 10.1214/11-AAP829 |
DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2168-8737 |
EndPage | 491 |
ExternalDocumentID | oai_CULeuclid_euclid_aoap_1360682020 oai_HAL_hal_00816013v1 2891871341 10_1214_11_AAP829 23474857 |
GroupedDBID | -~X 123 23M 2AX 2FS 2WC 5RE 6J9 85S AAFWJ ABBHK ABFAN ABPFR ABXSQ ABYAD ABYWD ACGFO ACIPV ACIWK ACMTB ACNCT ACTMH ACTWD ACUBG ADODI ADULT AELPN AENEX AEUPB AFFOW AFVYC AFXHP AFXKK AIHXQ ALMA_UNASSIGNED_HOLDINGS CJ0 CS3 D0L DQDLB DSRWC E3Z EBS ECEWR EFSUC EJD F5P GR0 HDK HQ6 JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST MS~ OK1 P2P PQQKQ PUASD RBU REI RPE SA0 SJN TN5 TR2 UPT WH7 XSW ZCG AAYXX ABPQH ADACV AECCQ AEILP AETVE CITATION IPSME JQ2 1XC AS~ FEDTE FVMVE HGD HVGLF H~9 RNS WHG ABFLS ABHAC ADACO AETEA AS MS PQEST RBV X XFK |
ID | FETCH-LOGICAL-c446t-93d0a703e3691c38b315bb2225e28564522506a1176cbef4e774f631fffa81cc3 |
IEDL.DBID | JAS |
ISSN | 1050-5164 |
IngestDate | Tue Jan 05 18:13:15 EST 2021 Tue Oct 15 15:21:01 EDT 2024 Thu Oct 10 15:47:27 EDT 2024 Thu Nov 21 22:10:35 EST 2024 Fri Feb 02 07:07:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-93d0a703e3691c38b315bb2225e28564522506a1176cbef4e774f631fffa81cc3 |
OpenAccessLink | https://projecteuclid.org/journals/annals-of-applied-probability/volume-23/issue-2/Optimal-investment-under-multiple-defaults-risk--A-BSDE-decomposition/10.1214/11-AAP829.pdf |
PQID | 1287761941 |
PQPubID | 105647 |
PageCount | 37 |
ParticipantIDs | projecteuclid_primary_oai_CULeuclid_euclid_aoap_1360682020 hal_primary_oai_HAL_hal_00816013v1 proquest_journals_1287761941 crossref_primary_10_1214_11_AAP829 jstor_primary_23474857 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hayward |
PublicationPlace_xml | – name: Hayward |
PublicationTitle | The Annals of applied probability |
PublicationYear | 2013 |
Publisher | Institute of Mathematical Statistics Institute of Mathematical Statistics (IMS) The Institute of Mathematical Statistics |
Publisher_xml | – name: Institute of Mathematical Statistics – name: Institute of Mathematical Statistics (IMS) – name: The Institute of Mathematical Statistics |
References | 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 4 doi: 10.1016/j.spa.2010.02.003 – ident: 16 doi: 10.1007/BFb0088224 – ident: 15 doi: 10.1111/1467-9965.00093 – ident: 5 – ident: 9 doi: 10.1007/s00780-010-0140-x – ident: 11 – ident: 13 doi: 10.1214/EJP.v16-918 – ident: 12 doi: 10.1214/aop/1019160253 – ident: 10 – ident: 3 doi: 10.1142/9789814304078_0004 – ident: 6 doi: 10.1214/105051605000000188 – ident: 1 doi: 10.1142/S0219024910006133 – ident: 7 – ident: 8 – ident: 2 doi: 10.1142/S0219024909005567 – ident: 14 doi: 10.1016/j.spa.2010.05.003 |
SSID | ssj0009497 |
Score | 2.2769217 |
Snippet | We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is... |
SourceID | projecteuclid hal proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 455 |
SubjectTerms | 60J75 91B28 93E20 Credit risk Default Density Differential equations Dynamic programming Financial investments Financial portfolios Investment policy Investment portfolios Investment risk Investment strategies Martingales Mathematical problems Mathematics multiple defaults Optimal investment Optimal strategies Probability progressive enlargement of filtrations quadratic backward stochastic differential equations Risk management Stochastic control theory Utility functions |
Title | OPTIMAL INVESTMENT UNDER MULTIPLE DEFAULTS RISK: A BSDE-DECOMPOSITION APPROACH |
URI | https://www.jstor.org/stable/23474857 https://www.proquest.com/docview/1287761941 https://hal.science/hal-00816013 http://projecteuclid.org/euclid.aoap/1360682020 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED6WPm0P-12WrR1ibI-iliXbUt-0xCFmTmLqZOzNSLLMBiUtS7O_f5LspJQy2JOFLGxxZ1nfne6-A_gsCOWZ0QwbalvMRKqwphnDQnRxJ6w2MfeJwvM6W_7g09zT5Hw55ML4sMoQFxhO8R1A0tf2IqYsYzzJRjDiZGDBvWfWZX0FlSiJcOLA_0AfFBN2QQiWsuIBPt5vOqOfPuSxjz70oZC9x8PuzfWv9tEfOWwzsxf_OcGX8HzAkUj2in8FT-z2NTxbHElYd29guarWxUKWqFh-z-u1Z-1HIacALTbluqjKHE3zmXTtGl0V9bdLJNHXeprjaT5ZLapVXXj3FZJVdbWSk_lb2Mzy9WSOh_IJ2Dgb7w4L2kbKLWhLU0EM5ZqSRGtv39mYexIZ14pSRUiWGm07Zh0S7FJKuq5TnBhDT-Fke7O17wClJmOJTi0nqmVaKC6sUjTSieKprz85hk8H-Ta3PUtG460LpwRnYjS9EtwgJ_njfc9rPZdl4_s8MHGWIf1DxnAapHscdhDtGC4faOrBcyabcugdLupG3TaEOuvMIZw4GsPZQa3NsEZ3bnY8C04c8v5fL_0AT-NQ_sJH6pzByd3vvT2H0a7dfwwf4V_sBNCY |
link.rule.ids | 230,315,782,786,817,887,27933,27934,58023,58256 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELboeAAexs-JjgEWgkdrcewk9t5MmyrRkjZaUsRbZDuOQJq6ia78_dhO2mlCSDzFcqzEuovj78533wHwmWPCEq0o0sR0iPJYIkUSijjvw54bpUPmEoWzOll-Z_PU0eR82efCuLBKHxfoT_EtQFLX5jwkNKEsSibgceQIywYe3HtuXTrUUAmiAEUW_o8EQiGm5xgjISrmAeT9tjP54YIeh_hDFww5-DzMTl__7P76J_uNZvH8P6f4AhyPSBKKQfUvwSOzeQWelQca1u1rsFxVTV6KAubLb2ndON5-6LMKYLkumrwqUjhPF8K2a3iV15cXUMCv9TxF83S2KqtVnTsHFhRVdbUSs-wNWC_SZpahsYAC0tbKu0OcdIG0S9qQmGNNmCI4UspZeCZkjkbGtoJYYpzEWpmeGosF-5jgvu8lw1qTE3C0udmYtwDGOqGRig3DsqOKS8aNlCRQkWSxq0A5BZ_28m1vB56M1tkXVgnWyGgHJdhBVvKH-47ZOhNF6_ocNLG2IfmNp-DES_cwbC_aKbh4oKkHz5mti7F3vMgbedtiYu0zi3HCYArO9mptx1W6tbNjiXfj4NN_vfQjeJI1ZdEW-fLyHXga-mIYLm7nDBzd_dqZ92Cy7XYf_Af5BwxB0-Y |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBZLB2M9dD9L07WbGLvsIGJZsiz3psUOMXUSUydjNyPJMhuUNCzN_v5JspNSRg87WcjCFu9J1vue3_seAF8STHisFUWamAbRhEmkSExRkrRhmxilQ-4ShadVPP_B08zR5Hzd58K4sEofF-j_4lsDSd2a0aZpRyGhMeVRPADPI4tqWMeF-8CvS7s6KkEUoMhCgJ5EKMR0hDESouTeiHw4egY_XeBjF4PoAiI7v4fZ6dtfzT_fZX_YTF79xzRfg5PeooSiWwJvwDOzfguOZwc61u07MF-Uy3wmCpjPv2fV0vH3Q59dAGerYpmXRQbTbCJsu4I3eXV9BQX8VqUZSrPxYlYuqtw5sqAoy5uFGE_fg9UkW46nqC-kgLRFe_coIU0g7dY2hCVYE64IjpRySM-E3NHJ2FbAJMYx08q01FibsGUEt20rOdaanIKj9d3anAHIdEwjxQzHsqEqkTwxUpJARZIzV4lyCD7vZVxvOr6M2uEMqwgLNupOEXaQlf7hvmO4noqidn3ORLEYkfzBQ3DqJXwYthftEFw90taj54xXRd_bX-Sd3NSYWJxmbZ0wGIKLvWrrfrdu7ex47N05-Pypl34CL8p0Uhf5_PoDeBn6mhgufOcCHN3_3plLMNg2u49-Tf4FWEHWbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPTIMAL+INVESTMENT+UNDER+MULTIPLE+DEFAULTS+RISK%3A+A+BSDE-DECOMPOSITION+APPROACH&rft.jtitle=The+Annals+of+applied+probability&rft.au=Jiao%2C+Ying&rft.au=Kharroubi%2C+Idris&rft.au=Pham%2C+Huy%C3%AAn&rft.date=2013-04-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=1050-5164&rft.eissn=2168-8737&rft.volume=23&rft.issue=2&rft.spage=455&rft.epage=491&rft_id=info:doi/10.1214%2F11-AAP829&rft.externalDocID=23474857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-5164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-5164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-5164&client=summon |