Three-dimensional model and molecular mechanism of Mycobacterium tuberculosis catalase-peroxidase (KatG) and isoniazid-resistant KatG mutants

Mycobacterium tuberculosis KatG enzyme functions both as catalase for removing hydrogen peroxide (H(2)O(2)) and as peroxidase for oxidating isoniazid (INH) to active form of anti-tuberculosis drug. Although mutations in M. tuberculosis KatG confer INH resistance in tuberculous patients, structural b...

Full description

Saved in:
Bibliographic Details
Published in:Microbial drug resistance (Larchmont, N.Y.) Vol. 10; no. 4; p. 269
Main Authors: Mo, L, Zhang, W, Wang, J, Weng, X H, Chen, S, Shao, L Y, Pang, M Y, Chen, Z W
Format: Journal Article
Language:English
Published: United States 2004
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycobacterium tuberculosis KatG enzyme functions both as catalase for removing hydrogen peroxide (H(2)O(2)) and as peroxidase for oxidating isoniazid (INH) to active form of anti-tuberculosis drug. Although mutations in M. tuberculosis KatG confer INH resistance in tuberculous patients, structural bases for INH-resistant mutations in the KatG gene remains poorly understood. Here, three M. tuberculosis KatG mutants bearing Arg418--> Gln, Ser315 --> Thr, or Trp321 --> Gly replacement were assessed for changes in catalase-peroxidase activities and possible structure bases relevant to such changes. These three M. tuberculosis KatG mutants exhibited a marked impairment or loss of catalase-peroxidase activities. The possible structural bases for the mutant-induced loss of enzyme activities were then analyzed using a three-dimensional model of M. tuberculosis KatG protein constructed on the basis of the crystal structure of the catalase-peroxidase from Burkholderia pseudomallei. The model suggests that three M. tuberculosis KatG mutants bearing Arg418 --> Gln, Ser315 -->Thr, or Trp321--> Gly replacement affect enzyme activities by different mechanisms, although each of them impacts consequently on a heme-associated structure, the putative oxidative site. Moreover, in addition to the widely accepted substrate-binding site, M. tuberculosis KatG may bear another H(2)O(2) binding site. This H(2)O(2) binding site appears to interact with the catalytic site by a possible electron-transfer chain, a Met255-Tyr229-Trp107 triad conserved in many catalase-peroxidases. The Ser315 --> Thr mutant may have direct effect on the catalytic site by interfering with electron transfer in addition to the previously proposed mechanism of steric constraint.
ISSN:1076-6294
DOI:10.1089/mdr.2004.10.269