Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts

The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4)...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 60; no. 51; pp. 26500 - 26505
Main Authors: Kaithal, Akash, Chatterjee, Basujit, Werlé, Christophe, Leitner, Walter
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 13-12-2021
John Wiley and Sons Inc
Edition:International ed. in English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4)(HN(C2H4PPh2)2)] (Ru‐MACHO‐BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2. Homogeneous catalysts based on ruthenium and manganese enable the generation of gaseous CO and H2 (syngas) from conveniently storable and easily transportable methanol. Conversion/time profiles and kinetic isotope effects together with spectroscopically detected intermediates indicate rapid dehydrogenation followed by two possible catalytic pathways via formaldehyde or methyl formate for decarbonylation as mechanistic manifold.
AbstractList The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH 4 )(HN(C 2 H 4 PPh 2 ) 2 )] (Ru‐MACHO‐BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H 2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4)(HN(C2H4PPh2)2)] (Ru‐MACHO‐BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH 4 )(HN(C 2 H 4 PPh 2 ) 2 )] (Ru‐MACHO‐BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H 2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2. Homogeneous catalysts based on ruthenium and manganese enable the generation of gaseous CO and H 2 (syngas) from conveniently storable and easily transportable methanol. Conversion/time profiles and kinetic isotope effects together with spectroscopically detected intermediates indicate rapid dehydrogenation followed by two possible catalytic pathways via formaldehyde or methyl formate for decarbonylation as mechanistic manifold.
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4)(HN(C2H4PPh2)2)] (Ru‐MACHO‐BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2. Homogeneous catalysts based on ruthenium and manganese enable the generation of gaseous CO and H2 (syngas) from conveniently storable and easily transportable methanol. Conversion/time profiles and kinetic isotope effects together with spectroscopically detected intermediates indicate rapid dehydrogenation followed by two possible catalytic pathways via formaldehyde or methyl formate for decarbonylation as mechanistic manifold.
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
Author Chatterjee, Basujit
Leitner, Walter
Werlé, Christophe
Kaithal, Akash
AuthorAffiliation 3 Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
1 Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
2 Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
AuthorAffiliation_xml – name: 1 Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
– name: 3 Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
– name: 2 Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
Author_xml – sequence: 1
  givenname: Akash
  orcidid: 0000-0003-3328-3003
  surname: Kaithal
  fullname: Kaithal, Akash
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 2
  givenname: Basujit
  orcidid: 0000-0003-3539-089X
  surname: Chatterjee
  fullname: Chatterjee, Basujit
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 3
  givenname: Christophe
  orcidid: 0000-0002-2174-2148
  surname: Werlé
  fullname: Werlé, Christophe
  organization: Ruhr University Bochum
– sequence: 4
  givenname: Walter
  orcidid: 0000-0001-6100-9656
  surname: Leitner
  fullname: Leitner, Walter
  email: walter.leitner@cec.mpg.de
  organization: RWTH Aachen University
BookMark eNqFkTlPAzEQhS0E4m6pV6Kh2eBjD2-DFIVT4migtrz2bGLk2MHeBfLvcZQIBA2VR57vvRn7HaBt5x0gdELwiGBMz6UzMKKYEoIbgrfQPikpyVlds-1UF4zlNS_JHjqI8TXxnONqF-2xomwqhuk-asdKwaL3wUKM2SXMljr4KTjZG-8y32UP0M-k8zbrfTaRoU23D975T6Mhk05ntxtBNkTjpqlnQQ1WhgT30i5jH4_QTidthOPNeYherq-eJ7f5_dPN3WR8n6uiKHHeMS5JVRLoWk0Ul7XUsqO6BU47WihcQEl5BxqTltatLhlvQZOCF7SsUwnsEF2sfRdDOwetwPVBWrEIZi7DUnhpxO-OMzMx9e-ioU1DSZUMzjYGwb8NEHsxN1GBtdKBH6JYDarritIVevoHffVDcOl5gla4akiTPjtRozWlgo8xQPe9DMFiFZ9YxSe-40uCZi34MBaW_9Bi_Hh39aP9Ap-toUc
CitedBy_id crossref_primary_10_1039_D2CS00093H
crossref_primary_10_1016_j_ijhydene_2023_10_281
crossref_primary_10_1021_acscatal_1c05844
crossref_primary_10_1002_aenm_202202369
crossref_primary_10_1039_D3DT01912H
crossref_primary_10_1016_j_jcat_2023_06_035
crossref_primary_10_1021_acs_orglett_2c03595
crossref_primary_10_1021_jacs_3c13240
crossref_primary_10_1002_anie_202404952
crossref_primary_10_1002_ange_202404952
crossref_primary_10_1016_j_jiec_2023_09_043
crossref_primary_10_1021_acs_nanolett_2c03087
crossref_primary_10_1021_acs_inorgchem_3c02619
crossref_primary_10_1039_D4GC01050G
crossref_primary_10_1021_acscatal_3c03957
Cites_doi 10.1002/9783527627806
10.1021/cs400809k
10.1002/cctc.201900788
10.1021/cr940282j
10.1038/nature11891
10.1021/cr3001803
10.1039/D0RE00478B
10.1021/jacsau.0c00091
10.1002/anie.201909035
10.1016/S0926-860X(00)00817-6
10.1002/ange.201810885
10.1021/ic200602v
10.1021/acsomega.7b00919
10.1007/978-3-642-39709-7
10.1016/j.apcata.2018.11.031
10.1515/9783748600473
10.1002/ange.201502194
10.1039/D0CS00509F
10.1002/anie.201503873
10.1021/acs.chemrev.7b00435
10.1038/nchem.1595
10.1021/jacs.8b08385
10.1021/cr050198b
10.1039/b000599l
10.1002/ange.201610182
10.1016/j.catcom.2004.05.008
10.1002/9783527651733
10.1002/ange.201410391
10.1002/cctc.201901871
10.1002/anie.202007397
10.1557/mre.2015.4
10.1016/j.jclepro.2018.02.088
10.1002/anie.201307224
10.1002/anie.201607552
10.1007/b105253
10.1002/anie.201912055
10.1021/acs.accounts.9b00324
10.1021/acscatal.5b00137
10.1002/anie.201410391
10.1007/s11244-018-0907-4
10.1002/cctc.202001431
10.1016/j.chempr.2020.08.026
10.1021/cs500937f
10.1002/ange.202007397
10.1002/anie.201502194
10.1038/s41467-020-14380-3
10.1021/ic502521c
10.1039/C4CC09471A
10.1016/j.apcatb.2010.06.015
10.1021/jacs.6b03709
10.1016/j.apenergy.2020.114672
10.1016/j.chempr.2018.11.006
10.1002/chem.201303722
10.1039/C9CY00938H
10.1007/978-94-011-1336-6_37
10.1016/B978-0-08-097774-4.00602-1
10.1038/nchem.1089
10.1002/ange.201909035
10.3389/fchem.2020.00709
10.1016/S0920-5861(00)00263-7
10.1016/B978-0-444-63903-5.00003-0
10.1039/c3ra46273k
10.1016/0920-5861(92)80188-S
10.1002/ange.201307224
10.1007/978-3-642-70763-6
10.1063/1.1849165
10.1002/ange.201912055
10.1002/ange.201607552
10.1007/s10562-016-1960-x
10.1039/D0CS01331E
10.1002/ange.201503873
10.1021/acscatal.0c03794
10.1098/rsta.2015.0315
10.1002/anie.201610182
10.1055/a-1657-2634
10.1002/anie.201810885
10.1021/acscatal.0c00811
10.1021/acs.chemrev.9b00723
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202110910
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)


MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26505
ExternalDocumentID 10_1002_anie_202110910
ANIE202110910
Genre shortCommunication
GrantInformation_xml – fundername: DFG
  funderid: Exzellenzcluster 2186, The Fuel Science Center, ID: 90919832
– fundername: Max-Planck-Gesellschaft
– fundername: ;
– fundername: ;
  grantid: Exzellenzcluster 2186, The Fuel Science Center, ID: 90919832
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4450-f38a1651efbd1c8a7adaf2dbe82f24c04e528fed01b27bd538bed14842578bee3
IEDL.DBID 33P
ISSN 1433-7851
IngestDate Tue Sep 17 21:07:49 EDT 2024
Sat Aug 17 03:00:04 EDT 2024
Thu Nov 21 04:26:41 EST 2024
Thu Nov 21 22:31:41 EST 2024
Sat Aug 24 00:58:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
License Attribution-NonCommercial
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4450-f38a1651efbd1c8a7adaf2dbe82f24c04e528fed01b27bd538bed14842578bee3
Notes Dedicated to Professor Holger Braunschweig on the occasion of his 60
birthday
th
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Dedicated to Professor Holger Braunschweig on the occasion of his 60th birthday
ORCID 0000-0003-3539-089X
0000-0003-3328-3003
0000-0001-6100-9656
0000-0002-2174-2148
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110910
PMID 34596302
PQID 2606919002
PQPubID 946352
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299216
proquest_miscellaneous_2578776226
proquest_journals_2606919002
crossref_primary_10_1002_anie_202110910
wiley_primary_10_1002_anie_202110910_ANIE202110910
PublicationCentury 2000
PublicationDate December 13, 2021
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: December 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 99
2013; 3
2007; 107
2017; 2
2019; 52
2020; 120
2019; 11
2020 2020; 59 132
2004; 5
1992; 13
2000; 2
2020; 12
2020; 11
2020; 10
2013; 5
2013 2013; 52 125
2014; 20
2020; 8
2001; 210
2020; 6
2014; 4
2000; 58
2000
1986
2020; 49
2015 2015; 54 127
2015; 2
2019; 9
2021; 6
2015; 5
2018; 140
2019; 5
2018; 183
2020; 264
2015; 51
2015; 54
2009
1996; 96
2006
1993
2018; 61
2017 2017; 56 129
2021; 50
2021; 1
2011; 3
2019 2019; 58 131
2021; 13
2012; 112
2005; 122
2021
2018; 118
2011; 50
2020 2020
2019
2018
2016; 374
2017
2016
2016; 138
2014
2013; 495
2013
2019; 570
2017; 147
e_1_2_2_24_2
e_1_2_2_6_2
e_1_2_2_20_1
e_1_2_2_2_2
Vavasori A. (e_1_2_2_28_2) 2017
e_1_2_2_85_2
e_1_2_2_62_1
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_89_2
e_1_2_2_47_1
e_1_2_2_81_2
e_1_2_2_81_3
e_1_2_2_59_2
e_1_2_2_13_1
e_1_2_2_74_2
e_1_2_2_51_1
e_1_2_2_74_3
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_36_1
e_1_2_2_78_1
Held H. (e_1_2_2_25_2) 2014
e_1_2_2_70_3
e_1_2_2_70_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_86_2
e_1_2_2_63_2
e_1_2_2_44_2
e_1_2_2_9_3
e_1_2_2_9_2
e_1_2_2_67_2
e_1_2_2_82_2
e_1_2_2_37_2
e_1_2_2_10_1
e_1_2_2_75_2
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_79_1
e_1_2_2_33_2
e_1_2_2_56_3
e_1_2_2_75_3
e_1_2_2_14_2
e_1_2_2_56_2
e_1_2_2_71_2
e_1_2_2_90_2
Trzeciak A. M. (e_1_2_2_34_2) 2013
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_41_1
e_1_2_2_60_3
e_1_2_2_87_1
(e_1_2_2_29_1) 2016
e_1_2_2_64_2
e_1_2_2_83_2
e_1_2_2_8_2
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_68_1
e_1_2_2_60_2
e_1_2_2_11_2
e_1_2_2_38_2
Le Berre C. (e_1_2_2_22_2) 2014
e_1_2_2_30_1
e_1_2_2_72_2
e_1_2_2_19_2
e_1_2_2_53_2
e_1_2_2_15_2
e_1_2_2_76_2
e_1_2_2_57_1
e_1_2_2_76_3
Leeuwen P. W. N. M. (e_1_2_2_32_2) 2000
e_1_2_2_3_2
e_1_2_2_69_2
e_1_2_2_23_1
e_1_2_2_61_2
e_1_2_2_84_1
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_65_2
e_1_2_2_46_1
e_1_2_2_88_1
e_1_2_2_46_2
e_1_2_2_80_1
e_1_2_2_58_3
e_1_2_2_12_2
e_1_2_2_58_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_31_1
e_1_2_2_73_2
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_35_2
e_1_2_2_77_2
References_xml – start-page: 239
  year: 2014
  end-page: 255
– year: 2009
– volume: 118
  start-page: 434
  year: 2018
  end-page: 504
  publication-title: Chem. Rev.
– volume: 210
  start-page: 301
  year: 2001
  end-page: 314
  publication-title: Appl. Catal. A
– volume: 59 132
  start-page: 215 221
  year: 2020 2020
  end-page: 220 226
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61
  start-page: 530
  year: 2018
  end-page: 541
  publication-title: Top. Catal.
– volume: 52
  start-page: 2892
  year: 2019
  end-page: 2903
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 8809
  year: 2016
  end-page: 8814
  publication-title: J. Am. Chem. Soc.
– volume: 264
  year: 2020
  publication-title: Appl. Energy
– volume: 6
  start-page: 954
  year: 2021
  end-page: 976
  publication-title: React. Chem. Eng.
– volume: 140
  start-page: 11931
  year: 2018
  end-page: 11934
  publication-title: J. Am. Chem. Soc.
– start-page: 495
  year: 1993
  end-page: 510
– start-page: 763
  year: 2016
  end-page: 781
– volume: 50
  start-page: 4259
  year: 2021
  end-page: 4298
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 2404
  year: 2015
  end-page: 2415
  publication-title: ACS Catal.
– year: 2014
– volume: 122
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 570
  start-page: 367
  year: 2019
  end-page: 375
  publication-title: Appl. Catal. A
– start-page: 1
  year: 2014
  end-page: 34
– year: 1986
– volume: 5
  start-page: 526
  year: 2019
  end-page: 552
  publication-title: Chem
– volume: 4
  start-page: 2649
  year: 2014
  end-page: 2652
  publication-title: ACS Catal.
– volume: 147
  start-page: 416
  year: 2017
  end-page: 427
  publication-title: Catal. Lett.
– volume: 10
  start-page: 14024
  year: 2020
  end-page: 14055
  publication-title: ACS Catal.
– volume: 54
  start-page: 5079
  year: 2015
  end-page: 5084
  publication-title: Inorg. Chem.
– volume: 183
  start-page: 415
  year: 2018
  end-page: 423
  publication-title: J. Cleaner Prod.
– volume: 3
  start-page: 609
  year: 2011
  end-page: 614
  publication-title: Nat. Chem.
– volume: 5
  start-page: 342
  year: 2013
  end-page: 347
  publication-title: Nat. Chem.
– year: 2021
  publication-title: Synthesis
– volume: 11
  start-page: 591
  year: 2020
  publication-title: Nat. Commun.
– volume: 374
  year: 2016
  publication-title: Philos. Trans. R. Soc. A
– volume: 50
  start-page: 8782
  year: 2011
  end-page: 8789
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 6318
  year: 2020
  end-page: 6331
  publication-title: ACS Catal.
– volume: 12
  start-page: 781
  year: 2020
  end-page: 787
  publication-title: ChemCatChem
– volume: 13
  start-page: 73
  year: 1992
  end-page: 91
  publication-title: Catal. Today
– volume: 13
  start-page: 1659
  year: 2021
  end-page: 1682
  publication-title: ChemCatChem
– year: 2019
– volume: 96
  start-page: 663
  year: 1996
  end-page: 682
  publication-title: Chem. Rev.
– volume: 112
  start-page: 5675
  year: 2012
  end-page: 5732
  publication-title: Chem. Rev.
– volume: 9
  start-page: 3603
  year: 2019
  end-page: 3613
  publication-title: Catal. Sci. Technol.
– volume: 54 127
  start-page: 9057 9185
  year: 2015 2015
  end-page: 9060 9188
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 709
  year: 2020
  publication-title: Front. Chem.
– volume: 56 129
  start-page: 559 574
  year: 2017 2017
  end-page: 562 577
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 1642 1662
  year: 2015 2015
  end-page: 1645 1665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 3
  year: 2015
  publication-title: MRS Energy Sustainability
– year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 99
  start-page: 43
  year: 2010
  end-page: 57
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 5949
  year: 2017
  end-page: 5961
  publication-title: ACS Omega
– volume: 58
  start-page: 293
  year: 2000
  end-page: 307
  publication-title: Catal. Today
– year: 2000
– volume: 4
  start-page: 10367
  year: 2014
  end-page: 10389
  publication-title: RSC Adv.
– start-page: 1
  year: 2017
  end-page: 41
– volume: 59 132
  start-page: 1485 1501
  year: 2020 2020
  end-page: 1490 1506
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 25
  year: 2013
  end-page: 46
– volume: 495
  start-page: 85
  year: 2013
  end-page: 89
  publication-title: Nature
– volume: 51
  start-page: 6714
  year: 2015
  end-page: 6725
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 12236 12406
  year: 2015 2015
  end-page: 12273 12445
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 7984
  year: 2020
  end-page: 8034
  publication-title: Chem. Rev.
– start-page: 53
  year: 2018
  end-page: 93
– volume: 11
  start-page: 5287
  year: 2019
  end-page: 5291
  publication-title: ChemCatChem
– volume: 49
  start-page: 8933
  year: 2020
  end-page: 8987
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 431
  year: 2004
  end-page: 436
  publication-title: Catal. Commun.
– volume: 107
  start-page: 3992
  year: 2007
  end-page: 4021
  publication-title: Chem. Rev.
– volume: 1
  start-page: 130
  year: 2021
  end-page: 136
  publication-title: JACS Au
– year: 2006
– volume: 56 129
  start-page: 5402 5488
  year: 2017 2017
  end-page: 5411 5498
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 775 785
  year: 2019 2019
  end-page: 779 789
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 4141
  year: 2014
  end-page: 4155
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 2497
  year: 2020
  end-page: 2514
  publication-title: Chem
– volume: 52 125
  start-page: 14162 14412
  year: 2013 2013
  end-page: 14166 14416
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2017
– volume: 2
  start-page: 1519
  year: 2000
  end-page: 1522
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 2865
  year: 2013
  end-page: 2868
  publication-title: ACS Catal.
– ident: e_1_2_2_3_2
  doi: 10.1002/9783527627806
– ident: e_1_2_2_43_2
  doi: 10.1021/cs400809k
– ident: e_1_2_2_72_2
  doi: 10.1002/cctc.201900788
– ident: e_1_2_2_27_2
  doi: 10.1021/cr940282j
– ident: e_1_2_2_52_2
  doi: 10.1038/nature11891
– ident: e_1_2_2_62_1
– ident: e_1_2_2_31_1
– ident: e_1_2_2_33_2
  doi: 10.1021/cr3001803
– ident: e_1_2_2_80_1
– ident: e_1_2_2_45_2
  doi: 10.1039/D0RE00478B
– ident: e_1_2_2_86_2
  doi: 10.1021/jacsau.0c00091
– ident: e_1_2_2_75_2
  doi: 10.1002/anie.201909035
– ident: e_1_2_2_64_2
  doi: 10.1016/S0926-860X(00)00817-6
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.201810885
– ident: e_1_2_2_42_2
  doi: 10.1021/ic200602v
– ident: e_1_2_2_66_2
  doi: 10.1021/acsomega.7b00919
– ident: e_1_2_2_4_2
  doi: 10.1007/978-3-642-39709-7
– ident: e_1_2_2_73_2
  doi: 10.1016/j.apcata.2018.11.031
– ident: e_1_2_2_30_1
  doi: 10.1515/9783748600473
– ident: e_1_2_2_56_3
  doi: 10.1002/ange.201502194
– ident: e_1_2_2_47_1
– ident: e_1_2_2_83_2
  doi: 10.1039/D0CS00509F
– start-page: 1
  volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2014
  ident: e_1_2_2_22_2
  contributor:
    fullname: Le Berre C.
– start-page: 1
  volume-title: Encyclopedia of Polymer Science and Technology
  year: 2017
  ident: e_1_2_2_28_2
  contributor:
    fullname: Vavasori A.
– ident: e_1_2_2_88_1
– ident: e_1_2_2_81_2
  doi: 10.1002/anie.201503873
– ident: e_1_2_2_15_2
  doi: 10.1021/acs.chemrev.7b00435
– ident: e_1_2_2_53_2
  doi: 10.1038/nchem.1595
– ident: e_1_2_2_71_2
  doi: 10.1021/jacs.8b08385
– ident: e_1_2_2_48_2
  doi: 10.1021/cr050198b
– ident: e_1_2_2_63_2
  doi: 10.1039/b000599l
– start-page: 763
  volume-title: Ullmann's Polymers and Plastics: Products and Processes, Vol. 2
  year: 2016
  ident: e_1_2_2_29_1
– ident: e_1_2_2_60_3
  doi: 10.1002/ange.201610182
– ident: e_1_2_2_65_2
  doi: 10.1016/j.catcom.2004.05.008
– ident: e_1_2_2_35_2
  doi: 10.1002/9783527651733
– ident: e_1_2_2_70_3
  doi: 10.1002/ange.201410391
– ident: e_1_2_2_85_2
  doi: 10.1002/cctc.201901871
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.202007397
– ident: e_1_2_2_5_2
  doi: 10.1557/mre.2015.4
– ident: e_1_2_2_67_2
  doi: 10.1016/j.jclepro.2018.02.088
– ident: e_1_2_2_58_2
  doi: 10.1002/anie.201307224
– ident: e_1_2_2_46_1
  doi: 10.1002/anie.201607552
– ident: e_1_2_2_37_2
  doi: 10.1007/b105253
– ident: e_1_2_2_76_2
  doi: 10.1002/anie.201912055
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.accounts.9b00324
– ident: e_1_2_2_59_2
  doi: 10.1021/acscatal.5b00137
– ident: e_1_2_2_70_2
  doi: 10.1002/anie.201410391
– ident: e_1_2_2_7_2
  doi: 10.1007/s11244-018-0907-4
– ident: e_1_2_2_87_1
  doi: 10.1002/cctc.202001431
– ident: e_1_2_2_8_2
  doi: 10.1016/j.chempr.2020.08.026
– ident: e_1_2_2_54_2
  doi: 10.1021/cs500937f
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.202007397
– ident: e_1_2_2_23_1
– ident: e_1_2_2_56_2
  doi: 10.1002/anie.201502194
– ident: e_1_2_2_61_2
  doi: 10.1038/s41467-020-14380-3
– ident: e_1_2_2_55_2
  doi: 10.1021/ic502521c
– ident: e_1_2_2_84_1
– ident: e_1_2_2_50_2
  doi: 10.1039/C4CC09471A
– ident: e_1_2_2_49_2
  doi: 10.1016/j.apcatb.2010.06.015
– ident: e_1_2_2_68_1
– ident: e_1_2_2_78_1
  doi: 10.1021/jacs.6b03709
– ident: e_1_2_2_18_2
  doi: 10.1016/j.apenergy.2020.114672
– ident: e_1_2_2_36_1
– ident: e_1_2_2_39_2
  doi: 10.1016/j.chempr.2018.11.006
– ident: e_1_2_2_89_2
  doi: 10.1002/chem.201303722
– ident: e_1_2_2_40_2
  doi: 10.1039/C9CY00938H
– ident: e_1_2_2_41_1
– ident: e_1_2_2_11_2
  doi: 10.1007/978-94-011-1336-6_37
– start-page: 25
  volume-title: Comprehensive Inorganic Chemistry II
  year: 2013
  ident: e_1_2_2_34_2
  doi: 10.1016/B978-0-08-097774-4.00602-1
  contributor:
    fullname: Trzeciak A. M.
– ident: e_1_2_2_69_2
  doi: 10.1038/nchem.1089
– ident: e_1_2_2_75_3
  doi: 10.1002/ange.201909035
– ident: e_1_2_2_1_1
– ident: e_1_2_2_44_2
  doi: 10.3389/fchem.2020.00709
– ident: e_1_2_2_21_2
  doi: 10.1016/S0920-5861(00)00263-7
– ident: e_1_2_2_57_1
– ident: e_1_2_2_12_2
  doi: 10.1016/B978-0-444-63903-5.00003-0
– ident: e_1_2_2_51_1
– ident: e_1_2_2_38_2
  doi: 10.1039/c3ra46273k
– ident: e_1_2_2_24_2
  doi: 10.1016/0920-5861(92)80188-S
– ident: e_1_2_2_58_3
  doi: 10.1002/ange.201307224
– ident: e_1_2_2_2_2
  doi: 10.1007/978-3-642-70763-6
– ident: e_1_2_2_20_1
– volume-title: Rhodium Catalyzed Hydroformylation
  year: 2000
  ident: e_1_2_2_32_2
  contributor:
    fullname: Leeuwen P. W. N. M.
– ident: e_1_2_2_79_1
  doi: 10.1063/1.1849165
– ident: e_1_2_2_76_3
  doi: 10.1002/ange.201912055
– ident: e_1_2_2_46_2
  doi: 10.1002/ange.201607552
– ident: e_1_2_2_6_2
  doi: 10.1007/s10562-016-1960-x
– ident: e_1_2_2_26_1
– ident: e_1_2_2_19_2
  doi: 10.1039/D0CS01331E
– start-page: 239
  volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2014
  ident: e_1_2_2_25_2
  contributor:
    fullname: Held H.
– ident: e_1_2_2_81_3
  doi: 10.1002/ange.201503873
– ident: e_1_2_2_82_2
  doi: 10.1021/acscatal.0c03794
– ident: e_1_2_2_14_2
  doi: 10.1098/rsta.2015.0315
– ident: e_1_2_2_60_2
  doi: 10.1002/anie.201610182
– ident: e_1_2_2_13_1
– ident: e_1_2_2_77_2
  doi: 10.1055/a-1657-2634
– ident: e_1_2_2_10_1
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.201810885
– ident: e_1_2_2_90_2
  doi: 10.1021/acscatal.0c00811
– ident: e_1_2_2_17_2
  doi: 10.1021/acs.chemrev.9b00723
SSID ssj0028806
Score 2.5075495
Snippet The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 26500
SubjectTerms carbon dioxide
Carbon monoxide
Catalysts
Communication
Communications
Coordination compounds
decarbonylation
Dehydrogenation
Gas mixtures
Hydrogen
Manganese
Methanol
Methyl formate
Ruthenium
Ruthenium compounds
Title Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110910
https://www.proquest.com/docview/2606919002
https://search.proquest.com/docview/2578776226
https://pubmed.ncbi.nlm.nih.gov/PMC9299216
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEA_qi_find7JracSQfCpmCbdpn1c1pX1QRFU8K3kY3oKRyvbXdD__mbSbnV9EfStbTI0ZCbzkcz8wtixtSYth2UaudyKCC2UiIzIISpVrJxVQjigeufpjb66z84mBJPTV_G3-BD9hhutjKCvaYEb25y-goZSBTbGdxTA5KHGCkOFUMOhrvuIC4WzLS9SKqJb6JeojUKerpKvWqVXV_N9ouRbBzZYoPPvXx_7D7bVeZ981IrLNluDaodtjpeXvv1kduQoz6WmI_iGn8HDi5_VKGOBf7wu-SXQXnv9j89rPjYzi19RLdTPjx64qTyfdgScEur_Ylt3-y52nhP8ybz5xe7OJ7fjadRdwxC5JBkKZFtm4nQYQ2l97DKjjTel9BYyWcrEiQSGMivBi9hKbT1qUAseo6ygDSyA2mUbVV3Bb8bB2QRS0C7VcSLxDYm9BsLo91orGLCTJRuKpxZto2hxlWVBc1b0czZg-0suFd2qawqMzdIcPRwhB-yob8YZpEMQU0G9wD6kotACyHTA9Ap3-z8S4vZqS_X4EJC30ZfMZYyUMnD3gzEWo6uLSf-29xmiP-wbPVP-TKz22cZ8toADtt74xWGQ9P8ErwG-
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S5JBemqYPum3SqlDoyUSWvJZ9XDYbNjRZAk2hN6PHuAkEu-wD2n_fGb-SzaVQerSkwUIzGs1IM98AfHLOpuW4TCOfOxnRCSUjK3OMSh1r77SUHjnfef7VLL5npzOGyZn0uTAtPsRw4cY7o9HXvMH5QvrkHjWUU7DJwWMPJuckq70kJWnkLA59NfhcJJ5tgpHWEdeh73EbpTrZpt8-l-6Nzcehkg9N2OYMOjv4D7N_Ds86A1RMWok5hB2sXsD-tK_79hLcxHOoS82v8Ctxije_w7ImMWtYKOpSXCJft9d3Yl2LqV06aiXNUP-6DShsFcS8IxAcU_-D-roCvDR4zQgo69Ur-HY2u57Oo64SQ-STZCyJc5mN03GMpQuxz6yxwZYqOMxUqRIvExyrrMQgY6eMC6REHQZytBqF4BD1a9it6grfgEDvEkzR-NTEiaIvIg4GGaY_GKNxBJ97PhQ_W8CNooVWVgWvWTGs2QiOejYV3cZbFeSepTkZOVKN4OPQTSvI7yC2wnpDY1hL0SGg0hGYLfYOf2TQ7e2e6vamAd8mczJXMVGqhr1_mWMxWZzPhq-3_0L0Afbn15cXxcX54ss7eMrtHE4T6yPYXS83eAxPVmHzvhH7P0HfBeY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0BPXFb3H11AiCT-XSpNu0j8t-sIe6HKjgW8nHxDuQ9tgP8P77m2m7PdcXQR-bZGjITOYjmfkF4L1zNo_jmCe-dDIhCyUTK0tMok61d1pKj1zvvPxiVt-L2ZxhcoYq_g4fYjhw453R6mve4JchntyAhnIFNsV3HMCUXGN1JyNfnNHztT4bQi6Szq6-SOuEn6HfwzZKdXJIf2iWbnzNPzMlf_dgWxO0ePj_k38ED3r3U0w6eXkMt7B-Avem-1ffnoKbeE50afgOfiNmeH4V1g0JWctA0UTxGfmwvfkpto2Y2rWjVtILza-LgMLWQSx7AsEZ9T-or39-lwZvGf9ku3kG3xbzr9Nl0r_DkPgsG0viW2HTfJxidCH1hTU22KiCw0JFlXmZ4VgVEYNMnTIukAp1GCjMatWBQ9TP4ahuanwBAr3LMEfjc5Nmir6IOBhkkP5gjMYRfNizobrs4DaqDlhZVbxm1bBmIzjec6nqt92mouAsL8nFkWoE74ZuWkG-BbE1NjsawzqKTIDKR2AOuDv8kSG3D3vqi_MWepucyVKlRKla7v5ljtVkdTofvl7-C9FbuHs2W1SfTlcfX8F9buZcmlQfw9F2vcPXcHsTdm9aob8GEegEjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceptorless+Dehydrogenation+of+Methanol+to+Carbon+Monoxide+and+Hydrogen+using+Molecular+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Kaithal%2C+Akash&rft.au=Chatterjee%2C+Basujit&rft.au=Werl%C3%A9%2C+Christophe&rft.au=Leitner%2C+Walter&rft.date=2021-12-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26500&rft.epage=26505&rft_id=info:doi/10.1002%2Fanie.202110910&rft.externalDBID=10.1002%252Fanie.202110910&rft.externalDocID=ANIE202110910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon