Finite element modeling of erosive wear
Material damage caused by the attack of particles entrained in a fluid system impacting a surface at high speed is called ‘Erosion’. Erosion is a phenomenon that takes place in several engineering applications. It also can be used in several manufacturing process such as abrasive waterjet machining....
Saved in:
Published in: | International journal of machine tools & manufacture Vol. 45; no. 11; pp. 1337 - 1346 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-09-2005
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Material damage caused by the attack of particles entrained in a fluid system impacting a surface at high speed is called ‘Erosion’. Erosion is a phenomenon that takes place in several engineering applications. It also can be used in several manufacturing process such as abrasive waterjet machining. Erosion is a complex process dependent on particle speed, size, angle of attack as well as the behavior of the eroded material. Extensive experimental results have been reported in the literature on the erosion of different materials. Simulating the erosion process through finite element enables the prediction of erosion behavior of materials under different conditions, which will substitute the need of experimentation, and will enable the identification of constants required for existing analytical models.
In this paper, an elasto-plastic finite element (FE) model is presented to simulate the erosion process in 3D configuration. The FE model takes into account numerical and material damping, thermal elastic–plastic material behavior and the effect of multiple particle impacts as well as material removal. The workpiece material modeled was Ti–6Al–4V. The effects of strain hardening, strain rate and temperature were considered in the non-linear material model. Comparison against results reported in literature and erosion models by Finnie, Bitter and Hashish are made. It is shown that the predicted results are in agreement with published results obtained experimentally and from analytical erosion models. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0890-6955 1879-2170 |
DOI: | 10.1016/j.ijmachtools.2005.01.007 |