Optimal Subtask Allocation for Human and Robot Collaboration Within Hybrid Assembly System
In human and robot collaborative hybrid assembly cell as we proposed, it is important to develop automatic subtask allocation strategy for human and robot in usage of their advantages. We introduce a folk-joint task model that describes the sequential and parallel features and logic restriction of h...
Saved in:
Published in: | IEEE transactions on automation science and engineering Vol. 11; no. 4; pp. 1065 - 1075 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-10-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In human and robot collaborative hybrid assembly cell as we proposed, it is important to develop automatic subtask allocation strategy for human and robot in usage of their advantages. We introduce a folk-joint task model that describes the sequential and parallel features and logic restriction of human and robot collaboration appropriately. To preserve a cost-effectiveness level of task allocation, we develop a logic mathematic method to quantitatively describe this discrete-event system by considering the system tradeoff between the assembly time cost and payment cost. A genetic based revolutionary algorithm is developed for real-time and reliable subtask allocation to meet the required cost-effectiveness. This task allocation strategy is built for a human worker and collaborates with various robot co-workers to meet the small production situation in future. The performance of proposed algorithm is experimentally studied, and the cost-effectiveness is analyzed comparatively on an electronic assembly case. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2013.2274099 |