The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population
Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury....
Saved in:
Published in: | Development (Cambridge) Vol. 145; no. 24 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
The Company of Biologists Ltd
14-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview. |
---|---|
AbstractList | Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview. Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population. This article has an associated ‘The people behind the papers’ interview. Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Lineage analysis and long-term labelling studies show that peripheral nerve regeneration is underpinned by the proliferative plasticity of mature cells rather than the activation of a stem cell population. |
Author | Williams, Richard Nihouarn, Julie Lloyd, Alison C Garcia Calavia, Noelia Richardson, William D Young, Kaylene M Stierli, Salome Malong, Liza Ribeiro, Sara Monteza Cabrejos, Anthony Napoli, Ilaria White, Ian J Cattin, Anne-Laure |
AuthorAffiliation | 1 MRC Laboratory for Molecular Cell Biology , University College London , Gower Street, London WC1E 6BT , UK 2 Menzies Institute for Medical Research, University of Tasmania , Hobart, TAS 7000 , Australia 3 Wolfson Institute for Biomedical Research, University College London (UCL) , Gower Street, London WC1E 6BT , UK 4 UCL Cancer Institute, University College London , Gower Street, London WC1E 6BT , UK |
AuthorAffiliation_xml | – name: 1 MRC Laboratory for Molecular Cell Biology , University College London , Gower Street, London WC1E 6BT , UK – name: 2 Menzies Institute for Medical Research, University of Tasmania , Hobart, TAS 7000 , Australia – name: 4 UCL Cancer Institute, University College London , Gower Street, London WC1E 6BT , UK – name: 3 Wolfson Institute for Biomedical Research, University College London (UCL) , Gower Street, London WC1E 6BT , UK |
Author_xml | – sequence: 1 givenname: Salome surname: Stierli fullname: Stierli, Salome organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 2 givenname: Ilaria surname: Napoli fullname: Napoli, Ilaria organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 3 givenname: Ian J surname: White fullname: White, Ian J organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 4 givenname: Anne-Laure surname: Cattin fullname: Cattin, Anne-Laure organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 5 givenname: Anthony surname: Monteza Cabrejos fullname: Monteza Cabrejos, Anthony organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 6 givenname: Noelia surname: Garcia Calavia fullname: Garcia Calavia, Noelia organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 7 givenname: Liza surname: Malong fullname: Malong, Liza organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 8 givenname: Sara surname: Ribeiro fullname: Ribeiro, Sara organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 9 givenname: Julie surname: Nihouarn fullname: Nihouarn, Julie organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 10 givenname: Richard surname: Williams fullname: Williams, Richard organization: MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK – sequence: 11 givenname: Kaylene M surname: Young fullname: Young, Kaylene M organization: Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia – sequence: 12 givenname: William D surname: Richardson fullname: Richardson, William D organization: Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK – sequence: 13 givenname: Alison C orcidid: 0000-0001-7712-1773 surname: Lloyd fullname: Lloyd, Alison C email: alison.lloyd@ucl.ac.uk organization: UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30413560$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUctOwzAQtFARfcCFD0A-I6Ws4zSpL0io4iUhOFDOkZOsW6PEjmK3Ep_AX-O0pYLLejWemd3VjMnAWIOEXDKYsjiJbyrcTlkGnKUnZMSSLIsEi8WAjEDMIGJCsCEZO_cJADzNsjMy5JAwPkthRL6Xa6Qdrja19NoaahX1AVnbBq3z0mlHpal6BhrsjpwWO92uA1DTAG-RBl6lndem9FR1ttm5LF7fd2ptKmwxFON7saTOY0NLrGva2vYw-pycKlk7vDi8E_LxcL9cPEUvb4_Pi7uXqEySxEdcZHFVJjBXmYT-tkJAGiNAwQpIZhUUMZMiDXAKOA-NKFMllWSKA5eq4BNyu_dtN0WDVRmWCmfkbacb2X3lVur8_4_R63xlt3nKIZsLHgyu9wZlZ53rUB21DPI-kDwEku8DCeSrv9OO1N8E-A-XQIuy |
CitedBy_id | crossref_primary_10_1016_j_xinn_2022_100360 crossref_primary_10_3389_fncel_2020_00237 crossref_primary_10_3389_fncel_2021_688243 crossref_primary_10_1093_intimm_dxaa030 crossref_primary_10_1073_pnas_1912139117 crossref_primary_10_1101_cshperspect_a041363 crossref_primary_10_1002_glia_23892 crossref_primary_10_3389_fncel_2021_676515 crossref_primary_10_1002_jcp_29393 crossref_primary_10_3389_fnmol_2019_00069 crossref_primary_10_1002_dneu_22771 crossref_primary_10_3389_fncel_2021_820216 crossref_primary_10_1038_s41419_023_06141_z crossref_primary_10_7554_eLife_88872 crossref_primary_10_1038_s41467_020_18291_1 crossref_primary_10_1093_neuonc_noad201 crossref_primary_10_1002_1873_3468_14274 crossref_primary_10_1111_jnc_15877 crossref_primary_10_3390_cells10020425 crossref_primary_10_3389_fnmol_2022_888523 crossref_primary_10_1002_glia_23643 crossref_primary_10_1111_jns_12643 crossref_primary_10_3389_fncel_2021_624826 crossref_primary_10_3390_ijms24065366 crossref_primary_10_1242_dev_173948 crossref_primary_10_1038_s41467_021_22593_3 crossref_primary_10_15252_embj_2022111955 crossref_primary_10_1016_j_devcel_2023_01_002 crossref_primary_10_7554_eLife_58591 crossref_primary_10_1002_glia_23784 crossref_primary_10_3389_fnins_2019_01326 crossref_primary_10_7554_eLife_42404 crossref_primary_10_1523_ENEURO_0353_22_2023 crossref_primary_10_1007_s13311_021_01125_3 crossref_primary_10_7554_eLife_64456 crossref_primary_10_7554_eLife_68457 crossref_primary_10_1038_s41598_020_74128_3 crossref_primary_10_1186_s13287_020_02090_y crossref_primary_10_3389_fnmol_2019_00308 crossref_primary_10_7554_eLife_64773 crossref_primary_10_7554_eLife_50138 crossref_primary_10_7554_eLife_73511 crossref_primary_10_3390_ijms242015241 crossref_primary_10_4049_jimmunol_2200946 crossref_primary_10_1016_j_npep_2024_102438 |
Cites_doi | 10.1007/BF00687785 10.3389/fcell.2016.00071 10.1083/jcb.201503019 10.1016/S1044-7431(03)00029-0 10.1016/j.neuron.2013.01.006 10.1046/j.1460-9568.1999.00568.x 10.1186/1471-213X-1-4 10.1016/j.cell.2009.07.049 10.1523/JNEUROSCI.1007-06.2006 10.1083/jcb.201205025 10.1016/j.stem.2016.12.006 10.1016/j.cell.2012.12.014 10.1038/nn.2467 10.1038/ncb3611 10.1242/dev.004895 10.1016/j.cell.2010.08.039 10.1113/JP270874 10.1038/nature06293 10.1126/science.1056782 10.1002/glia.22852 10.1017/CBO9780511541759 10.1016/j.cell.2010.09.016 10.1016/j.conb.2017.09.016 10.1242/dev.01429 10.1038/s41586-018-0073-7 10.1038/nn.4547 10.1016/j.devcel.2011.07.001 10.1038/embor.2010.216 10.1016/0022-510X(80)90126-4 10.1523/JNEUROSCI.22-03-00876.2002 10.1016/j.gde.2017.02.006 10.1016/j.conb.2017.09.015 10.1073/pnas.0508440102 10.1016/j.neuron.2010.09.009 10.1016/j.celrep.2013.08.033 10.1146/annurev.ne.13.030190.000355 10.1016/j.neuron.2012.06.021 10.1016/j.celrep.2016.12.041 10.1016/j.conb.2016.04.005 10.1126/science.aam7928 10.1002/stem.1186 10.1038/s41583-018-0001-8 10.1016/S0896-6273(01)00260-4 10.1016/j.cell.2015.07.021 10.1101/cshperspect.a020487 10.1113/jphysiol.1943.sp004002 10.1007/BF01179817 10.1111/j.1529-8027.2012.00378.x 10.1038/nrg.2018.9 10.1089/scd.2010.0525 10.1126/science.1254960 10.1073/pnas.1710566114 10.1016/j.conb.2017.09.014 10.1016/j.conb.2017.10.003 10.1038/nature13536 10.1016/j.neuron.2011.11.031 |
ContentType | Journal Article |
Copyright | 2018. Published by The Company of Biologists Ltd. 2018. Published by The Company of Biologists Ltd 2018 |
Copyright_xml | – notice: 2018. Published by The Company of Biologists Ltd. – notice: 2018. Published by The Company of Biologists Ltd 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1242/dev.170316 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | 10_1242_dev_170316 30413560 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/N009169/1 – fundername: Medical Research Council grantid: MR/R023816/1 – fundername: Cancer Research UK grantid: 11244 – fundername: Cancer Research UK grantid: C36048 – fundername: Cancer Research UK grantid: 17135 – fundername: Medical Research Council grantid: MC_U12266B – fundername: ; grantid: 17-0223 – fundername: ; grantid: MR/N009169/1; MC_U12266B – fundername: ; grantid: 2095095 – fundername: ; grantid: C378; C36048 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ ABZEH ACGFS ACPRK ACREN ADBBV ADFRT AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 NPM O9- OK1 P2P R.V RCB RHF RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c444t-3972dc408f7a01991b9062e00b1b045d0b21a961b960e89619c6fafa1f303afb3 |
ISSN | 0950-1991 |
IngestDate | Tue Sep 17 21:22:35 EDT 2024 Thu Nov 21 23:24:03 EST 2024 Sat Nov 02 12:17:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | CNS Tissue homeostasis PNS Tissue regeneration Schwann cells Stem cells |
Language | English |
License | 2018. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-3972dc408f7a01991b9062e00b1b045d0b21a961b960e89619c6fafa1f303afb3 |
ORCID | 0000-0001-7712-1773 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6307893 |
PMID | 30413560 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6307893 crossref_primary_10_1242_dev_170316 pubmed_primary_30413560 |
PublicationCentury | 2000 |
PublicationDate | 20181214 |
PublicationDateYYYYMMDD | 2018-12-14 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181214 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2018 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Fontana (2024053017462297100_DEV170316C19) 2012; 198 Harty (2024053017462297100_DEV170316C25) 2017; 47 Leone (2024053017462297100_DEV170316C32) 2003; 22 Gomez-Sanchez (2024053017462297100_DEV170316C22) 2015; 210 Jessen (2024053017462297100_DEV170316C26) 2016; 594 Monk (2024053017462297100_DEV170316C41) 2015; 63 Ribeiro (2024053017462297100_DEV170316C45) 2013; 5 Tay (2024053017462297100_DEV170316C50) 2017; 20 Napoli (2024053017462297100_DEV170316C42) 2012; 73 Masaki (2024053017462297100_DEV170316C37) 2013; 152 Arthur-Farraj (2024053017462297100_DEV170316C5) 2012; 75 Adameyko (2024053017462297100_DEV170316C1) 2009; 139 Armulik (2024053017462297100_DEV170316C4) 2011; 21 Ge (2024053017462297100_DEV170316C21) 2018; 19 Salonen (2024053017462297100_DEV170316C46) 1988; 75 Zochodne (2024053017462297100_DEV170316C56) 2008 Fernandez-Valle (2024053017462297100_DEV170316C18) 1995; 24 Jessen (2024053017462297100_DEV170316C27) 2015; 7 Wells (2024053017462297100_DEV170316C52) 2018; 557 Snippert (2024053017462297100_DEV170316C47) 2011; 12 Young (2024053017462297100_DEV170316C54) 2013; 77 Fawcett (2024053017462297100_DEV170316C16) 1990; 13 Widera (2024053017462297100_DEV170316C53) 2011; 20 Anderson (2024053017462297100_DEV170316C3) 2001; 30 Cattin (2024053017462297100_DEV170316C11) 2015; 162 Madisen (2024053017462297100_DEV170316C34) 2010; 13 Mathon (2024053017462297100_DEV170316C38) 2001; 291 Kaller (2024053017462297100_DEV170316C29) 2017; 47 Mahar (2024053017462297100_DEV170316C35) 2018; 19 Eming (2024053017462297100_DEV170316C15) 2017; 356 Srinivas (2024053017462297100_DEV170316C49) 2001; 1 Varga (2024053017462297100_DEV170316C51) 2017; 19 Kang (2024053017462297100_DEV170316C30) 2010; 68 McKenzie (2024053017462297100_DEV170316C39) 2006; 26 Dimou (2024053017462297100_DEV170316C13) 2017; 47 Snippert (2024053017462297100_DEV170316C48) 2010; 143 Bray (2024053017462297100_DEV170316C8) 1974; 117 Livet (2024053017462297100_DEV170316C33) 2007; 450 McKenzie (2024053017462297100_DEV170316C40) 2014; 346 Chen (2024053017462297100_DEV170316C12) 2012; 30 Guimarães-Camboa (2024053017462297100_DEV170316C23) 2017; 20 Domingues (2024053017462297100_DEV170316C14) 2016; 4 Mallon (2024053017462297100_DEV170316C36) 2002; 22 Parrinello (2024053017462297100_DEV170316C43) 2010; 143 Friede (2024053017462297100_DEV170316C20) 1980; 44 Zhu (2024053017462297100_DEV170316C55) 2008; 135 Kaukua (2024053017462297100_DEV170316C31) 2014; 513 Zochodne (2024053017462297100_DEV170316C57) 2012; 17 Birey (2024053017462297100_DEV170316C7) 2017; 47 Brosius Lutz (2024053017462297100_DEV170316C9) 2017; 114 Gutmann (2024053017462297100_DEV170316C24) 1943; 101 Joseph (2024053017462297100_DEV170316C28) 2004; 131 Feltri (2024053017462297100_DEV170316C17) 1999; 11 Amoh (2024053017462297100_DEV170316C2) 2005; 102 Cattin (2024053017462297100_DEV170316C10) 2016; 39 Petersen (2024053017462297100_DEV170316C44) 2017; 45 Askew (2024053017462297100_DEV170316C6) 2017; 18 |
References_xml | – volume: 75 start-page: 331 year: 1988 ident: 2024053017462297100_DEV170316C46 article-title: Quantitation of Schwann cells and endoneurial fibroblast-like cells after experimental nerve trauma publication-title: Acta Neuropathol. doi: 10.1007/BF00687785 contributor: fullname: Salonen – volume: 4 start-page: 71 year: 2016 ident: 2024053017462297100_DEV170316C14 article-title: Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair publication-title: Frontier. Cell Dev. Biol. doi: 10.3389/fcell.2016.00071 contributor: fullname: Domingues – volume: 210 start-page: 153 year: 2015 ident: 2024053017462297100_DEV170316C22 article-title: Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves publication-title: J. Cell Biol. doi: 10.1083/jcb.201503019 contributor: fullname: Gomez-Sanchez – volume: 22 start-page: 430 year: 2003 ident: 2024053017462297100_DEV170316C32 article-title: Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells publication-title: Mol. Cell. Neurosci. doi: 10.1016/S1044-7431(03)00029-0 contributor: fullname: Leone – volume: 77 start-page: 873 year: 2013 ident: 2024053017462297100_DEV170316C54 article-title: Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling publication-title: Neuron doi: 10.1016/j.neuron.2013.01.006 contributor: fullname: Young – volume: 11 start-page: 1577 year: 1999 ident: 2024053017462297100_DEV170316C17 article-title: A novel P0 glycoprotein transgene activates expression of lac Z in myelin-forming Schwann cells publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00568.x contributor: fullname: Feltri – volume: 1 start-page: 4 year: 2001 ident: 2024053017462297100_DEV170316C49 article-title: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-1-4 contributor: fullname: Srinivas – volume: 139 start-page: 366 year: 2009 ident: 2024053017462297100_DEV170316C1 article-title: Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin publication-title: Cell doi: 10.1016/j.cell.2009.07.049 contributor: fullname: Adameyko – volume: 26 start-page: 6651 year: 2006 ident: 2024053017462297100_DEV170316C39 article-title: Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1007-06.2006 contributor: fullname: McKenzie – volume: 198 start-page: 127 year: 2012 ident: 2024053017462297100_DEV170316C19 article-title: c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201205025 contributor: fullname: Fontana – volume: 20 start-page: 345 year: 2017 ident: 2024053017462297100_DEV170316C23 article-title: Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.12.006 contributor: fullname: Guimarães-Camboa – volume: 152 start-page: 51 year: 2013 ident: 2024053017462297100_DEV170316C37 article-title: Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection publication-title: Cell doi: 10.1016/j.cell.2012.12.014 contributor: fullname: Masaki – volume: 13 start-page: 133 year: 2010 ident: 2024053017462297100_DEV170316C34 article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain publication-title: Nat. Neurosci. doi: 10.1038/nn.2467 contributor: fullname: Madisen – volume: 19 start-page: 1133 year: 2017 ident: 2024053017462297100_DEV170316C51 article-title: Cell plasticity in epithelial homeostasis and tumorigenesis publication-title: Nat. Cell Biol. doi: 10.1038/ncb3611 contributor: fullname: Varga – volume: 135 start-page: 145 year: 2008 ident: 2024053017462297100_DEV170316C55 article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes publication-title: Development doi: 10.1242/dev.004895 contributor: fullname: Zhu – volume: 143 start-page: 145 year: 2010 ident: 2024053017462297100_DEV170316C43 article-title: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting publication-title: Cell doi: 10.1016/j.cell.2010.08.039 contributor: fullname: Parrinello – volume: 594 start-page: 3521 year: 2016 ident: 2024053017462297100_DEV170316C26 article-title: The repair Schwann cell and its function in regenerating nerves publication-title: J. Physiol. doi: 10.1113/JP270874 contributor: fullname: Jessen – volume: 450 start-page: 56 year: 2007 ident: 2024053017462297100_DEV170316C33 article-title: Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system publication-title: Nature doi: 10.1038/nature06293 contributor: fullname: Livet – volume: 291 start-page: 872 year: 2001 ident: 2024053017462297100_DEV170316C38 article-title: Lack of replicative senescence in normal rodent glia publication-title: Science doi: 10.1126/science.1056782 contributor: fullname: Mathon – volume: 63 start-page: 1376 year: 2015 ident: 2024053017462297100_DEV170316C41 article-title: New insights on Schwann cell development publication-title: Glia doi: 10.1002/glia.22852 contributor: fullname: Monk – volume-title: Neurobiology of Peripheral Nerve Regeneration year: 2008 ident: 2024053017462297100_DEV170316C56 doi: 10.1017/CBO9780511541759 contributor: fullname: Zochodne – volume: 143 start-page: 134 year: 2010 ident: 2024053017462297100_DEV170316C48 article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells publication-title: Cell doi: 10.1016/j.cell.2010.09.016 contributor: fullname: Snippert – volume: 47 start-page: 93 year: 2017 ident: 2024053017462297100_DEV170316C7 article-title: Oligodendroglia-lineage cells in brain plasticity, homeostasis and psychiatric disorders publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.09.016 contributor: fullname: Birey – volume: 131 start-page: 5599 year: 2004 ident: 2024053017462297100_DEV170316C28 article-title: Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells publication-title: Development doi: 10.1242/dev.01429 contributor: fullname: Joseph – volume: 557 start-page: 322 year: 2018 ident: 2024053017462297100_DEV170316C52 article-title: Diverse mechanisms for endogenous regeneration and repair in mammalian organs publication-title: Nature doi: 10.1038/s41586-018-0073-7 contributor: fullname: Wells – volume: 20 start-page: 793 year: 2017 ident: 2024053017462297100_DEV170316C50 article-title: A new fate mapping system reveals context-dependent random or clonal expansion of microglia publication-title: Nat. Neurosci. doi: 10.1038/nn.4547 contributor: fullname: Tay – volume: 21 start-page: 193 year: 2011 ident: 2024053017462297100_DEV170316C4 article-title: Pericytes: developmental, physiological, and pathological perspectives, problems, and promises publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.07.001 contributor: fullname: Armulik – volume: 12 start-page: 113 year: 2011 ident: 2024053017462297100_DEV170316C47 article-title: Tracking adult stem cells publication-title: EMBO Rep. doi: 10.1038/embor.2010.216 contributor: fullname: Snippert – volume: 44 start-page: 181 year: 1980 ident: 2024053017462297100_DEV170316C20 article-title: The fine structure of stumps of transected nerve fibers in subserial sections publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(80)90126-4 contributor: fullname: Friede – volume: 22 start-page: 876 year: 2002 ident: 2024053017462297100_DEV170316C36 article-title: Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-03-00876.2002 contributor: fullname: Mallon – volume: 45 start-page: 10 year: 2017 ident: 2024053017462297100_DEV170316C44 article-title: Nerve-associated neural crest: peripheral glial cells generate multiple fates in the body publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2017.02.006 contributor: fullname: Petersen – volume: 47 start-page: 73 year: 2017 ident: 2024053017462297100_DEV170316C13 article-title: Diversity of oligodendrocytes and their progenitors publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.09.015 contributor: fullname: Dimou – volume: 102 start-page: 17734 year: 2005 ident: 2024053017462297100_DEV170316C2 article-title: Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508440102 contributor: fullname: Amoh – volume: 68 start-page: 668 year: 2010 ident: 2024053017462297100_DEV170316C30 article-title: NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2010.09.009 contributor: fullname: Kang – volume: 5 start-page: 126 year: 2013 ident: 2024053017462297100_DEV170316C45 article-title: Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.08.033 contributor: fullname: Ribeiro – volume: 13 start-page: 43 year: 1990 ident: 2024053017462297100_DEV170316C16 article-title: Peripheral nerve regeneration publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.13.030190.000355 contributor: fullname: Fawcett – volume: 75 start-page: 633 year: 2012 ident: 2024053017462297100_DEV170316C5 article-title: c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration publication-title: Neuron doi: 10.1016/j.neuron.2012.06.021 contributor: fullname: Arthur-Farraj – volume: 18 start-page: 391 year: 2017 ident: 2024053017462297100_DEV170316C6 article-title: Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.041 contributor: fullname: Askew – volume: 39 start-page: 38 year: 2016 ident: 2024053017462297100_DEV170316C10 article-title: The multicellular complexity of peripheral nerve regeneration publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2016.04.005 contributor: fullname: Cattin – volume: 356 start-page: 1026 year: 2017 ident: 2024053017462297100_DEV170316C15 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science doi: 10.1126/science.aam7928 contributor: fullname: Eming – volume: 30 start-page: 2261 year: 2012 ident: 2024053017462297100_DEV170316C12 article-title: Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration publication-title: Stem Cells doi: 10.1002/stem.1186 contributor: fullname: Chen – volume: 19 start-page: 323 year: 2018 ident: 2024053017462297100_DEV170316C35 article-title: Intrinsic mechanisms of neuronal axon regeneration publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0001-8 contributor: fullname: Mahar – volume: 30 start-page: 19 year: 2001 ident: 2024053017462297100_DEV170316C3 article-title: Stem cells and pattern formation in the nervous system: the possible versus the actual publication-title: Neuron doi: 10.1016/S0896-6273(01)00260-4 contributor: fullname: Anderson – volume: 162 start-page: 1127 year: 2015 ident: 2024053017462297100_DEV170316C11 article-title: Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves publication-title: Cell doi: 10.1016/j.cell.2015.07.021 contributor: fullname: Cattin – volume: 7 start-page: a020487 year: 2015 ident: 2024053017462297100_DEV170316C27 article-title: Schwann cells: development and role in nerve repair publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a020487 contributor: fullname: Jessen – volume: 101 start-page: 489 year: 1943 ident: 2024053017462297100_DEV170316C24 article-title: Recovery of fibre numbers and diameters in the regeneration of peripheral nerves publication-title: J. Physiol. doi: 10.1113/jphysiol.1943.sp004002 contributor: fullname: Gutmann – volume: 24 start-page: 667 year: 1995 ident: 2024053017462297100_DEV170316C18 article-title: Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration publication-title: J. Neurocytol. doi: 10.1007/BF01179817 contributor: fullname: Fernandez-Valle – volume: 17 start-page: 1 year: 2012 ident: 2024053017462297100_DEV170316C57 article-title: The challenges and beauty of peripheral nerve regrowth publication-title: J. Peripheral Nervous Syst. doi: 10.1111/j.1529-8027.2012.00378.x contributor: fullname: Zochodne – volume: 19 start-page: 311 year: 2018 ident: 2024053017462297100_DEV170316C21 article-title: Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2018.9 contributor: fullname: Ge – volume: 20 start-page: 2053 year: 2011 ident: 2024053017462297100_DEV170316C53 article-title: Schwann cells can be reprogrammed to multipotency by culture publication-title: Stem Cells Dev. doi: 10.1089/scd.2010.0525 contributor: fullname: Widera – volume: 346 start-page: 318 year: 2014 ident: 2024053017462297100_DEV170316C40 article-title: Motor skill learning requires active central myelination publication-title: Science doi: 10.1126/science.1254960 contributor: fullname: McKenzie – volume: 114 start-page: E8072 year: 2017 ident: 2024053017462297100_DEV170316C9 article-title: Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1710566114 contributor: fullname: Brosius Lutz – volume: 47 start-page: 86 year: 2017 ident: 2024053017462297100_DEV170316C29 article-title: Myelin plasticity and behaviour-connecting the dots publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.09.014 contributor: fullname: Kaller – volume: 117 start-page: 517 year: 1974 ident: 2024053017462297100_DEV170316C8 article-title: Regeneration of peripheral unmyelinated nerves. Fate of the axonal sprouts which develop after injury publication-title: J. Anat. contributor: fullname: Bray – volume: 47 start-page: 131 year: 2017 ident: 2024053017462297100_DEV170316C25 article-title: Unwrapping the unappreciated: recent progress in Remak Schwann cell biology publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.10.003 contributor: fullname: Harty – volume: 513 start-page: 551 year: 2014 ident: 2024053017462297100_DEV170316C31 article-title: Glial origin of mesenchymal stem cells in a tooth model system publication-title: Nature doi: 10.1038/nature13536 contributor: fullname: Kaukua – volume: 73 start-page: 729 year: 2012 ident: 2024053017462297100_DEV170316C42 article-title: A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo publication-title: Neuron doi: 10.1016/j.neuron.2011.11.031 contributor: fullname: Napoli |
SSID | ssj0003677 |
Score | 2.5750182 |
Snippet | Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult... |
SourceID | pubmedcentral crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Axons - metabolism Carcinogenesis - pathology Cell Proliferation Central Nervous System - physiology Extracellular Matrix Proteins - metabolism Homeostasis Mice, Inbred C57BL Mice, Transgenic Myelin Sheath - metabolism Nerve Regeneration - physiology Neural Stem Cells - cytology Neural Stem Cells - metabolism Neuronal Plasticity Peripheral Nerves - cytology Peripheral Nerves - physiology Peripheral Nerves - ultrastructure Schwann Cells - metabolism Stem Cells and Regeneration |
Title | The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30413560 https://pubmed.ncbi.nlm.nih.gov/PMC6307893 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBablIZcSpu-ti8E7W1xatmK5RzLdktCSShsCqWXRbalZiGxl8Qp5CfkX3dGD0uml7bQPRijlV_6Psuj0egbQt7xQtVlo5ukkTxLuMBXShRVIiUTMHpQ8EPXwNFSnH4rPy74YjLxcjyh7L8iDWWANa6c_Qu0h5NCAewD5rAF1GH7x7hf2QTzzhZE0_K8u1QdGIIoP2IiytUPozft66DesREYuJi1GAOJec4bfP3bug9LUOanS6fW5HPnuvWVqAY9wzmA2WZICBabvVFokpk29gvFIj_Esl-j8pb1Ul94DQV0U0tMJGH6MhiFr6PPiEvtd4wrsPbDZEo_6CK0KsF13yp2bbASw0RYcG3azH028AEexibnhEe_jiKerCczxXgZS1Fl-3GOM9PMPYTv6K1wpWO0Xbr92xcETBaAuFE_9xlK-xdxJUB6c2l4k6fw8T-wmRDGIt5fTuZFjhr--Ra5l0HvZ8b5x58H8yAvTDrQ4a6dZi5c93246i7Z8ZcYGUyDlTSO4I1MorOH5IEby9APloSPyES1e-S-bcDbPbJz4uI2oPB7Zwofkztobhr4STtNgVk04icFhtGYn1gn8JMaflKo5_lJkZ_mLMBPc3TETzxYUuQnRX7SwM8n5Ounxdn8KHHpQJKac94nYDlnTc3TUguZYstVqLGt0rRiFQxMmrTKmDwsoLhIVQk7h3WhpZZMg5kmdZU_Jdtt16rnhJZaiVpXcCbWcC1UCXvZgc5FJSRjupqSt77NVxur-rLC0TKAtAKQVhakKXlmURjqeMymRIzwGSqgmPv4n3Z9bkTdHWle_PORL8lueIdeke3-6ka9JlvXzc0bQ8BfSTrI-Q |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regulation+of+the+homeostasis+and+regeneration+of+peripheral+nerve+is+distinct+from+the+CNS+and+independent+of+a+stem+cell+population&rft.jtitle=Development+%28Cambridge%29&rft.au=Stierli%2C+Salome&rft.au=Napoli%2C+Ilaria&rft.au=White%2C+Ian+J.&rft.au=Cattin%2C+Anne-Laure&rft.date=2018-12-14&rft.pub=The+Company+of+Biologists+Ltd&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=145&rft.issue=24&rft_id=info:doi/10.1242%2Fdev.170316&rft_id=info%3Apmid%2F30413560&rft.externalDBID=PMC6307893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |