Zn nanodot patterning in borosilicate glasses by electron irradiation
Metallic zinc nanoparticles are generated in two compositional ranges of borosilicate glasses upon 200 and 300 keV electron beam irradiation in a transmission electron microscope. Irradiation effects are studied either with a stationary electron beam as a time series or with spatially varying beams...
Saved in:
Published in: | Journal of materials research Vol. 30; no. 12; pp. 1914 - 1924 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, USA
Cambridge University Press
28-06-2015
Springer International Publishing Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metallic zinc nanoparticles are generated in two compositional ranges of borosilicate glasses upon 200 and 300 keV electron beam irradiation in a transmission electron microscope. Irradiation effects are studied either with a stationary electron beam as a time series or with spatially varying beams for line-scan patterning. The size of the zinc nanodots formed is inversely related to the distance from the center of the electron beam, and growth from 5 to 50 nm over time via ripening can be observed. Line-scan patterning via both thermal gun and field emission gun electron irradiation has been successfully achieved. Our findings also show the occurrence of self-organized particle ordering, such as formation of chains. Metal nanoparticles have a tendency to migrate toward the glass fragment center, unless high intensity radiation ablates the glass matrix, when Zn particles remain decorating the surface. High-resolution lattice imaging, scanning transmission electron microscopy, and electron energy loss spectroscopy are used to confirm particle identity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2015.122 |