Pharmacological inhibition of SK‐channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events

Background Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small‐conductance Ca2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cardiovascular electrophysiology Vol. 34; no. 1; pp. 126 - 134
Main Authors: Linz, Benedikt, Hesselkilde, Eva M., Skarsfeldt, Mark A., Hertel, Julie N., Sattler, Stefan M., Yan, Yannan, Tfelt‐Hansen, Jacob, Diness, Jonas G., Bentzen, Bo H., Linz, Dominik, Jespersen, Thomas
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-01-2023
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small‐conductance Ca2+‐activated K+ (SK)‐channel inhibition in a porcine model for obstructive respiratory events. Methods In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK‐channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre‐INAP), during (INAP) and after (post‐) INAP. AF‐inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT‐interval duration (QT‐paced) and electromechanical window (EMW) shortening. Results During vehicle infusion, INAP transiently shortened AERP (pre‐INAP: 135 ± 10 ms vs. post‐INAP 101 ± 11 ms; p = .008) and increased AF‐inducibility. QT‐paced prolonged during INAP (pre‐INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post‐INAP (pre‐INAP 80 ± 4 ms; INAP 59 ± 6 ms, post‐INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP‐induced AERP‐shortening and reduced AF‐susceptibility. AP14145 did not alter QT‐paced at baseline (pre‐AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT‐paced and EMW‐shortening during INAP. Conclusion In a pig model for obstructive respiratory events, the SK‐channel‐inhibitor AP14145 prevented INAP‐associated AERP‐shortening and AF‐susceptibility without impairing ventricular electrophysiology. Whether SK‐channels represent a target for OSA‐related AF in humans warrants further study. Obstructive respiratory events, shortening of atrial refractoriness and efficacy of AAD: Obstructive respiratory events may be associated with venous preload, arousal, thoracic pressure swings and asphyxic blood gas changes (hypoxia and hypercapnia). These pathophysiological elements may contribute to shortened atrial refractoriness in the setting of OSA. While established AADs could not blunt apnea‐related shortening in atrial refractoriness, AP14145, as a novel SK‐channel inhibitor could. Nevertheless, SK‐channel involvement in OSA‐related AF remains putative and further investigations are warranted. AAD, atrial antiarrhythmic drugs, OSA, obstructive sleep apnea.
AbstractList Background Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small‐conductance Ca2+‐activated K+ (SK)‐channel inhibition in a porcine model for obstructive respiratory events. Methods In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK‐channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre‐INAP), during (INAP) and after (post‐) INAP. AF‐inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT‐interval duration (QT‐paced) and electromechanical window (EMW) shortening. Results During vehicle infusion, INAP transiently shortened AERP (pre‐INAP: 135 ± 10 ms vs. post‐INAP 101 ± 11 ms; p = .008) and increased AF‐inducibility. QT‐paced prolonged during INAP (pre‐INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post‐INAP (pre‐INAP 80 ± 4 ms; INAP 59 ± 6 ms, post‐INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP‐induced AERP‐shortening and reduced AF‐susceptibility. AP14145 did not alter QT‐paced at baseline (pre‐AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT‐paced and EMW‐shortening during INAP. Conclusion In a pig model for obstructive respiratory events, the SK‐channel‐inhibitor AP14145 prevented INAP‐associated AERP‐shortening and AF‐susceptibility without impairing ventricular electrophysiology. Whether SK‐channels represent a target for OSA‐related AF in humans warrants further study. Obstructive respiratory events, shortening of atrial refractoriness and efficacy of AAD: Obstructive respiratory events may be associated with venous preload, arousal, thoracic pressure swings and asphyxic blood gas changes (hypoxia and hypercapnia). These pathophysiological elements may contribute to shortened atrial refractoriness in the setting of OSA. While established AADs could not blunt apnea‐related shortening in atrial refractoriness, AP14145, as a novel SK‐channel inhibitor could. Nevertheless, SK‐channel involvement in OSA‐related AF remains putative and further investigations are warranted. AAD, atrial antiarrhythmic drugs, OSA, obstructive sleep apnea.
BackgroundObstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small‐conductance Ca2+‐activated K+ (SK)‐channel inhibition in a porcine model for obstructive respiratory events.MethodsIn spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK‐channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre‐INAP), during (INAP) and after (post‐) INAP. AF‐inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT‐interval duration (QT‐paced) and electromechanical window (EMW) shortening.ResultsDuring vehicle infusion, INAP transiently shortened AERP (pre‐INAP: 135 ± 10 ms vs. post‐INAP 101 ± 11 ms; p = .008) and increased AF‐inducibility. QT‐paced prolonged during INAP (pre‐INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post‐INAP (pre‐INAP 80 ± 4 ms; INAP 59 ± 6 ms, post‐INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP‐induced AERP‐shortening and reduced AF‐susceptibility. AP14145 did not alter QT‐paced at baseline (pre‐AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT‐paced and EMW‐shortening during INAP.ConclusionIn a pig model for obstructive respiratory events, the SK‐channel‐inhibitor AP14145 prevented INAP‐associated AERP‐shortening and AF‐susceptibility without impairing ventricular electrophysiology. Whether SK‐channels represent a target for OSA‐related AF in humans warrants further study.
Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca -activated K (SK)-channel inhibition in a porcine model for obstructive respiratory events. In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study.
Obstructive respiratory events, shortening of atrial refractoriness and efficacy of AAD: Obstructive respiratory events may be associated with venous preload, arousal, thoracic pressure swings and asphyxic blood gas changes (hypoxia and hypercapnia). These pathophysiological elements may contribute to shortened atrial refractoriness in the setting of OSA. While established AADs could not blunt apnea‐related shortening in atrial refractoriness, AP14145, as a novel SK‐channel inhibitor could. Nevertheless, SK‐channel involvement in OSA‐related AF remains putative and further investigations are warranted. AAD, atrial antiarrhythmic drugs, OSA, obstructive sleep apnea.
Author Hesselkilde, Eva M.
Tfelt‐Hansen, Jacob
Diness, Jonas G.
Bentzen, Bo H.
Jespersen, Thomas
Skarsfeldt, Mark A.
Hertel, Julie N.
Sattler, Stefan M.
Yan, Yannan
Linz, Benedikt
Linz, Dominik
AuthorAffiliation 6 Department of Cardiology Maastricht University Medical Centre Maastricht The Netherlands
5 Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital University of Adelaide Adelaide Australia
2 Acesion Pharma Copenhagen Denmark
4 Department of Forensic Medicine, Faculty of Medical Sciences University of Copenhagen Copenhagen Denmark
3 The Department of Cardiology, The Heart Centre Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
1 Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet University of Copenhagen Copenhagen Denmark
AuthorAffiliation_xml – name: 4 Department of Forensic Medicine, Faculty of Medical Sciences University of Copenhagen Copenhagen Denmark
– name: 1 Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet University of Copenhagen Copenhagen Denmark
– name: 3 The Department of Cardiology, The Heart Centre Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
– name: 5 Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital University of Adelaide Adelaide Australia
– name: 2 Acesion Pharma Copenhagen Denmark
– name: 6 Department of Cardiology Maastricht University Medical Centre Maastricht The Netherlands
Author_xml – sequence: 1
  givenname: Benedikt
  orcidid: 0000-0002-7611-4130
  surname: Linz
  fullname: Linz, Benedikt
  email: bene.linz@sund.ku.dk
  organization: University of Copenhagen
– sequence: 2
  givenname: Eva M.
  surname: Hesselkilde
  fullname: Hesselkilde, Eva M.
  organization: University of Copenhagen
– sequence: 3
  givenname: Mark A.
  surname: Skarsfeldt
  fullname: Skarsfeldt, Mark A.
  organization: Acesion Pharma
– sequence: 4
  givenname: Julie N.
  surname: Hertel
  fullname: Hertel, Julie N.
  organization: University of Copenhagen
– sequence: 5
  givenname: Stefan M.
  surname: Sattler
  fullname: Sattler, Stefan M.
  organization: University of Copenhagen
– sequence: 6
  givenname: Yannan
  surname: Yan
  fullname: Yan, Yannan
  organization: University of Copenhagen
– sequence: 7
  givenname: Jacob
  surname: Tfelt‐Hansen
  fullname: Tfelt‐Hansen, Jacob
  organization: University of Copenhagen
– sequence: 8
  givenname: Jonas G.
  surname: Diness
  fullname: Diness, Jonas G.
  organization: Acesion Pharma
– sequence: 9
  givenname: Bo H.
  surname: Bentzen
  fullname: Bentzen, Bo H.
  organization: Acesion Pharma
– sequence: 10
  givenname: Dominik
  surname: Linz
  fullname: Linz, Dominik
  organization: Maastricht University Medical Centre
– sequence: 11
  givenname: Thomas
  surname: Jespersen
  fullname: Jespersen, Thomas
  organization: University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36482155$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1DAUhi1URC-w4AWQJTZlkdaOL0lWqBqVcqlEJWBtOc7JxKPEDnYy1ex4BDZ9QZ4EDykVIOGNrePPn4_9H6MD5x0g9JySM5rG-cbAGRWFrB6hIyo4yUoqi4O0JlxkrCzYITqOcUMIZZKIJ-iQSV7mVIgjdHfT6TBo43u_tkb32LrO1nay3mHf4k8ffnz7bjrtHPQR39qpwxc3lFMu8BhgC26KWE_BpoM6hG43dYNfg7MG7w-tISYf1nj0wVgHePAN9Lj1Afs6TmE2k90CDhBHG_Tkww4vzqfocav7CM_u5xP05c3l59Xb7Prj1bvVxXVmOOdVVhmmgZmcl4UEyWuWy6ZptTYCSk6AC5nKoFO9qWSTN0S0pE5fI2vBSmkIO0GvF-841wM0Jt0ddK_GYAcddsprq_7ecbZTa79VlFBSlGWVDKf3huC_zhAnNdhooO-1Az9HlReCsX1IIqEv_0E3fg4uvS9RUvCqKEqWqFcLZYKPMUD70A0lai9SKW31K-3Evviz_Qfyd7wJOF-AW9vD7v8m9X51uSh_Av86udU
CitedBy_id crossref_primary_10_1016_j_hrthm_2024_01_033
crossref_primary_10_1007_s40265_023_01923_3
crossref_primary_10_1152_ajpheart_00362_2023
crossref_primary_10_3390_ijms25052965
crossref_primary_10_1093_europace_euae132
Cites_doi 10.1016/j.tcm.2015.01.010
10.1161/01.CIR.96.5.1686
10.1093/eurheartj/ehaa612
10.1074/jbc.M307508200
10.1371/journal.pone.0108824
10.1164/ajrccm.163.1.2001008
10.1161/CIRCULATIONAHA.110.943431
10.1016/j.hrthm.2021.03.017
10.1093/sleep/zsab132
10.1152/ajpheart.00534.2005
10.1016/j.jacep.2019.03.005
10.1093/cvr/cvu121
10.1093/europace/euu066
10.1161/HYPERTENSIONAHA.113.01728
10.1016/j.jacc.2014.05.077
10.1097/FJC.0000000000000259
10.1016/j.amjcard.2012.03.037
10.1111/jce.13020
10.1016/j.hrthm.2011.07.018
10.3389/fphys.2021.650964
10.1016/j.lfs.2020.118892
10.1161/HYPERTENSIONAHA.112.191965
10.1161/CIRCULATIONAHA.113.003019
10.14740/cr1185
10.1038/nrn1516
10.1161/CIRCEP.117.005125
10.1007/s12551-020-00615-6
10.1016/j.cjca.2021.09.026
10.1016/j.amjcard.2011.02.343
10.1016/j.hrthm.2011.03.053
10.1093/europace/euaa275
10.1161/CIRCRESAHA.119.315755
10.1161/CIRCRESAHA.110.221911
10.2174/1573403X1004140707125137
10.1016/j.ijcha.2021.100898
10.1016/S2213-2600(19)30198-5
10.1080/17476348.2018.1439743
10.1016/j.ejphar.2018.12.011
10.1093/cvr/cvu120
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
K9.
7X8
5PM
DOI 10.1111/jce.15769
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
DocumentTitleAlternate LINZ et al
EISSN 1540-8167
EndPage 134
ExternalDocumentID 10_1111_jce_15769
36482155
JCE15769
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
04C
05W
0R~
10A
1OB
1OC
24P
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJX
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMSDO
BMXJE
BPMNR
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QP
K9.
7X8
5PM
ID FETCH-LOGICAL-c4449-9c3ae3c24876e64b326ddfaac5e840e4566e6eab32d96d2d05f0b1676b5386c03
IEDL.DBID 33P
ISSN 1045-3873
IngestDate Tue Sep 17 21:31:06 EDT 2024
Fri Aug 16 00:22:35 EDT 2024
Thu Oct 10 18:42:13 EDT 2024
Thu Nov 21 22:08:42 EST 2024
Sat Sep 28 08:18:52 EDT 2024
Sat Aug 24 01:08:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords obstructive sleep apnea
SK-channel
atrial fibrillation
novel pharmacological treatment
arrhythmia
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4449-9c3ae3c24876e64b326ddfaac5e840e4566e6eab32d96d2d05f0b1676b5386c03
Notes Dominik Linz and Thomas Jespersen shared senior authorship.
Disclosures
AP14145 was provided by Acesion Pharma. Mark Alexander Skarsfeldt, Jonas Goldin Diness, and Bo Hjorth Bentzen are fully or partly employed in Acesion Pharma. Other authors: No disclosures.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Disclosures: AP14145 was provided by Acesion Pharma. Mark Alexander Skarsfeldt, Jonas Goldin Diness, and Bo Hjorth Bentzen are fully or partly employed in Acesion Pharma. Other authors: No disclosures.
ORCID 0000-0002-7611-4130
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjce.15769
PMID 36482155
PQID 2765497783
PQPubID 1086397
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107889
proquest_miscellaneous_2753311115
proquest_journals_2765497783
crossref_primary_10_1111_jce_15769
pubmed_primary_36482155
wiley_primary_10_1111_jce_15769_JCE15769
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cardiovascular electrophysiology
PublicationTitleAlternate J Cardiovasc Electrophysiol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2012; 60
2019; 7
2021; 42
2021; 23
2001; 163
2019; 5
2021; 266
2013; 62
2020; 126
2010; 122
2004; 5
2021; 37(11)
2020; 12
2019; 844
2003; 278
2011; 8
2014; 64
2014; 129
2021; 37
2015; 25
2012; 110
2011; 108
2021; 12
2005; 289
1997; 96
2021; 18
2017; 10
2015; 66
2014; 16
2018; 12
2014; 9
2016; 27
2014; 103
2021; 44(11)
2014; 10
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 266
  year: 2021
  article-title: HDAC2‐dependent remodeling of K(Ca)2.2 (KCNN2) and K(Ca)2.3 (KCNN3) K(+) channels in atrial fibrillation with concomitant heart failure
  publication-title: Life Sci
– volume: 103
  start-page: 156
  issue: 1
  year: 2014
  end-page: 167
  article-title: Small‐conductance calcium‐activated potassium (SK) channels contribute to action potential repolarization in human atria
  publication-title: Cardiovasc Res
– volume: 844
  start-page: 110
  year: 2019
  end-page: 117
  article-title: Arrhythmogenic β‐adrenergic signaling in cardiac hypertrophy: the role of small‐conductance calcium‐activated potassium channels via activation of CaMKII
  publication-title: Eur J Pharmacol
– volume: 163
  start-page: 19
  issue: 1
  year: 2001
  end-page: 25
  article-title: Sleep‐disordered breathing and cardiovascular disease: cross‐sectional results of the Sleep Heart Health Study
  publication-title: Am J Respir Crit Care Med
– volume: 5
  start-page: 692
  issue: 6
  year: 2019
  end-page: 701
  article-title: Variability of sleep apnea severity and risk of atrial fibrillation
  publication-title: JACC: Clin Electrophysiol
– volume: 37(11)
  start-page: 1846
  year: 2021
  end-page: 1856
  article-title: Prevalence and assessment of sleep‐disordered breathing in patients with atrial fibrillation: a systematic review and meta‐analysis
  publication-title: Can J Cardiol
– volume: 12
  start-page: 37
  issue: 1
  year: 2021
  end-page: 46
  article-title: Evaluation of index of Cardio‐Electrophysiological balance in patients with atrial fibrillation on antiarrhythmic‐drug therapy
  publication-title: Cardiol Res
– volume: 44(11)
  year: 2021
  article-title: The social and economic cost of sleep disorders
  publication-title: Sleep
– volume: 129
  start-page: 430
  issue: 4
  year: 2014
  end-page: 440
  article-title: Role of small‐conductance calcium‐activated potassium channels in atrial electrophysiology and fibrillation in the dog
  publication-title: Circulation
– volume: 8
  start-page: 1436
  issue: 9
  year: 2011
  end-page: 1443
  article-title: Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation
  publication-title: Heart Rhythm
– volume: 60
  start-page: 172
  issue: 1
  year: 2012
  end-page: 178
  article-title: Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea
  publication-title: Hypertension
– volume: 108
  start-page: 555
  issue: 5
  year: 2011
  end-page: 565
  article-title: Reactive oxygen species‐activated ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload
  publication-title: Circ Res
– volume: 64
  start-page: 2013
  issue: 19
  year: 2014
  end-page: 2023
  article-title: Atrial fibrillation promotion with long‐term repetitive obstructive sleep apnea in a rat model
  publication-title: J Am Coll Cardiol
– volume: 10
  issue: 10
  year: 2017
  article-title: Termination of Vernakalant‐Resistant atrial fibrillation by inhibition of small‐conductance Ca(2+) activated K(+) channels in pigs
  publication-title: Circul Arrhythmia Electrophysiol
– volume: 103
  start-page: 168
  issue: 1
  year: 2014
  end-page: 177
  article-title: Tubulin polymerization disrupts cardiac β‐adrenergic regulation of late INa
  publication-title: Cardiovasc Res
– volume: 16
  start-page: 1309
  issue: 9
  year: 2014
  end-page: 1314
  article-title: Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta‐analysis of observational studies
  publication-title: Europace
– volume: 126
  start-page: 603
  issue: 5
  year: 2020
  end-page: 615
  article-title: Enhanced CaMKII‐dependent late I(Na) induces atrial proarrhythmic activity in patients with sleep‐disordered breathing
  publication-title: Circ Res
– volume: 108
  start-page: 47
  issue: 1
  year: 2011
  end-page: 51
  article-title: Meta‐analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation
  publication-title: Am J Cardiol
– volume: 5
  start-page: 758
  issue: 10
  year: 2004
  end-page: 770
  article-title: Ca(2+)‐activated K+ channels: molecular determinants and function of the SK family
  publication-title: Nat Rev Neurosci
– volume: 110
  start-page: 369
  issue: 3
  year: 2012
  end-page: 372
  article-title: Relation of the severity of obstructive sleep apnea in response to anti‐arrhythmic drugs in patients with atrial fibrillation or atrial flutter
  publication-title: Am J Cardiol
– volume: 23
  start-page: 691
  issue: 5
  year: 2021
  end-page: 700
  article-title: Sleep apnoea has a dose‐dependent effect on atrial remodelling in paroxysmal but not persistent atrial fibrillation: a high‐density mapping study
  publication-title: EP Europace
– volume: 9
  issue: 10
  year: 2014
  article-title: Calcium‐activated potassium current modulates ventricular repolarization in chronic heart failure
  publication-title: PLoS One
– volume: 62
  start-page: 767
  issue: 4
  year: 2013
  end-page: 774
  article-title: Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea
  publication-title: Hypertension
– volume: 12
  start-page: 135
  issue: 1
  year: 2020
  end-page: 142
  article-title: Stretch modulation of cardiac contractility: importance of myocyte calcium during the slow force response
  publication-title: Biophys Rev
– volume: 66
  start-page: 165
  issue: 2
  year: 2015
  end-page: 176
  article-title: Antiarrhythmic mechanisms of SK channel inhibition in the rat atrium
  publication-title: J Cardiovasc Pharmacol
– volume: 12
  year: 2021
  article-title: Small conductance Ca(2 +)‐activated K(+) (SK) channel mRNA expression in human atrial and ventricular tissue: comparison between donor, atrial fibrillation and heart failure tissue
  publication-title: Front Physiol
– volume: 96
  start-page: 1686
  issue: 5
  year: 1997
  end-page: 1695
  article-title: Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff‐perfused rabbit heart
  publication-title: Circulation
– volume: 289
  start-page: H2714
  issue: 6
  year: 2005
  end-page: H2723
  article-title: Differential expression of small‐conductance Ca2+‐activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes
  publication-title: Am J Physiol Heart Circulat Physiol
– volume: 8
  start-page: 1933
  issue: 12
  year: 2011
  end-page: 1939
  article-title: Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea
  publication-title: Heart Rhythm
– volume: 42
  start-page: 373
  issue: 5
  year: 2021
  end-page: 498
  article-title: 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio‐Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC
  publication-title: Eur Heart J
– volume: 12
  start-page: 293
  issue: 4
  year: 2018
  end-page: 307
  article-title: Prediction in obstructive sleep apnoea: diagnosis, comorbidity risk, and treatment outcomes
  publication-title: Expert Rev Respirat Med
– volume: 122
  start-page: 993
  issue: 10
  year: 2010
  end-page: 1003
  article-title: Differential cardiac remodeling in preload versus afterload
  publication-title: Circulation
– volume: 37
  year: 2021
  article-title: Small conductance calcium activated K+ channel inhibitor decreases stretch induced vulnerability to atrial fibrillation
  publication-title: IJC Heart Vasculature
– volume: 18
  start-page: 1384
  year: 2021
  end-page: 1391
  article-title: Arrhythmogenic mechanisms of acute obstructive respiratory events in a porcine model of drug‐induced long QT
  publication-title: Heart Rhythm
– volume: 10
  start-page: 362
  issue: 4
  year: 2014
  end-page: 368
  article-title: Obstructive sleep apnea and atrial arrhythmogenesis
  publication-title: Curr Cardiol Rev
– volume: 278
  start-page: 49085
  issue: 49
  year: 2003
  end-page: 49094
  article-title: Molecular identification and functional roles of a Ca(2+)‐activated K+ channel in human and mouse hearts
  publication-title: J Biol Chem
– volume: 25
  start-page: 508
  issue: 6
  year: 2015
  end-page: 514
  article-title: SK channels and ventricular arrhythmias in heart failure
  publication-title: Trends Cardiovasc Med
– volume: 7
  start-page: 687
  issue: 8
  year: 2019
  end-page: 698
  article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature‐based analysis
  publication-title: Lancet Respirat Med
– volume: 27
  start-page: 1086
  issue: 9
  year: 2016
  end-page: 1092
  article-title: Low‐Level but not High‐Level baroreceptor stimulation inhibits atrial fibrillation in a pig model of sleep apnea
  publication-title: J Cardiovasc Electrophysiol
– ident: e_1_2_9_37_1
  doi: 10.1016/j.tcm.2015.01.010
– ident: e_1_2_9_33_1
  doi: 10.1161/01.CIR.96.5.1686
– ident: e_1_2_9_23_1
  doi: 10.1093/eurheartj/ehaa612
– ident: e_1_2_9_16_1
  doi: 10.1074/jbc.M307508200
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0108824
– ident: e_1_2_9_2_1
  doi: 10.1164/ajrccm.163.1.2001008
– ident: e_1_2_9_28_1
  doi: 10.1161/CIRCULATIONAHA.110.943431
– ident: e_1_2_9_8_1
  doi: 10.1016/j.hrthm.2021.03.017
– ident: e_1_2_9_19_1
  doi: 10.1093/sleep/zsab132
– ident: e_1_2_9_24_1
  doi: 10.1152/ajpheart.00534.2005
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jacep.2019.03.005
– ident: e_1_2_9_14_1
  doi: 10.1093/cvr/cvu121
– ident: e_1_2_9_5_1
  doi: 10.1093/europace/euu066
– ident: e_1_2_9_10_1
  doi: 10.1161/HYPERTENSIONAHA.113.01728
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jacc.2014.05.077
– ident: e_1_2_9_36_1
  doi: 10.1097/FJC.0000000000000259
– ident: e_1_2_9_6_1
  doi: 10.1016/j.amjcard.2012.03.037
– ident: e_1_2_9_13_1
  doi: 10.1111/jce.13020
– ident: e_1_2_9_11_1
  doi: 10.1016/j.hrthm.2011.07.018
– ident: e_1_2_9_39_1
  doi: 10.3389/fphys.2021.650964
– ident: e_1_2_9_40_1
  doi: 10.1016/j.lfs.2020.118892
– ident: e_1_2_9_12_1
  doi: 10.1161/HYPERTENSIONAHA.112.191965
– ident: e_1_2_9_15_1
  doi: 10.1161/CIRCULATIONAHA.113.003019
– ident: e_1_2_9_22_1
  doi: 10.14740/cr1185
– ident: e_1_2_9_25_1
  doi: 10.1038/nrn1516
– ident: e_1_2_9_35_1
  doi: 10.1161/CIRCEP.117.005125
– ident: e_1_2_9_31_1
  doi: 10.1007/s12551-020-00615-6
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cjca.2021.09.026
– ident: e_1_2_9_4_1
  doi: 10.1016/j.amjcard.2011.02.343
– ident: e_1_2_9_9_1
  doi: 10.1016/j.hrthm.2011.03.053
– ident: e_1_2_9_20_1
  doi: 10.1093/europace/euaa275
– ident: e_1_2_9_27_1
  doi: 10.1161/CIRCRESAHA.119.315755
– ident: e_1_2_9_29_1
  doi: 10.1161/CIRCRESAHA.110.221911
– ident: e_1_2_9_32_1
  doi: 10.2174/1573403X1004140707125137
– ident: e_1_2_9_34_1
  doi: 10.1016/j.ijcha.2021.100898
– ident: e_1_2_9_17_1
  doi: 10.1016/S2213-2600(19)30198-5
– ident: e_1_2_9_18_1
  doi: 10.1080/17476348.2018.1439743
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ejphar.2018.12.011
– ident: e_1_2_9_30_1
  doi: 10.1093/cvr/cvu120
SSID ssj0013605
Score 2.4648209
Snippet Background Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available...
Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological...
BackgroundObstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available...
BACKGROUNDObstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available...
Obstructive respiratory events, shortening of atrial refractoriness and efficacy of AAD: Obstructive respiratory events may be associated with venous preload,...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 126
SubjectTerms Acetamides
Animal models
Animals
Apnea
arrhythmia
atrial fibrillation
Atrial Fibrillation - prevention & control
Calcium conductance
Electrophysiology
Heart rate
Humans
Intubation
novel pharmacological treatment
obstructive sleep apnea
Original
ORIGINAL ARTICLES
Potassium conductance
SK‐channel
Sleep apnea
Sleep Apnea, Obstructive
Sleep disorders
Swine
Ventricle
Title Pharmacological inhibition of SK‐channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjce.15769
https://www.ncbi.nlm.nih.gov/pubmed/36482155
https://www.proquest.com/docview/2765497783
https://search.proquest.com/docview/2753311115
https://pubmed.ncbi.nlm.nih.gov/PMC10107889
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BatwwEB2aQEMuaZu0ybZpmYYQenGx17Is09M22RBaEhaSQG9GkmV2D2uHdVPIrZ_QS3-wX9KRZHuzhEKgNyPJsmA08nvSzBPAoTC61JEuiZuUYcAKwQMllAwIDJM3ZWRzF21xdplefBMnYyuT86nLhfH6EP2Gm_UMt15bB5eque_k2nyMCC3b5D1iCS59I54sTxB8TiSxjcTqx8atqpCL4uneXP0XPQCYD-Mk7-NX9wM6ffZfQ38OWy3uxJGfKC_giam2YWdUEeee3-ERukhQt8W-DU8_d08b5-3R-w78nixFrq1hcVZNZ8oFfGFd4uXXPz9_2SxiGluDdncXR5OIRSzBG68S1aB0V4SgXCymd9-n85rm7kyjTz1uqD-USGzAfg7dBT1IgBpr1Urc_jC4WMYFoO_zJVyfjq-Oz4L2TodAM8ayINOxNLEeEk_ihjNF6LEoSil1YohqGoJzVGwklRcZL4ZFmJShinjKFa3MXIfxK1iv6srsAUqTJbEi-iRkyKTkmSp5RoS1TJlJFVcDOOism9946Y68pzza5M4CA9jv7J633tvkw5QTbU5TEQ_gfV9NfmcPU2Rl6lvbhoCy7SsZwK6fJv1XYs4EQSmqESsTqG9gNb1Xa6rZ1Gl70wpJoE3QuD64GfTvkedfjsfu4fXjm76BzSGBNL-FtA_rZD_zFtaa4vad856_eXMgJQ
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RVvxcKLQUtrR0QAhxSZVsHCeRuCxlqy390UotErfIdhztHjapNhSpNx6BCy_Ik3RsJ9muKiSk3iLbcSzNjPN945kxwPtEq0IFqiBuUvgeyxPuyUQKj8AwWVNKMrfRFqPz-Ox78mVoyuR8anNhXH2IzuFmLMPu18bAjUP6tpUrvR8QXE5XYI1xUkSTwBGOF2cILiuS-EZkKsiGTV0hG8fTvrr8N7oDMe9GSt5GsPYXdLh-v8U_g6cN9MSB05Xn8ECXG7A5KIl2z67xA9pgUOtl34CHn9unR6fN6fsm_Bkv6lwb2eK0nEyljfnCqsDz47-_fptEYlpcjcbBi4NxwAIW4aUrFFWjsLeEoJjPJ9c_JrOK1Heq0GUf1zQfCiRCYD6H9o4eJEyNlWyq3P7UOF-EBqCb8wV8OxxeHIy85loHTzHGUi9VodCh6hNV4pozSQAyzwshVKSJbWpCdNSsBbXnKc_7uR8Vvgx4zCVtzlz54RasllWpXwEKnUahJAaVCJ8JwVNZ8JQ4axEzHUsue_CuFW926ap3ZB3rUTqzEujBTiv4rDHgOuvHnJhzHCdhD9523WR65jxFlLq6MmMIK5u5oh68dHrSfSUkhSQ0RT3JkgZ1A0xZ7-Wecjqx5b1pkyTcltC6PloV-vfKs68HQ_uw_f9D9-Dx6OL0JDs5Ojt-DU_6hNmcR2kHVkmWehdW6vzqjTWlG4Z1JE0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIiouFFo-lhYYEEJcgpK14zjitLS7KhSqlQoSt8h2HO0emqw2FKk3fgIX_mB_ScfOx3ZVISFxi2zHsTQzznv2-BngtbSmMJEpiJsUYcBzKQIttQoIDFM0pWRzn21xdJqcfJeHYyeT8747C9PoQ_QLbi4y_HztAnyRF9eD3Nh3EaHldANuc4LhTjifselqC6E5FEl0I3YCsqyVFfJpPN2r6z-jGwjzZqLkdQDr_0CT7f8a-3241wJPHDWe8gBu2XIHdkclke6zC3yDPhXUr7HvwJ0P3dPWl3bvfRf-TFcq186yOC9nc-0zvrAq8PT48tdvd4yYxlajW97F0TTiEY9x0chE1aj8HSGolsvZxY_ZWUXOOzfYnD2uqT9USHTAfQ79DT1IiBor3Wrc_rS4XCUGYNPnQ_g2GX89OAraSx0CwzlPg9QwZZkZElESVnBN8DHPC6VMbIlrWsJzVGwVleepyId5GBehjkQiNE3NwoTsEWyWVWmfACqbxkwTf5Iq5EqJVBciJcZaJNwmWugBvOqsmy0a7Y6s5zzGZt4CA9jv7J614Vtnw0QQb04SyQbwsq-mwHO7Kaq01blrQ0jZ9RUP4HHjJv1XmOCSsBTVyDUH6hs4Ue_1mnI-8-LeNEUSapM0rrfeg_4-8uzTwdg_PP33pi9ga3o4yT5_PDneg7tDAmzNctI-bJIp7TPYqPPz5z6QrgDo7SLz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacological+inhibition+of+SK%E2%80%90channels+with+AP14145+prevents+atrial+arrhythmogenic+changes+in+a+porcine+model+for+obstructive+respiratory+events&rft.jtitle=Journal+of+cardiovascular+electrophysiology&rft.au=Linz%2C+Benedikt&rft.au=Hesselkilde%2C+Eva+M.&rft.au=Skarsfeldt%2C+Mark+A.&rft.au=Hertel%2C+Julie+N.&rft.date=2023-01-01&rft.issn=1045-3873&rft.eissn=1540-8167&rft.volume=34&rft.issue=1&rft.spage=126&rft.epage=134&rft_id=info:doi/10.1111%2Fjce.15769&rft.externalDBID=10.1111%252Fjce.15769&rft.externalDocID=JCE15769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-3873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-3873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-3873&client=summon