Long‐term drought effects on the thermal sensitivity of Amazon forest trees

The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment Vol. 46; no. 1; pp. 185 - 198
Main Authors: Docherty, Emma M., Gloor, Emanuel, Sponchiado, Daniela, Gilpin, Martin, Pinto, Carlos A. D., Junior, Haroldo M., Coughlin, Ingrid, Ferreira, Leandro, Junior, João A. S., Costa, Antonio C. L., Meir, Patrick, Galbraith, David
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-01-2023
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
AbstractList The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II ( F v / F m ) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage ( T 50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (F /F ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Author Sponchiado, Daniela
Costa, Antonio C. L.
Pinto, Carlos A. D.
Docherty, Emma M.
Junior, Haroldo M.
Meir, Patrick
Coughlin, Ingrid
Galbraith, David
Gloor, Emanuel
Junior, João A. S.
Ferreira, Leandro
Gilpin, Martin
AuthorAffiliation 7 College of Science and Engineering, School of GeoSciences University of Edinburgh Edinburgh UK
5 College of Science, Research School of Biology Australian National University Canberra Australian Capital Territor Australia
2 Departamento de Ciências Biológicas, Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso Nova Xavantina Mato Grosso Brasil
1 Department of Earth and Environment, School of Geography University of Leeds Leeds UK
3 Instituto de Geosciências Universidade Federaldo Pará Belém Pará Brasil
4 Departamento de Biologia, FFCLRP Universidade de São Paulo Ribeirao Preto São Paulo Brasil
6 Museu Paraense Emílio Goeldi Belém Pará Brasil
AuthorAffiliation_xml – name: 7 College of Science and Engineering, School of GeoSciences University of Edinburgh Edinburgh UK
– name: 2 Departamento de Ciências Biológicas, Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso Nova Xavantina Mato Grosso Brasil
– name: 4 Departamento de Biologia, FFCLRP Universidade de São Paulo Ribeirao Preto São Paulo Brasil
– name: 6 Museu Paraense Emílio Goeldi Belém Pará Brasil
– name: 3 Instituto de Geosciências Universidade Federaldo Pará Belém Pará Brasil
– name: 1 Department of Earth and Environment, School of Geography University of Leeds Leeds UK
– name: 5 College of Science, Research School of Biology Australian National University Canberra Australian Capital Territor Australia
Author_xml – sequence: 1
  givenname: Emma M.
  orcidid: 0000-0003-1236-5499
  surname: Docherty
  fullname: Docherty, Emma M.
  email: gyemd@leeds.ac.uk
  organization: University of Leeds
– sequence: 2
  givenname: Emanuel
  orcidid: 0000-0002-9384-6341
  surname: Gloor
  fullname: Gloor, Emanuel
  organization: University of Leeds
– sequence: 3
  givenname: Daniela
  surname: Sponchiado
  fullname: Sponchiado, Daniela
  organization: Universidade do Estado de Mato Grosso
– sequence: 4
  givenname: Martin
  surname: Gilpin
  fullname: Gilpin, Martin
  organization: University of Leeds
– sequence: 5
  givenname: Carlos A. D.
  surname: Pinto
  fullname: Pinto, Carlos A. D.
  organization: Universidade Federaldo Pará
– sequence: 6
  givenname: Haroldo M.
  surname: Junior
  fullname: Junior, Haroldo M.
  organization: Universidade Federaldo Pará
– sequence: 7
  givenname: Ingrid
  orcidid: 0000-0002-8541-2682
  surname: Coughlin
  fullname: Coughlin, Ingrid
  organization: Australian National University
– sequence: 8
  givenname: Leandro
  surname: Ferreira
  fullname: Ferreira, Leandro
  organization: Museu Paraense Emílio Goeldi
– sequence: 9
  givenname: João A. S.
  surname: Junior
  fullname: Junior, João A. S.
  organization: Universidade Federaldo Pará
– sequence: 10
  givenname: Antonio C. L.
  surname: Costa
  fullname: Costa, Antonio C. L.
  organization: Museu Paraense Emílio Goeldi
– sequence: 11
  givenname: Patrick
  orcidid: 0000-0002-2362-0398
  surname: Meir
  fullname: Meir, Patrick
  organization: University of Edinburgh
– sequence: 12
  givenname: David
  orcidid: 0000-0002-5555-4823
  surname: Galbraith
  fullname: Galbraith, David
  organization: University of Leeds
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36230004$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtOwzAQhi1URB-w4AIoEisWae3EcZoVQlV5SEWwgLXlOOM2VRMX2y0qK47AGTkJDi0VLLBkWfZ8-mf8dVGr1jUgdEpwn_g1WEroE0pZcoA6JGZJGGOKW6iDCcVhmmakjbrWzjH2D2l2hNoxi2J_ox10P9H19PP9w4GpgsLo1XTmAlAKpLOBrgM3g2abSiwCC7UtXbku3SbQKriqxJsnlDZgXeAMgD1Gh0osLJzszh56vh4_jW7DycPN3ehqEkpKaRJGKheAJQwTRYWiGWDGVBzJiDGSJFkeFUUiU5LLRMk8ElgVRYHTTBDWFIYs7qHLbe5ylVdQSKidEQu-NGUlzIZrUfK_lbqc8alec4JxFjEy9AnnuwSjX1b-A3yuV6b2Q_Mo9ZJI48dTF1tKGm2tAbVvQTBv1HOvnn-r9-zZ75n25I9rDwy2wGu5gM3_SfxxNN5GfgEeKpIA
CitedBy_id crossref_primary_10_1111_nph_19136
crossref_primary_10_1371_journal_pone_0286457
crossref_primary_10_3390_plants12132464
crossref_primary_10_1111_pce_14791
crossref_primary_10_5194_bg_20_5125_2023
crossref_primary_10_1016_j_aoas_2023_12_003
crossref_primary_10_1016_j_envres_2023_117495
Cites_doi 10.1111/gcb.15040
10.1016/j.envexpbot.2018.10.030
10.1093/treephys/23.15.1031
10.1016/S0176-1617(88)80007-5
10.1111/nph.17052
10.1071/FP03250
10.1111/pce.13208
10.1104/pp.103.033431
10.1023/A:1023936313544
10.1111/nph.14724
10.1093/treephys/16.4.441
10.1111/nph.12477
10.1111/gcb.13035
10.1038/35041539
10.1007/s00442-014-3159-4
10.1111/pce.14134
10.1104/pp.20.00407
10.1016/j.phytochem.2020.112366
10.1016/j.tplants.2016.02.003
10.1111/nph.14652
10.1111/j.1365-313X.2008.03538.x
10.1016/j.csda.2008.06.010
10.1093/jxb/erx071
10.1093/biosci/biv107
10.1111/1365-2435.13868
10.3354/cr01427
10.1111/pce.13770
10.18637/jss.v067.i01
10.1098/rstb.2017.0311
10.3389/ffgc.2020.576320
10.1111/nph.14469
10.1111/nph.15304
10.1038/nature15539
10.1111/gcb.14413
10.1002/pld3.113
10.1111/gcb.12563
10.1104/pp.101.4.1169
10.1111/j.1469-8137.2010.03309.x
10.1890/ES15-00203.1
10.1111/gcb.13851
10.1088/1748-9326/8/3/034018
10.3389/fpls.2016.00607
10.1007/BFb0067700
10.1111/nph.13978
10.1029/2011GL049041
10.1088/1748-9326/7/2/024002
10.1007/s00442-002-1034-1
10.1111/nph.15668
10.3389/feart.2018.00228
10.1126/science.1243092
10.1111/pce.12785
10.1111/1365-2435.13689
10.1093/aobpla/plx070
10.1126/science.1098704
10.1111/nph.12797
10.1111/nph.17038
10.21105/joss.03139
10.1111/1365-2435.13658
10.1038/nature12540
10.1007/s11120-013-9873-7
10.1146/annurev.pp.31.060180.002423
10.1145/3472749.3474784
10.1007/s11120-011-9677-6
10.1111/nph.13380
10.1111/gcb.14037
10.1111/j.1365-2486.2012.02797.x
10.1145/1978942.1978963
10.1016/j.bbabio.2009.08.001
10.1093/jxb/eru367
10.1111/pce.13071
10.1093/treephys/20.18.1235
10.1016/S1360-1385(03)00136-5
10.1016/j.plaphy.2010.08.016
10.1088/1748-9326/aa6f97
10.1111/j.1469-8137.2010.03350.x
10.1007/BF00320984
10.1002/joc.3711
10.1038/s41598-017-11343-5
10.1029/2007JG000590
10.1071/FP10034
10.1038/nplants.2016.129
10.1111/nph.16972
10.1111/ppl.12540
10.1111/j.1365-2486.2010.02375.x
10.1104/pp.010521
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
5PM
DOI 10.1111/pce.14465
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley-Blackwell Backfiles (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

MEDLINE
Calcium & Calcified Tissue Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate DROUGHT EFFECTS ON THERMAL SENSITIVITY OF AMAZON FOREST TREES
EISSN 1365-3040
EndPage 198
ExternalDocumentID 10_1111_pce_14465
36230004
PCE14465
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Environment Research Council
– fundername: ;
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QP
7ST
C1K
SOI
5PM
ID FETCH-LOGICAL-c4445-2fbae0ce85f4af49e066f32c2661559b2dd5c71bc5fcb2a0fddd079a16dd5c863
IEDL.DBID 33P
ISSN 0140-7791
IngestDate Tue Sep 17 21:32:57 EDT 2024
Thu Oct 10 17:44:52 EDT 2024
Thu Nov 21 23:00:06 EST 2024
Sat Sep 28 08:12:33 EDT 2024
Sat Aug 24 01:06:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords chlorophyll a fluorescence
drought and heat stress interactions
thermotolerance
Amazon rainforest
photosynthesis
throughfall exclusion
tropical evergreen trees
thermal traits
respiration
Language English
License Attribution
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4445-2fbae0ce85f4af49e066f32c2661559b2dd5c71bc5fcb2a0fddd079a16dd5c863
ORCID 0000-0003-1236-5499
0000-0002-8541-2682
0000-0002-2362-0398
0000-0002-5555-4823
0000-0002-9384-6341
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14465
PMID 36230004
PQID 2747913000
PQPubID 37957
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092618
proquest_journals_2747913000
crossref_primary_10_1111_pce_14465
pubmed_primary_36230004
wiley_primary_10_1111_pce_14465_PCE14465
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2018; 162
2017a; 40
2010; 187
2018; 41
2016; 71
2011; 17
2013; 8
2016; 39
2014; 65
1978
2014; 20
2018; 373
2004; 134
2013; 19
2021; 35
2000; 408
2018; 6
2004; 31
2020; 3
2009; 53
1980; 31
2020; 175
2015; 177
2003; 8
2019; 25
2019; 158
1988; 133
2008; 113
2014; 203
2014; 201
2014; 119
2021; 6
2018; 220
2015; 6
2010; 37
2019; 3
2021; 44
2020; 184
2011
2002; 133
2021; 229
2000; 20
2013; 502
2013; 342
2015; 528
2008; 55
2020; 34
2015; 207
2017c; 68
2011; 38
1996; 16
2004; 305
2003; 75
2019; 222
2017; 215
2017; 216
1993; 101
2018; 24
2010; 1797
2015; 67
2016; 7
2010; 48
2012; 111
2016; 2
1993; 95
2021
2020
2015; 65
2015; 21
2017; 12
2016; 21
2002; 128
2016; 211
2020; 26
2016
2017b; 214
2012; 7
2018; 10
2014; 34
2003; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 229
  start-page: 2497
  year: 2021
  end-page: 2513
  article-title: The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research
  publication-title: New Phytologist
– volume: 12
  year: 2017
  article-title: Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming
  publication-title: Environmental Research Letters
– volume: 16
  start-page: 441
  year: 1996
  end-page: 446
  article-title: Isoprene emission, photosynthesis, and growth in sweetgum ( ) seedlings exposed to short‐and long‐term drying cycles
  publication-title: Tree Physiology
– volume: 8
  year: 2013
  article-title: Historic and future increase in the global land area affected by monthly heat extremes
  publication-title: Environmental Research Letters
– volume: 502
  start-page: 183
  year: 2013
  end-page: 187
  article-title: The projected timing of climate departure from recent variability
  publication-title: Nature
– volume: 41
  start-page: 1618
  year: 2018
  end-page: 1631
  article-title: Differences in leaf thermoregulation and water use strategies between three co‐occurring Atlantic forest tree species
  publication-title: Plant, Cell & Environment
– volume: 133
  start-page: 555
  year: 1988
  end-page: 560
  article-title: Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests
  publication-title: Journal of Plant Physiology
– volume: 187
  start-page: 579
  year: 2010
  end-page: 591
  article-title: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest
  publication-title: New Phytologist
– volume: 31
  start-page: 491
  year: 1980
  end-page: 543
  article-title: Photosynthetic response and adaptation to temperature in higher plants
  publication-title: Annual Review of Plant Physiology
– volume: 37
  start-page: 890
  year: 2010
  end-page: 900
  article-title: High‐temperature tolerance of a tropical tree, : methodological reassessment and climate change considerations
  publication-title: Functional Plant Biology
– volume: 111
  start-page: 103
  year: 2012
  end-page: 111
  article-title: Analysis of heat‐induced disassembly process of three different monomeric forms of the major light‐harvesting chlorophyll a/b complex of photosystem II
  publication-title: Photosynthesis Research
– volume: 6
  start-page: 1
  year: 2015
  end-page: – 55
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 408
  start-page: 184
  year: 2000
  end-page: 187
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 211
  start-page: 850
  year: 2016
  end-page: 863
  article-title: Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?
  publication-title: New Phytologist
– volume: 6
  start-page: 3139
  year: 2021
  article-title: Performance: an R Package for assessment, comparison and testing of statistical models
  publication-title: Journal of Open Source Software
– volume: 20
  start-page: 2915
  year: 2014
  end-page: 2926
  article-title: Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance
  publication-title: Global Change Biology
– volume: 55
  start-page: 687
  year: 2008
  end-page: 697
  article-title: Isoprene emission is not temperature‐dependent during and after severe drought‐stress: a physiological and biochemical analysis
  publication-title: The Plant Journal
– volume: 214
  start-page: 1103
  year: 2017b
  end-page: 1117
  article-title: In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes
  publication-title: New Phytologist
– volume: 34
  start-page: 2236
  year: 2020
  end-page: 2245
  article-title: Photosynthetic heat tolerances and extreme leaf temperatures
  publication-title: Functional Ecology
– volume: 35
  start-page: 43
  year: 2021
  end-page: 53
  article-title: The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability
  publication-title: Functional Ecology
– volume: 203
  start-page: 32
  year: 2014
  end-page: 43
  article-title: Abiotic and biotic stress combinations
  publication-title: New Phytologist
– volume: 34
  start-page: 623
  year: 2014
  end-page: 642
  article-title: Updated high‐resolution grids of monthly climatic observations—the CRU TS3. 10 dataset
  publication-title: International Journal of Climatology
– volume: 229
  start-page: 1363
  year: 2021
  end-page: 1374
  article-title: Plant traits controlling growth change in response to a drier climate
  publication-title: New Phytologist
– volume: 24
  start-page: 2390
  year: 2018
  end-page: 2402
  article-title: Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance
  publication-title: Global Change Biology
– volume: 207
  start-page: 613
  year: 2015
  end-page: 626
  article-title: Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought‐stressed P latanus× acerifolia plants during Mediterranean summers
  publication-title: New Phytologist
– volume: 305
  start-page: 994
  year: 2004
  end-page: 997
  article-title: More intense, more frequent, and longer lasting heat waves in the 21st century
  publication-title: Science
– volume: 201
  start-page: 205
  year: 2014
  end-page: 216
  article-title: Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco ( ) plants
  publication-title: New Phytologist
– volume: 10
  start-page: plx070
  year: 2018
  article-title: Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought
  publication-title: AoB Plants
– volume: 3
  start-page: 765
  year: 2020
  end-page: 785
  article-title: Photosynthetic and respiratory acclimation of understory shrubs in response to in situ experimental warming of a wet tropical forest
  publication-title: Frontiers in Forests and Global Change
– volume: 216
  start-page: 136
  year: 2017
  end-page: 149
  article-title: Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates
  publication-title: New Phytologist
– volume: 48
  start-page: 909
  year: 2010
  end-page: 930
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiology and Biochemistry
– volume: 220
  start-page: 435
  year: 2018
  end-page: 446
  article-title: Isoprene emission structures tropical tree biogeography and community assembly responses to climate
  publication-title: New Phytologist
– start-page: 105
  year: 1978
  end-page: 116
– volume: 20
  start-page: 1235
  year: 2000
  end-page: 1241
  article-title: Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings
  publication-title: Tree Physiology
– volume: 222
  start-page: 768
  year: 2019
  end-page: 784
  article-title: Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
  publication-title: New Phytologist
– volume: 3
  year: 2019
  article-title: Phenotypic and metabolic plasticity shapes life‐history strategies under combinations of abiotic stresses
  publication-title: Plant Direct
– volume: 65
  start-page: 882
  year: 2015
  end-page: 892
  article-title: Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments
  publication-title: BioScience
– volume: 342
  start-page: 6156
  year: 2013
  article-title: Hyperdominance in the Amazonian tree flora
  publication-title: Science
– volume: 38
  year: 2011
  article-title: Remotely sensed heat anomalies linked with Amazonian forest biomass declines
  publication-title: Geophysical Research Letters
– volume: 229
  start-page: 2548
  year: 2021
  end-page: 2561
  article-title: Complete or overcompensatory thermal acclimation of leaf dark respiration in African tropical trees
  publication-title: New Phytologist
– volume: 8
  start-page: 343
  year: 2003
  end-page: 351
  article-title: Thermal acclimation and the dynamic response of plant respiration to temperature
  publication-title: Trends in Plant Science
– volume: 21
  start-page: 4662
  year: 2015
  end-page: 4672
  article-title: After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration
  publication-title: Global Change Biology
– volume: 177
  start-page: 885
  year: 2015
  end-page: 900
  article-title: General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types
  publication-title: Oecologia
– volume: 101
  start-page: 1169
  year: 1993
  end-page: 1173
  article-title: Effects of anaerobiosis on chlorophyll fluorescence yield in spinach ( ) leaf discs
  publication-title: Plant Physiology
– volume: 1797
  start-page: 63
  year: 2010
  end-page: 70
  article-title: Heat‐induced disassembly and degradation of chlorophyll‐containing protein complexes in vivo
  publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics
– volume: 26
  start-page: 3569
  year: 2020
  end-page: 3584
  article-title: Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought
  publication-title: Global Change Biology
– volume: 215
  start-page: 1399
  year: 2017
  end-page: 1412
  article-title: Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland
  publication-title: New Phytologist
– volume: 373
  year: 2018
  article-title: Short‐term effects of drought on tropical forest do not fully predict impacts of repeated or long‐term drought: gas exchange versus growth
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 113
  start-page: G00B07
  year: 2008
  article-title: Are tropical forests near a high temperature threshold?
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 35
  start-page: 2179
  year: 2021
  end-page: 2189
  article-title: Water availability influences thermal safety margins for leaves
  publication-title: Functional Ecology
– volume: 162
  start-page: 2
  year: 2018
  end-page: 12
  article-title: Plant adaptations to the combination of drought and high temperatures
  publication-title: Physiologia Plantarum
– volume: 158
  start-page: 28
  year: 2019
  end-page: 39
  article-title: Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species under heatwave conditions
  publication-title: Environmental and Experimental Botany
– volume: 40
  start-page: 3055
  year: 2017a
  end-page: 3068
  article-title: In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species
  publication-title: Plant, Cell & Environment
– volume: 184
  start-page: 852
  year: 2020
  end-page: 864
  article-title: Drought‐induced xylem embolism limits the recovery of leaf gas exchange in Scots pine
  publication-title: Plant Physiology
– volume: 7
  start-page: 607
  year: 2016
  article-title: Trait acclimation mitigates mortality risks of tropical canopy trees under global warming
  publication-title: Frontiers in Plant Science
– volume: 53
  start-page: 603
  year: 2009
  end-page: 608
  article-title: Sample sizes required to detect interactions between two binary fixed‐effects in a mixed‐effects linear regression model
  publication-title: Computational Statistics & Data Analysis
– volume: 68
  start-page: 2275
  year: 2017c
  end-page: 2284
  article-title: Photosynthetic acclimation to warming in tropical forest tree seedlings
  publication-title: Journal of Experimental Botany
– volume: 175
  year: 2020
  article-title: Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin
  publication-title: Phytochemistry
– volume: 75
  start-page: 259
  year: 2003
  end-page: 275
  article-title: Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions
  publication-title: Photosynthesis Research
– volume: 23
  start-page: 1031
  year: 2003
  end-page: 1039
  article-title: Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings
  publication-title: Tree Physiology
– volume: 17
  start-page: 2134
  year: 2011
  end-page: 2144
  article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance
  publication-title: Global Change Biology
– year: 2016
– start-page: 754
  year: 2021
  end-page: 768
– volume: 119
  start-page: 89
  year: 2014
  end-page: 100
  article-title: Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration
  publication-title: Photosynthesis Research
– volume: 7
  year: 2012
  article-title: High sensitivity of future global warming to land carbon cycle processes
  publication-title: Environmental Research Letters
– volume: 24
  start-page: 249
  year: 2018
  end-page: 258
  article-title: Stand dynamics modulate water cycling and mortality risk in droughted tropical forest
  publication-title: Global Change Biology
– volume: 19
  start-page: 45
  year: 2013
  end-page: 63
  article-title: Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO 2
  publication-title: Global Change Biology
– volume: 39
  start-page: 2185
  year: 2016
  end-page: 2197
  article-title: Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism
  publication-title: Plant, Cell & Environment
– volume: 65
  start-page: 6471
  year: 2014
  end-page: 6485
  article-title: Drought increases heat tolerance of leaf respiration in saplings grown under both ambient and elevated atmospheric [CO2] and temperature
  publication-title: Journal of Experimental Botany
– volume: 528
  start-page: 119
  year: 2015
  end-page: 122
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 2
  start-page: 1
  year: 2016
  end-page: 9
  article-title: The energetic and carbon economic origins of leaf thermoregulation
  publication-title: Nature Plants
– volume: 44
  start-page: 2428
  year: 2021
  end-page: 2439
  article-title: Photosynthetic quantum efficiency in south‐eastern Amazonian trees may be already affected by climate change
  publication-title: Plant, Cell & Environment
– volume: 95
  start-page: 328
  year: 1993
  end-page: 333
  article-title: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves
  publication-title: Oecologia
– year: 2020
– volume: 44
  start-page: 2879
  year: 2021
  end-page: 2897
  article-title: Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation
  publication-title: Plant, Cell & Environment
– volume: 128
  start-page: 822
  year: 2002
  end-page: 832
  article-title: Temperature‐induced extended helix/random coil transitions in a group 1 late embryogenesis‐abundant protein from soybean
  publication-title: Plant Physiology
– volume: 134
  start-page: 1683
  year: 2004
  end-page: 1696
  article-title: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress
  publication-title: Plant Physiology
– volume: 31
  start-page: 275
  year: 2004
  end-page: 283
  article-title: A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf
  publication-title: Functional Plant Biology
– volume: 21
  start-page: 584
  year: 2016
  end-page: 593
  article-title: The impacts of droughts in tropical forests
  publication-title: Trends in Plant Science
– volume: 25
  start-page: 39
  year: 2019
  end-page: 56
  article-title: Compositional response of Amazon forests to climate change
  publication-title: Global Change Biology
– volume: 6
  start-page: 228
  year: 2018
  article-title: Changes in climate and land use over the Amazon region: current and future variability and trends
  publication-title: Frontiers in Earth Science
– volume: 187
  start-page: 647
  year: 2010
  end-page: 665
  article-title: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change
  publication-title: New Phytologist
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow‐fast resource acquisition spectrum
  publication-title: Scientific Reports
– volume: 133
  start-page: 112
  year: 2002
  end-page: 119
  article-title: Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature
  publication-title: Oecologia
– volume: 71
  start-page: 75
  year: 2016
  end-page: 89
  article-title: Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest
  publication-title: Climate Research
– ident: e_1_2_7_6_1
  doi: 10.1111/gcb.15040
– ident: e_1_2_7_26_1
  doi: 10.1016/j.envexpbot.2018.10.030
– ident: e_1_2_7_32_1
  doi: 10.1093/treephys/23.15.1031
– ident: e_1_2_7_36_1
  doi: 10.1016/S0176-1617(88)80007-5
– ident: e_1_2_7_31_1
  doi: 10.1111/nph.17052
– ident: e_1_2_7_38_1
  doi: 10.1071/FP03250
– ident: e_1_2_7_25_1
  doi: 10.1111/pce.13208
– ident: e_1_2_7_57_1
  doi: 10.1104/pp.103.033431
– ident: e_1_2_7_27_1
  doi: 10.1023/A:1023936313544
– ident: e_1_2_7_10_1
  doi: 10.1111/nph.14724
– ident: e_1_2_7_24_1
  doi: 10.1093/treephys/16.4.441
– ident: e_1_2_7_62_1
  doi: 10.1111/nph.12477
– ident: e_1_2_7_60_1
  doi: 10.1111/gcb.13035
– ident: e_1_2_7_16_1
  doi: 10.1038/35041539
– ident: e_1_2_7_68_1
  doi: 10.1007/s00442-014-3159-4
– ident: e_1_2_7_8_1
  doi: 10.1111/pce.14134
– ident: e_1_2_7_55_1
  doi: 10.1104/pp.20.00407
– ident: e_1_2_7_37_1
  doi: 10.1016/j.phytochem.2020.112366
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tplants.2016.02.003
– ident: e_1_2_7_67_1
  doi: 10.1111/nph.14652
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-313X.2008.03538.x
– ident: e_1_2_7_42_1
  doi: 10.1016/j.csda.2008.06.010
– ident: e_1_2_7_72_1
  doi: 10.1093/jxb/erx071
– ident: e_1_2_7_49_1
  doi: 10.1093/biosci/biv107
– ident: e_1_2_7_11_1
  doi: 10.1111/1365-2435.13868
– ident: e_1_2_7_56_1
  doi: 10.3354/cr01427
– ident: e_1_2_7_82_1
  doi: 10.1111/pce.13770
– ident: e_1_2_7_4_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_7_48_1
  doi: 10.1098/rstb.2017.0311
– ident: e_1_2_7_9_1
  doi: 10.3389/ffgc.2020.576320
– ident: e_1_2_7_81_1
– ident: e_1_2_7_71_1
  doi: 10.1111/nph.14469
– ident: e_1_2_7_80_1
  doi: 10.1111/nph.15304
– ident: e_1_2_7_58_1
  doi: 10.1038/nature15539
– ident: e_1_2_7_23_1
  doi: 10.1111/gcb.14413
– ident: e_1_2_7_65_1
  doi: 10.1002/pld3.113
– ident: e_1_2_7_69_1
  doi: 10.1111/gcb.12563
– ident: e_1_2_7_34_1
  doi: 10.1104/pp.101.4.1169
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1469-8137.2010.03309.x
– ident: e_1_2_7_2_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_7_14_1
  doi: 10.1111/gcb.13851
– ident: e_1_2_7_15_1
  doi: 10.1088/1748-9326/8/3/034018
– ident: e_1_2_7_76_1
  doi: 10.3389/fpls.2016.00607
– ident: e_1_2_7_52_1
  doi: 10.1007/BFb0067700
– ident: e_1_2_7_19_1
  doi: 10.1111/nph.13978
– ident: e_1_2_7_83_1
  doi: 10.1029/2011GL049041
– ident: e_1_2_7_22_1
– ident: e_1_2_7_7_1
  doi: 10.1088/1748-9326/7/2/024002
– ident: e_1_2_7_17_1
  doi: 10.1007/s00442-002-1034-1
– ident: e_1_2_7_40_1
  doi: 10.1111/nph.15668
– ident: e_1_2_7_45_1
  doi: 10.3389/feart.2018.00228
– ident: e_1_2_7_75_1
  doi: 10.1126/science.1243092
– ident: e_1_2_7_84_1
  doi: 10.1111/pce.12785
– ident: e_1_2_7_59_1
  doi: 10.1111/1365-2435.13689
– ident: e_1_2_7_64_1
  doi: 10.1093/aobpla/plx070
– ident: e_1_2_7_47_1
  doi: 10.1126/science.1098704
– ident: e_1_2_7_77_1
  doi: 10.1111/nph.12797
– ident: e_1_2_7_53_1
  doi: 10.1111/nph.17038
– ident: e_1_2_7_44_1
  doi: 10.21105/joss.03139
– ident: e_1_2_7_54_1
  doi: 10.1111/1365-2435.13658
– ident: e_1_2_7_51_1
  doi: 10.1038/nature12540
– ident: e_1_2_7_85_1
  doi: 10.1007/s11120-013-9873-7
– ident: e_1_2_7_5_1
  doi: 10.1146/annurev.pp.31.060180.002423
– ident: e_1_2_7_21_1
  doi: 10.1145/3472749.3474784
– ident: e_1_2_7_88_1
  doi: 10.1007/s11120-011-9677-6
– ident: e_1_2_7_79_1
  doi: 10.1111/nph.13380
– ident: e_1_2_7_20_1
  doi: 10.1111/gcb.14037
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1365-2486.2012.02797.x
– ident: e_1_2_7_86_1
  doi: 10.1145/1978942.1978963
– ident: e_1_2_7_43_1
  doi: 10.1016/j.bbabio.2009.08.001
– ident: e_1_2_7_30_1
  doi: 10.1093/jxb/eru367
– ident: e_1_2_7_70_1
  doi: 10.1111/pce.13071
– ident: e_1_2_7_41_1
  doi: 10.1093/treephys/20.18.1235
– ident: e_1_2_7_3_1
  doi: 10.1016/S1360-1385(03)00136-5
– ident: e_1_2_7_33_1
  doi: 10.1016/j.plaphy.2010.08.016
– ident: e_1_2_7_78_1
  doi: 10.1088/1748-9326/aa6f97
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1469-8137.2010.03350.x
– ident: e_1_2_7_66_1
  doi: 10.1007/BF00320984
– ident: e_1_2_7_35_1
  doi: 10.1002/joc.3711
– ident: e_1_2_7_63_1
  doi: 10.1038/s41598-017-11343-5
– ident: e_1_2_7_18_1
  doi: 10.1029/2007JG000590
– ident: e_1_2_7_39_1
  doi: 10.1071/FP10034
– ident: e_1_2_7_50_1
  doi: 10.1038/nplants.2016.129
– ident: e_1_2_7_61_1
  doi: 10.1111/nph.16972
– ident: e_1_2_7_87_1
  doi: 10.1111/ppl.12540
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2486.2010.02375.x
– ident: e_1_2_7_74_1
  doi: 10.1104/pp.010521
SSID ssj0001479
Score 2.4907932
Snippet The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 185
SubjectTerms Air temperature
Amazon rainforest
chlorophyll a fluorescence
Climate change
Climate models
Damage tolerance
Drought
drought and heat stress interactions
Forests
Original
Photosynthesis
Photosystem II
Photosystem II Protein Complex
Plant species
Quantum efficiency
Respiration
thermal traits
thermotolerance
throughfall exclusion
Trees
tropical evergreen trees
Tropical forests
Title Long‐term drought effects on the thermal sensitivity of Amazon forest trees
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14465
https://www.ncbi.nlm.nih.gov/pubmed/36230004
https://www.proquest.com/docview/2747913000
https://pubmed.ncbi.nlm.nih.gov/PMC10092618
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5UFLz4fqwvgnjwUmnabLPFk49dPKgsqOCtpEmjgrZi9aAnf4K_0V_iTNotuyyC4KFQSFLSTGbyTTL5BmAvS02mZGQ9bqTyhIpCtIO-9iyK2wQKEbRL93Z2JS9vO6ddosk5HNyFqfghmg030gxnr0nBVVoOKfmzzg4c3RfaX_QS3PWNsN9YYS4qnj0KX5Qy5jWrEEXxNC1H16IxgDkeJzmMX90C1Jv_V9cXYK7GneyomiiLMJHlSzBTZaJ8X4Lp4wJR4vsyXJwX-d335xdZbGZcDp9XVgd9sCJniBfpQXP-yEoKfq-yT7DCsqMn9YE1EAXj7zE67S5X4KbXvT458-qUC54WQrS9wKYq8ymVqRXKijhDRGLDQNMyjr5HGhjT1pKnum11GijfGmN8GSseUUEnCldhKi_ybB1YYHgUC2kiyZXQiIvSmFuNrVIVSxN2WrA7GPzkuWLWSAYeCQ5Q4gaoBVsDsSS1cpUJOdIxHcP5LVirJNR8AddjKhAt6IzIrqlAdNqjJfnDvaPV5sQ_FXHs2L4T3u-9SvonXfey8feqmzBLmeqr3ZstmHp9ecu2YbI0bztu4v4AqerxgQ
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-QwEB_OPUVf7k49dc9_QXzwpUfTZpst3IunKyu3yoIr-FbSpFFBW3F3H9an-wj3Gf0kzqTd4iLCgQ-FQpKSZjIzvyST3wDsZ6nJlIysx41UnlBRiHbQ155FcZtAIYJ26d66F_L8qn3cIZqcX9O7MCU_RL3hRprh7DUpOG1Iv9LyB539dHxfc_BZRDgR6QJH2K_tMBcl0x4FMEoZ84pXiOJ46qaz3ugNxHwbKfkawToXdPL1Y53_Bl8q6MkOy7myDJ-yfAUWymSUkxWY_10gUJyswlmvyK-f__4jo82MS-MzYlXcBytyhpCRHrTod2xI8e9lAgpWWHZ4r56wBgJh_D9GB97D73B50hkcdb0q64KnhRAtL7CpynzKZmqFsiLOEJTYMNDkyXH5kQbGtLTkqW5ZnQbKt8YYX8aKR1TQjsI1aORFnm0ACwyPYiFNJLkSGqFRGnOrsVWqYmnCdhP2pqOfPJTkGsl0UYIDlLgBasLWVC5JpV_DhNbSMZ3E-U1YL0VUfwFdMhWIJrRnhFdXIEbt2ZL89sYxa3OioIo4duzASe_9XiX9o457-fH_VXdhsTs46yW90_M_m7BEievLzZwtaIwex9k2zA3NeMfN4hfhxfWp
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yauglrybp5tGI0kMuDpattdb0lMcuW7JZFppAbkaWrLSQ2Es2e9ie-hPyG_NLOiN7zS6hEMjBYJBkJI1m5pM0_gbgW5aaTMnIetxI5QkVhWgHfe1ZFLcJFCJol-6t-1P2b1sXbaLJ-T79F6bkh6gP3EgznL0mBR8aO6PkQ52dOLqvRVgWCMOJOD8MB7UZ5qIk2qP4RSljXtEKURhP3XTeGb1CmK8DJWcBrPNAnfV39X0D1irgyU7LlbIJC1m-BR_KVJSTLVg5KxAmTj7BVa_I717-PpPJZsYl8XliVdQHK3KGgJEetOf3bETR72X6CVZYdvqg_mANhME4PEbX3aNtuOm0r8-7XpVzwdNCiKYX2FRlPuUytUJZEWcISWwYaPLjuPlIA2OaWvJUN61OA-VbY4wvY8UjKmhF4Q4s5UWefQYWGB7FQppIciU0AqM05lZjq1TF0oStBnydTn4yLKk1kumWBCcocRPUgIOpWJJKu0YJ7aRjuofzG7BbSqj-AjpkKhANaM3Jrq5AfNrzJfnvX45XmxMBVcSxY8dOeP_vVTI4b7uXvbdXPYLVwUUn6f3oX-7DR8paX57kHMDS0-M4O4TFkRl_cWv4H_db9E8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90term+drought+effects+on+the+thermal+sensitivity+of+Amazon+forest+trees&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Docherty%2C+Emma+M.&rft.au=Gloor%2C+Emanuel&rft.au=Sponchiado%2C+Daniela&rft.au=Gilpin%2C+Martin&rft.date=2023-01-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=46&rft.issue=1&rft.spage=185&rft.epage=198&rft_id=info:doi/10.1111%2Fpce.14465&rft.externalDBID=10.1111%252Fpce.14465&rft.externalDocID=PCE14465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon