Long‐term drought effects on the thermal sensitivity of Amazon forest trees
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained...
Saved in:
Published in: | Plant, cell and environment Vol. 46; no. 1; pp. 185 - 198 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-01-2023
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves. |
---|---|
AbstractList | The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (
F
v
/
F
m
) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (
T
50
) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves. The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves. The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (F /F ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves. The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper‐dominant Amazonian tree species at the world's longest‐running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long‐term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme‐heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long‐term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves. |
Author | Sponchiado, Daniela Costa, Antonio C. L. Pinto, Carlos A. D. Docherty, Emma M. Junior, Haroldo M. Meir, Patrick Coughlin, Ingrid Galbraith, David Gloor, Emanuel Junior, João A. S. Ferreira, Leandro Gilpin, Martin |
AuthorAffiliation | 7 College of Science and Engineering, School of GeoSciences University of Edinburgh Edinburgh UK 5 College of Science, Research School of Biology Australian National University Canberra Australian Capital Territor Australia 2 Departamento de Ciências Biológicas, Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso Nova Xavantina Mato Grosso Brasil 1 Department of Earth and Environment, School of Geography University of Leeds Leeds UK 3 Instituto de Geosciências Universidade Federaldo Pará Belém Pará Brasil 4 Departamento de Biologia, FFCLRP Universidade de São Paulo Ribeirao Preto São Paulo Brasil 6 Museu Paraense Emílio Goeldi Belém Pará Brasil |
AuthorAffiliation_xml | – name: 7 College of Science and Engineering, School of GeoSciences University of Edinburgh Edinburgh UK – name: 2 Departamento de Ciências Biológicas, Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso Nova Xavantina Mato Grosso Brasil – name: 4 Departamento de Biologia, FFCLRP Universidade de São Paulo Ribeirao Preto São Paulo Brasil – name: 6 Museu Paraense Emílio Goeldi Belém Pará Brasil – name: 3 Instituto de Geosciências Universidade Federaldo Pará Belém Pará Brasil – name: 1 Department of Earth and Environment, School of Geography University of Leeds Leeds UK – name: 5 College of Science, Research School of Biology Australian National University Canberra Australian Capital Territor Australia |
Author_xml | – sequence: 1 givenname: Emma M. orcidid: 0000-0003-1236-5499 surname: Docherty fullname: Docherty, Emma M. email: gyemd@leeds.ac.uk organization: University of Leeds – sequence: 2 givenname: Emanuel orcidid: 0000-0002-9384-6341 surname: Gloor fullname: Gloor, Emanuel organization: University of Leeds – sequence: 3 givenname: Daniela surname: Sponchiado fullname: Sponchiado, Daniela organization: Universidade do Estado de Mato Grosso – sequence: 4 givenname: Martin surname: Gilpin fullname: Gilpin, Martin organization: University of Leeds – sequence: 5 givenname: Carlos A. D. surname: Pinto fullname: Pinto, Carlos A. D. organization: Universidade Federaldo Pará – sequence: 6 givenname: Haroldo M. surname: Junior fullname: Junior, Haroldo M. organization: Universidade Federaldo Pará – sequence: 7 givenname: Ingrid orcidid: 0000-0002-8541-2682 surname: Coughlin fullname: Coughlin, Ingrid organization: Australian National University – sequence: 8 givenname: Leandro surname: Ferreira fullname: Ferreira, Leandro organization: Museu Paraense Emílio Goeldi – sequence: 9 givenname: João A. S. surname: Junior fullname: Junior, João A. S. organization: Universidade Federaldo Pará – sequence: 10 givenname: Antonio C. L. surname: Costa fullname: Costa, Antonio C. L. organization: Museu Paraense Emílio Goeldi – sequence: 11 givenname: Patrick orcidid: 0000-0002-2362-0398 surname: Meir fullname: Meir, Patrick organization: University of Edinburgh – sequence: 12 givenname: David orcidid: 0000-0002-5555-4823 surname: Galbraith fullname: Galbraith, David organization: University of Leeds |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36230004$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtOwzAQhi1URB-w4AIoEisWae3EcZoVQlV5SEWwgLXlOOM2VRMX2y0qK47AGTkJDi0VLLBkWfZ8-mf8dVGr1jUgdEpwn_g1WEroE0pZcoA6JGZJGGOKW6iDCcVhmmakjbrWzjH2D2l2hNoxi2J_ox10P9H19PP9w4GpgsLo1XTmAlAKpLOBrgM3g2abSiwCC7UtXbku3SbQKriqxJsnlDZgXeAMgD1Gh0osLJzszh56vh4_jW7DycPN3ehqEkpKaRJGKheAJQwTRYWiGWDGVBzJiDGSJFkeFUUiU5LLRMk8ElgVRYHTTBDWFIYs7qHLbe5ylVdQSKidEQu-NGUlzIZrUfK_lbqc8alec4JxFjEy9AnnuwSjX1b-A3yuV6b2Q_Mo9ZJI48dTF1tKGm2tAbVvQTBv1HOvnn-r9-zZ75n25I9rDwy2wGu5gM3_SfxxNN5GfgEeKpIA |
CitedBy_id | crossref_primary_10_1111_nph_19136 crossref_primary_10_1371_journal_pone_0286457 crossref_primary_10_3390_plants12132464 crossref_primary_10_1111_pce_14791 crossref_primary_10_5194_bg_20_5125_2023 crossref_primary_10_1016_j_aoas_2023_12_003 crossref_primary_10_1016_j_envres_2023_117495 |
Cites_doi | 10.1111/gcb.15040 10.1016/j.envexpbot.2018.10.030 10.1093/treephys/23.15.1031 10.1016/S0176-1617(88)80007-5 10.1111/nph.17052 10.1071/FP03250 10.1111/pce.13208 10.1104/pp.103.033431 10.1023/A:1023936313544 10.1111/nph.14724 10.1093/treephys/16.4.441 10.1111/nph.12477 10.1111/gcb.13035 10.1038/35041539 10.1007/s00442-014-3159-4 10.1111/pce.14134 10.1104/pp.20.00407 10.1016/j.phytochem.2020.112366 10.1016/j.tplants.2016.02.003 10.1111/nph.14652 10.1111/j.1365-313X.2008.03538.x 10.1016/j.csda.2008.06.010 10.1093/jxb/erx071 10.1093/biosci/biv107 10.1111/1365-2435.13868 10.3354/cr01427 10.1111/pce.13770 10.18637/jss.v067.i01 10.1098/rstb.2017.0311 10.3389/ffgc.2020.576320 10.1111/nph.14469 10.1111/nph.15304 10.1038/nature15539 10.1111/gcb.14413 10.1002/pld3.113 10.1111/gcb.12563 10.1104/pp.101.4.1169 10.1111/j.1469-8137.2010.03309.x 10.1890/ES15-00203.1 10.1111/gcb.13851 10.1088/1748-9326/8/3/034018 10.3389/fpls.2016.00607 10.1007/BFb0067700 10.1111/nph.13978 10.1029/2011GL049041 10.1088/1748-9326/7/2/024002 10.1007/s00442-002-1034-1 10.1111/nph.15668 10.3389/feart.2018.00228 10.1126/science.1243092 10.1111/pce.12785 10.1111/1365-2435.13689 10.1093/aobpla/plx070 10.1126/science.1098704 10.1111/nph.12797 10.1111/nph.17038 10.21105/joss.03139 10.1111/1365-2435.13658 10.1038/nature12540 10.1007/s11120-013-9873-7 10.1146/annurev.pp.31.060180.002423 10.1145/3472749.3474784 10.1007/s11120-011-9677-6 10.1111/nph.13380 10.1111/gcb.14037 10.1111/j.1365-2486.2012.02797.x 10.1145/1978942.1978963 10.1016/j.bbabio.2009.08.001 10.1093/jxb/eru367 10.1111/pce.13071 10.1093/treephys/20.18.1235 10.1016/S1360-1385(03)00136-5 10.1016/j.plaphy.2010.08.016 10.1088/1748-9326/aa6f97 10.1111/j.1469-8137.2010.03350.x 10.1007/BF00320984 10.1002/joc.3711 10.1038/s41598-017-11343-5 10.1029/2007JG000590 10.1071/FP10034 10.1038/nplants.2016.129 10.1111/nph.16972 10.1111/ppl.12540 10.1111/j.1365-2486.2010.02375.x 10.1104/pp.010521 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 5PM |
DOI | 10.1111/pce.14465 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | DROUGHT EFFECTS ON THERMAL SENSITIVITY OF AMAZON FOREST TREES |
EISSN | 1365-3040 |
EndPage | 198 |
ExternalDocumentID | 10_1111_pce_14465 36230004 PCE14465 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Environment Research Council – fundername: ; |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QP 7ST C1K SOI 5PM |
ID | FETCH-LOGICAL-c4445-2fbae0ce85f4af49e066f32c2661559b2dd5c71bc5fcb2a0fddd079a16dd5c863 |
IEDL.DBID | 33P |
ISSN | 0140-7791 |
IngestDate | Tue Sep 17 21:32:57 EDT 2024 Thu Oct 10 17:44:52 EDT 2024 Thu Nov 21 23:00:06 EST 2024 Sat Sep 28 08:12:33 EDT 2024 Sat Aug 24 01:06:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | chlorophyll a fluorescence drought and heat stress interactions thermotolerance Amazon rainforest photosynthesis throughfall exclusion tropical evergreen trees thermal traits respiration |
Language | English |
License | Attribution 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4445-2fbae0ce85f4af49e066f32c2661559b2dd5c71bc5fcb2a0fddd079a16dd5c863 |
ORCID | 0000-0003-1236-5499 0000-0002-8541-2682 0000-0002-2362-0398 0000-0002-5555-4823 0000-0002-9384-6341 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14465 |
PMID | 36230004 |
PQID | 2747913000 |
PQPubID | 37957 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092618 proquest_journals_2747913000 crossref_primary_10_1111_pce_14465 pubmed_primary_36230004 wiley_primary_10_1111_pce_14465_PCE14465 |
PublicationCentury | 2000 |
PublicationDate | January 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 7 2018; 162 2017a; 40 2010; 187 2018; 41 2016; 71 2011; 17 2013; 8 2016; 39 2014; 65 1978 2014; 20 2018; 373 2004; 134 2013; 19 2021; 35 2000; 408 2018; 6 2004; 31 2020; 3 2009; 53 1980; 31 2020; 175 2015; 177 2003; 8 2019; 25 2019; 158 1988; 133 2008; 113 2014; 203 2014; 201 2014; 119 2021; 6 2018; 220 2015; 6 2010; 37 2019; 3 2021; 44 2020; 184 2011 2002; 133 2021; 229 2000; 20 2013; 502 2013; 342 2015; 528 2008; 55 2020; 34 2015; 207 2017c; 68 2011; 38 1996; 16 2004; 305 2003; 75 2019; 222 2017; 215 2017; 216 1993; 101 2018; 24 2010; 1797 2015; 67 2016; 7 2010; 48 2012; 111 2016; 2 1993; 95 2021 2020 2015; 65 2015; 21 2017; 12 2016; 21 2002; 128 2016; 211 2020; 26 2016 2017b; 214 2012; 7 2018; 10 2014; 34 2003; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 229 start-page: 2497 year: 2021 end-page: 2513 article-title: The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research publication-title: New Phytologist – volume: 12 year: 2017 article-title: Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming publication-title: Environmental Research Letters – volume: 16 start-page: 441 year: 1996 end-page: 446 article-title: Isoprene emission, photosynthesis, and growth in sweetgum ( ) seedlings exposed to short‐and long‐term drying cycles publication-title: Tree Physiology – volume: 8 year: 2013 article-title: Historic and future increase in the global land area affected by monthly heat extremes publication-title: Environmental Research Letters – volume: 502 start-page: 183 year: 2013 end-page: 187 article-title: The projected timing of climate departure from recent variability publication-title: Nature – volume: 41 start-page: 1618 year: 2018 end-page: 1631 article-title: Differences in leaf thermoregulation and water use strategies between three co‐occurring Atlantic forest tree species publication-title: Plant, Cell & Environment – volume: 133 start-page: 555 year: 1988 end-page: 560 article-title: Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests publication-title: Journal of Plant Physiology – volume: 187 start-page: 579 year: 2010 end-page: 591 article-title: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest publication-title: New Phytologist – volume: 31 start-page: 491 year: 1980 end-page: 543 article-title: Photosynthetic response and adaptation to temperature in higher plants publication-title: Annual Review of Plant Physiology – volume: 37 start-page: 890 year: 2010 end-page: 900 article-title: High‐temperature tolerance of a tropical tree, : methodological reassessment and climate change considerations publication-title: Functional Plant Biology – volume: 111 start-page: 103 year: 2012 end-page: 111 article-title: Analysis of heat‐induced disassembly process of three different monomeric forms of the major light‐harvesting chlorophyll a/b complex of photosystem II publication-title: Photosynthesis Research – volume: 6 start-page: 1 year: 2015 end-page: – 55 article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene publication-title: Ecosphere – volume: 408 start-page: 184 year: 2000 end-page: 187 article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model publication-title: Nature – volume: 67 start-page: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 211 start-page: 850 year: 2016 end-page: 863 article-title: Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? publication-title: New Phytologist – volume: 6 start-page: 3139 year: 2021 article-title: Performance: an R Package for assessment, comparison and testing of statistical models publication-title: Journal of Open Source Software – volume: 20 start-page: 2915 year: 2014 end-page: 2926 article-title: Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance publication-title: Global Change Biology – volume: 55 start-page: 687 year: 2008 end-page: 697 article-title: Isoprene emission is not temperature‐dependent during and after severe drought‐stress: a physiological and biochemical analysis publication-title: The Plant Journal – volume: 214 start-page: 1103 year: 2017b end-page: 1117 article-title: In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes publication-title: New Phytologist – volume: 34 start-page: 2236 year: 2020 end-page: 2245 article-title: Photosynthetic heat tolerances and extreme leaf temperatures publication-title: Functional Ecology – volume: 35 start-page: 43 year: 2021 end-page: 53 article-title: The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability publication-title: Functional Ecology – volume: 203 start-page: 32 year: 2014 end-page: 43 article-title: Abiotic and biotic stress combinations publication-title: New Phytologist – volume: 34 start-page: 623 year: 2014 end-page: 642 article-title: Updated high‐resolution grids of monthly climatic observations—the CRU TS3. 10 dataset publication-title: International Journal of Climatology – volume: 229 start-page: 1363 year: 2021 end-page: 1374 article-title: Plant traits controlling growth change in response to a drier climate publication-title: New Phytologist – volume: 24 start-page: 2390 year: 2018 end-page: 2402 article-title: Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance publication-title: Global Change Biology – volume: 207 start-page: 613 year: 2015 end-page: 626 article-title: Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought‐stressed P latanus× acerifolia plants during Mediterranean summers publication-title: New Phytologist – volume: 305 start-page: 994 year: 2004 end-page: 997 article-title: More intense, more frequent, and longer lasting heat waves in the 21st century publication-title: Science – volume: 201 start-page: 205 year: 2014 end-page: 216 article-title: Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco ( ) plants publication-title: New Phytologist – volume: 10 start-page: plx070 year: 2018 article-title: Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought publication-title: AoB Plants – volume: 3 start-page: 765 year: 2020 end-page: 785 article-title: Photosynthetic and respiratory acclimation of understory shrubs in response to in situ experimental warming of a wet tropical forest publication-title: Frontiers in Forests and Global Change – volume: 216 start-page: 136 year: 2017 end-page: 149 article-title: Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates publication-title: New Phytologist – volume: 48 start-page: 909 year: 2010 end-page: 930 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiology and Biochemistry – volume: 220 start-page: 435 year: 2018 end-page: 446 article-title: Isoprene emission structures tropical tree biogeography and community assembly responses to climate publication-title: New Phytologist – start-page: 105 year: 1978 end-page: 116 – volume: 20 start-page: 1235 year: 2000 end-page: 1241 article-title: Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings publication-title: Tree Physiology – volume: 222 start-page: 768 year: 2019 end-page: 784 article-title: Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale publication-title: New Phytologist – volume: 3 year: 2019 article-title: Phenotypic and metabolic plasticity shapes life‐history strategies under combinations of abiotic stresses publication-title: Plant Direct – volume: 65 start-page: 882 year: 2015 end-page: 892 article-title: Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments publication-title: BioScience – volume: 342 start-page: 6156 year: 2013 article-title: Hyperdominance in the Amazonian tree flora publication-title: Science – volume: 38 year: 2011 article-title: Remotely sensed heat anomalies linked with Amazonian forest biomass declines publication-title: Geophysical Research Letters – volume: 229 start-page: 2548 year: 2021 end-page: 2561 article-title: Complete or overcompensatory thermal acclimation of leaf dark respiration in African tropical trees publication-title: New Phytologist – volume: 8 start-page: 343 year: 2003 end-page: 351 article-title: Thermal acclimation and the dynamic response of plant respiration to temperature publication-title: Trends in Plant Science – volume: 21 start-page: 4662 year: 2015 end-page: 4672 article-title: After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration publication-title: Global Change Biology – volume: 177 start-page: 885 year: 2015 end-page: 900 article-title: General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types publication-title: Oecologia – volume: 101 start-page: 1169 year: 1993 end-page: 1173 article-title: Effects of anaerobiosis on chlorophyll fluorescence yield in spinach ( ) leaf discs publication-title: Plant Physiology – volume: 1797 start-page: 63 year: 2010 end-page: 70 article-title: Heat‐induced disassembly and degradation of chlorophyll‐containing protein complexes in vivo publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics – volume: 26 start-page: 3569 year: 2020 end-page: 3584 article-title: Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought publication-title: Global Change Biology – volume: 215 start-page: 1399 year: 2017 end-page: 1412 article-title: Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland publication-title: New Phytologist – volume: 373 year: 2018 article-title: Short‐term effects of drought on tropical forest do not fully predict impacts of repeated or long‐term drought: gas exchange versus growth publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 113 start-page: G00B07 year: 2008 article-title: Are tropical forests near a high temperature threshold? publication-title: Journal of Geophysical Research: Biogeosciences – volume: 35 start-page: 2179 year: 2021 end-page: 2189 article-title: Water availability influences thermal safety margins for leaves publication-title: Functional Ecology – volume: 162 start-page: 2 year: 2018 end-page: 12 article-title: Plant adaptations to the combination of drought and high temperatures publication-title: Physiologia Plantarum – volume: 158 start-page: 28 year: 2019 end-page: 39 article-title: Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species under heatwave conditions publication-title: Environmental and Experimental Botany – volume: 40 start-page: 3055 year: 2017a end-page: 3068 article-title: In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species publication-title: Plant, Cell & Environment – volume: 184 start-page: 852 year: 2020 end-page: 864 article-title: Drought‐induced xylem embolism limits the recovery of leaf gas exchange in Scots pine publication-title: Plant Physiology – volume: 7 start-page: 607 year: 2016 article-title: Trait acclimation mitigates mortality risks of tropical canopy trees under global warming publication-title: Frontiers in Plant Science – volume: 53 start-page: 603 year: 2009 end-page: 608 article-title: Sample sizes required to detect interactions between two binary fixed‐effects in a mixed‐effects linear regression model publication-title: Computational Statistics & Data Analysis – volume: 68 start-page: 2275 year: 2017c end-page: 2284 article-title: Photosynthetic acclimation to warming in tropical forest tree seedlings publication-title: Journal of Experimental Botany – volume: 175 year: 2020 article-title: Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin publication-title: Phytochemistry – volume: 75 start-page: 259 year: 2003 end-page: 275 article-title: Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions publication-title: Photosynthesis Research – volume: 23 start-page: 1031 year: 2003 end-page: 1039 article-title: Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings publication-title: Tree Physiology – volume: 17 start-page: 2134 year: 2011 end-page: 2144 article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance publication-title: Global Change Biology – year: 2016 – start-page: 754 year: 2021 end-page: 768 – volume: 119 start-page: 89 year: 2014 end-page: 100 article-title: Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration publication-title: Photosynthesis Research – volume: 7 year: 2012 article-title: High sensitivity of future global warming to land carbon cycle processes publication-title: Environmental Research Letters – volume: 24 start-page: 249 year: 2018 end-page: 258 article-title: Stand dynamics modulate water cycling and mortality risk in droughted tropical forest publication-title: Global Change Biology – volume: 19 start-page: 45 year: 2013 end-page: 63 article-title: Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO 2 publication-title: Global Change Biology – volume: 39 start-page: 2185 year: 2016 end-page: 2197 article-title: Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism publication-title: Plant, Cell & Environment – volume: 65 start-page: 6471 year: 2014 end-page: 6485 article-title: Drought increases heat tolerance of leaf respiration in saplings grown under both ambient and elevated atmospheric [CO2] and temperature publication-title: Journal of Experimental Botany – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 2 start-page: 1 year: 2016 end-page: 9 article-title: The energetic and carbon economic origins of leaf thermoregulation publication-title: Nature Plants – volume: 44 start-page: 2428 year: 2021 end-page: 2439 article-title: Photosynthetic quantum efficiency in south‐eastern Amazonian trees may be already affected by climate change publication-title: Plant, Cell & Environment – volume: 95 start-page: 328 year: 1993 end-page: 333 article-title: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves publication-title: Oecologia – year: 2020 – volume: 44 start-page: 2879 year: 2021 end-page: 2897 article-title: Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation publication-title: Plant, Cell & Environment – volume: 128 start-page: 822 year: 2002 end-page: 832 article-title: Temperature‐induced extended helix/random coil transitions in a group 1 late embryogenesis‐abundant protein from soybean publication-title: Plant Physiology – volume: 134 start-page: 1683 year: 2004 end-page: 1696 article-title: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress publication-title: Plant Physiology – volume: 31 start-page: 275 year: 2004 end-page: 283 article-title: A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf publication-title: Functional Plant Biology – volume: 21 start-page: 584 year: 2016 end-page: 593 article-title: The impacts of droughts in tropical forests publication-title: Trends in Plant Science – volume: 25 start-page: 39 year: 2019 end-page: 56 article-title: Compositional response of Amazon forests to climate change publication-title: Global Change Biology – volume: 6 start-page: 228 year: 2018 article-title: Changes in climate and land use over the Amazon region: current and future variability and trends publication-title: Frontiers in Earth Science – volume: 187 start-page: 647 year: 2010 end-page: 665 article-title: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change publication-title: New Phytologist – volume: 7 start-page: 1 year: 2017 end-page: 11 article-title: Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow‐fast resource acquisition spectrum publication-title: Scientific Reports – volume: 133 start-page: 112 year: 2002 end-page: 119 article-title: Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature publication-title: Oecologia – volume: 71 start-page: 75 year: 2016 end-page: 89 article-title: Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest publication-title: Climate Research – ident: e_1_2_7_6_1 doi: 10.1111/gcb.15040 – ident: e_1_2_7_26_1 doi: 10.1016/j.envexpbot.2018.10.030 – ident: e_1_2_7_32_1 doi: 10.1093/treephys/23.15.1031 – ident: e_1_2_7_36_1 doi: 10.1016/S0176-1617(88)80007-5 – ident: e_1_2_7_31_1 doi: 10.1111/nph.17052 – ident: e_1_2_7_38_1 doi: 10.1071/FP03250 – ident: e_1_2_7_25_1 doi: 10.1111/pce.13208 – ident: e_1_2_7_57_1 doi: 10.1104/pp.103.033431 – ident: e_1_2_7_27_1 doi: 10.1023/A:1023936313544 – ident: e_1_2_7_10_1 doi: 10.1111/nph.14724 – ident: e_1_2_7_24_1 doi: 10.1093/treephys/16.4.441 – ident: e_1_2_7_62_1 doi: 10.1111/nph.12477 – ident: e_1_2_7_60_1 doi: 10.1111/gcb.13035 – ident: e_1_2_7_16_1 doi: 10.1038/35041539 – ident: e_1_2_7_68_1 doi: 10.1007/s00442-014-3159-4 – ident: e_1_2_7_8_1 doi: 10.1111/pce.14134 – ident: e_1_2_7_55_1 doi: 10.1104/pp.20.00407 – ident: e_1_2_7_37_1 doi: 10.1016/j.phytochem.2020.112366 – ident: e_1_2_7_12_1 doi: 10.1016/j.tplants.2016.02.003 – ident: e_1_2_7_67_1 doi: 10.1111/nph.14652 – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-313X.2008.03538.x – ident: e_1_2_7_42_1 doi: 10.1016/j.csda.2008.06.010 – ident: e_1_2_7_72_1 doi: 10.1093/jxb/erx071 – ident: e_1_2_7_49_1 doi: 10.1093/biosci/biv107 – ident: e_1_2_7_11_1 doi: 10.1111/1365-2435.13868 – ident: e_1_2_7_56_1 doi: 10.3354/cr01427 – ident: e_1_2_7_82_1 doi: 10.1111/pce.13770 – ident: e_1_2_7_4_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_7_48_1 doi: 10.1098/rstb.2017.0311 – ident: e_1_2_7_9_1 doi: 10.3389/ffgc.2020.576320 – ident: e_1_2_7_81_1 – ident: e_1_2_7_71_1 doi: 10.1111/nph.14469 – ident: e_1_2_7_80_1 doi: 10.1111/nph.15304 – ident: e_1_2_7_58_1 doi: 10.1038/nature15539 – ident: e_1_2_7_23_1 doi: 10.1111/gcb.14413 – ident: e_1_2_7_65_1 doi: 10.1002/pld3.113 – ident: e_1_2_7_69_1 doi: 10.1111/gcb.12563 – ident: e_1_2_7_34_1 doi: 10.1104/pp.101.4.1169 – ident: e_1_2_7_13_1 doi: 10.1111/j.1469-8137.2010.03309.x – ident: e_1_2_7_2_1 doi: 10.1890/ES15-00203.1 – ident: e_1_2_7_14_1 doi: 10.1111/gcb.13851 – ident: e_1_2_7_15_1 doi: 10.1088/1748-9326/8/3/034018 – ident: e_1_2_7_76_1 doi: 10.3389/fpls.2016.00607 – ident: e_1_2_7_52_1 doi: 10.1007/BFb0067700 – ident: e_1_2_7_19_1 doi: 10.1111/nph.13978 – ident: e_1_2_7_83_1 doi: 10.1029/2011GL049041 – ident: e_1_2_7_22_1 – ident: e_1_2_7_7_1 doi: 10.1088/1748-9326/7/2/024002 – ident: e_1_2_7_17_1 doi: 10.1007/s00442-002-1034-1 – ident: e_1_2_7_40_1 doi: 10.1111/nph.15668 – ident: e_1_2_7_45_1 doi: 10.3389/feart.2018.00228 – ident: e_1_2_7_75_1 doi: 10.1126/science.1243092 – ident: e_1_2_7_84_1 doi: 10.1111/pce.12785 – ident: e_1_2_7_59_1 doi: 10.1111/1365-2435.13689 – ident: e_1_2_7_64_1 doi: 10.1093/aobpla/plx070 – ident: e_1_2_7_47_1 doi: 10.1126/science.1098704 – ident: e_1_2_7_77_1 doi: 10.1111/nph.12797 – ident: e_1_2_7_53_1 doi: 10.1111/nph.17038 – ident: e_1_2_7_44_1 doi: 10.21105/joss.03139 – ident: e_1_2_7_54_1 doi: 10.1111/1365-2435.13658 – ident: e_1_2_7_51_1 doi: 10.1038/nature12540 – ident: e_1_2_7_85_1 doi: 10.1007/s11120-013-9873-7 – ident: e_1_2_7_5_1 doi: 10.1146/annurev.pp.31.060180.002423 – ident: e_1_2_7_21_1 doi: 10.1145/3472749.3474784 – ident: e_1_2_7_88_1 doi: 10.1007/s11120-011-9677-6 – ident: e_1_2_7_79_1 doi: 10.1111/nph.13380 – ident: e_1_2_7_20_1 doi: 10.1111/gcb.14037 – ident: e_1_2_7_73_1 doi: 10.1111/j.1365-2486.2012.02797.x – ident: e_1_2_7_86_1 doi: 10.1145/1978942.1978963 – ident: e_1_2_7_43_1 doi: 10.1016/j.bbabio.2009.08.001 – ident: e_1_2_7_30_1 doi: 10.1093/jxb/eru367 – ident: e_1_2_7_70_1 doi: 10.1111/pce.13071 – ident: e_1_2_7_41_1 doi: 10.1093/treephys/20.18.1235 – ident: e_1_2_7_3_1 doi: 10.1016/S1360-1385(03)00136-5 – ident: e_1_2_7_33_1 doi: 10.1016/j.plaphy.2010.08.016 – ident: e_1_2_7_78_1 doi: 10.1088/1748-9326/aa6f97 – ident: e_1_2_7_29_1 doi: 10.1111/j.1469-8137.2010.03350.x – ident: e_1_2_7_66_1 doi: 10.1007/BF00320984 – ident: e_1_2_7_35_1 doi: 10.1002/joc.3711 – ident: e_1_2_7_63_1 doi: 10.1038/s41598-017-11343-5 – ident: e_1_2_7_18_1 doi: 10.1029/2007JG000590 – ident: e_1_2_7_39_1 doi: 10.1071/FP10034 – ident: e_1_2_7_50_1 doi: 10.1038/nplants.2016.129 – ident: e_1_2_7_61_1 doi: 10.1111/nph.16972 – ident: e_1_2_7_87_1 doi: 10.1111/ppl.12540 – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-2486.2010.02375.x – ident: e_1_2_7_74_1 doi: 10.1104/pp.010521 |
SSID | ssj0001479 |
Score | 2.4907932 |
Snippet | The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 185 |
SubjectTerms | Air temperature Amazon rainforest chlorophyll a fluorescence Climate change Climate models Damage tolerance Drought drought and heat stress interactions Forests Original Photosynthesis Photosystem II Photosystem II Protein Complex Plant species Quantum efficiency Respiration thermal traits thermotolerance throughfall exclusion Trees tropical evergreen trees Tropical forests |
Title | Long‐term drought effects on the thermal sensitivity of Amazon forest trees |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14465 https://www.ncbi.nlm.nih.gov/pubmed/36230004 https://www.proquest.com/docview/2747913000 https://pubmed.ncbi.nlm.nih.gov/PMC10092618 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5UFLz4fqwvgnjwUmnabLPFk49dPKgsqOCtpEmjgrZi9aAnf4K_0V_iTNotuyyC4KFQSFLSTGbyTTL5BmAvS02mZGQ9bqTyhIpCtIO-9iyK2wQKEbRL93Z2JS9vO6ddosk5HNyFqfghmg030gxnr0nBVVoOKfmzzg4c3RfaX_QS3PWNsN9YYS4qnj0KX5Qy5jWrEEXxNC1H16IxgDkeJzmMX90C1Jv_V9cXYK7GneyomiiLMJHlSzBTZaJ8X4Lp4wJR4vsyXJwX-d335xdZbGZcDp9XVgd9sCJniBfpQXP-yEoKfq-yT7DCsqMn9YE1EAXj7zE67S5X4KbXvT458-qUC54WQrS9wKYq8ymVqRXKijhDRGLDQNMyjr5HGhjT1pKnum11GijfGmN8GSseUUEnCldhKi_ybB1YYHgUC2kiyZXQiIvSmFuNrVIVSxN2WrA7GPzkuWLWSAYeCQ5Q4gaoBVsDsSS1cpUJOdIxHcP5LVirJNR8AddjKhAt6IzIrqlAdNqjJfnDvaPV5sQ_FXHs2L4T3u-9SvonXfey8feqmzBLmeqr3ZstmHp9ecu2YbI0bztu4v4AqerxgQ |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-QwEB_OPUVf7k49dc9_QXzwpUfTZpst3IunKyu3yoIr-FbSpFFBW3F3H9an-wj3Gf0kzqTd4iLCgQ-FQpKSZjIzvyST3wDsZ6nJlIysx41UnlBRiHbQ155FcZtAIYJ26d66F_L8qn3cIZqcX9O7MCU_RL3hRprh7DUpOG1Iv9LyB539dHxfc_BZRDgR6QJH2K_tMBcl0x4FMEoZ84pXiOJ46qaz3ugNxHwbKfkawToXdPL1Y53_Bl8q6MkOy7myDJ-yfAUWymSUkxWY_10gUJyswlmvyK-f__4jo82MS-MzYlXcBytyhpCRHrTod2xI8e9lAgpWWHZ4r56wBgJh_D9GB97D73B50hkcdb0q64KnhRAtL7CpynzKZmqFsiLOEJTYMNDkyXH5kQbGtLTkqW5ZnQbKt8YYX8aKR1TQjsI1aORFnm0ACwyPYiFNJLkSGqFRGnOrsVWqYmnCdhP2pqOfPJTkGsl0UYIDlLgBasLWVC5JpV_DhNbSMZ3E-U1YL0VUfwFdMhWIJrRnhFdXIEbt2ZL89sYxa3OioIo4duzASe_9XiX9o457-fH_VXdhsTs46yW90_M_m7BEievLzZwtaIwex9k2zA3NeMfN4hfhxfWp |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yauglrybp5tGI0kMuDpattdb0lMcuW7JZFppAbkaWrLSQ2Es2e9ie-hPyG_NLOiN7zS6hEMjBYJBkJI1m5pM0_gbgW5aaTMnIetxI5QkVhWgHfe1ZFLcJFCJol-6t-1P2b1sXbaLJ-T79F6bkh6gP3EgznL0mBR8aO6PkQ52dOLqvRVgWCMOJOD8MB7UZ5qIk2qP4RSljXtEKURhP3XTeGb1CmK8DJWcBrPNAnfV39X0D1irgyU7LlbIJC1m-BR_KVJSTLVg5KxAmTj7BVa_I717-PpPJZsYl8XliVdQHK3KGgJEetOf3bETR72X6CVZYdvqg_mANhME4PEbX3aNtuOm0r8-7XpVzwdNCiKYX2FRlPuUytUJZEWcISWwYaPLjuPlIA2OaWvJUN61OA-VbY4wvY8UjKmhF4Q4s5UWefQYWGB7FQppIciU0AqM05lZjq1TF0oStBnydTn4yLKk1kumWBCcocRPUgIOpWJJKu0YJ7aRjuofzG7BbSqj-AjpkKhANaM3Jrq5AfNrzJfnvX45XmxMBVcSxY8dOeP_vVTI4b7uXvbdXPYLVwUUn6f3oX-7DR8paX57kHMDS0-M4O4TFkRl_cWv4H_db9E8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90term+drought+effects+on+the+thermal+sensitivity+of+Amazon+forest+trees&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Docherty%2C+Emma+M.&rft.au=Gloor%2C+Emanuel&rft.au=Sponchiado%2C+Daniela&rft.au=Gilpin%2C+Martin&rft.date=2023-01-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=46&rft.issue=1&rft.spage=185&rft.epage=198&rft_id=info:doi/10.1111%2Fpce.14465&rft.externalDBID=10.1111%252Fpce.14465&rft.externalDocID=PCE14465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |