Distinct multi-joint control strategies in spastic diplegia associated with prematurity or Angelman syndrome

Spastic diplegia is commonly due to periventricular leucomalacia associated with premature birth. It is also a feature of Angelman syndrome (AS), a neurogenetic disorder with developmental delay, absent speech and mirthful behaviour. We studied the kinematics and kinetics of the squatting movement a...

Full description

Saved in:
Bibliographic Details
Published in:Clinical neurophysiology Vol. 112; no. 9; pp. 1618 - 1625
Main Authors: Dan, Bernard, Bouillot, Ethel, Bengoetxea, Ana, Boyd, Stewart G, Cheron, Guy
Format: Journal Article
Language:English
Published: Shannon Elsevier Ireland Ltd 01-09-2001
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spastic diplegia is commonly due to periventricular leucomalacia associated with premature birth. It is also a feature of Angelman syndrome (AS), a neurogenetic disorder with developmental delay, absent speech and mirthful behaviour. We studied the kinematics and kinetics of the squatting movement and associated electromyographic (EMG) activities in 20 children with spastic diplegia associated with periventricular leucomalacia (SDPL) or AS and 18 unimpaired children. While movement of normal subjects consisted of vertical translation of most body segments, the movement of SDPL children was operated around the fixed knee with backward shift of the hip, and AS children performed a forward flexion of the trunk over the thigh. Trunk stability was correlated with movement velocity in both pathological groups. In normal subjects, anticipatory EMG pattern consisted of silencing of hamstring muscle tonic activity prior to movement onset. This deactivation was not present in spastic diplegia. In SDPL, anticipatory overactivation of ankle joint actuators was recorded and tonic co-contraction persisted throughout the movement. In AS, rhythmic EMG bursting was seen during the movement. Shoulder, hip and knee trajectories in the sagittal plane showed marked within-group stereotypies in orientation, shape and length. The patterns in both pathological groups were therefore distinctive. We speculate that they reflect corticospinal impairment in SDPL and combined corticospinal and cerebellar dysfunction in AS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1388-2457
1872-8952
DOI:10.1016/S1388-2457(01)00618-6