Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy

Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microscopy (Oxford) Vol. 274; no. 1; pp. 13 - 22
Main Authors: VAN HEST, J.J.H.A., AGRONSKAIA, A.V., FOKKEMA, J., MONTANARELLA, F., GREGORIO PUIG, A., DE MELLO DONEGA, C., MEIJERINK, A., BLAB, G.A., GERRITSEN, H.C.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-04-2019
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM. Lay Description Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM.
AbstractList Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye-labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold-core rhodamine B-labelled silica particles, 15 nm CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) and 230 nm Y O :Eu particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold-core rhodamine B-labelled silica NPs and QDs are quenched after a single exposure to 60 ke  nm with an energy of 120 keV, while Y O :Eu NPs are robust and still show luminescence after five doses of 60 ke nm . In addition, the luminescence intensity of Y O :Eu NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y O :Eu NPs are promising as robust fiducial marker in CLEM. LAY DESCRIPTION: Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye-labelled silica particles, quantum dots and lanthanide-doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye-labelled silica NPs and QDs are quenched after a single exposure to 60 ke nm with an energy of 120 keV, while lanthanide-doped inorganic NPs are robust and still show luminescence after five doses of 60 ke nm . In addition, the luminescence intensity of lanthanide-doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide-doped NPs are promising as robust fiducial marker in CLEM.
Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet.Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM.Lay DescriptionLuminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet.Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM.
Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM. Lay Description Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM.
Author VAN HEST, J.J.H.A.
DE MELLO DONEGA, C.
GREGORIO PUIG, A.
BLAB, G.A.
MEIJERINK, A.
AGRONSKAIA, A.V.
GERRITSEN, H.C.
FOKKEMA, J.
MONTANARELLA, F.
AuthorAffiliation 1 Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
2 Molecular Biophysics, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
3 Soft Condensed Matter, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
AuthorAffiliation_xml – name: 1 Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
– name: 2 Molecular Biophysics, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
– name: 3 Soft Condensed Matter, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: J.J.H.A.
  orcidid: 0000-0001-9665-6220
  surname: VAN HEST
  fullname: VAN HEST, J.J.H.A.
  organization: Utrecht University
– sequence: 2
  givenname: A.V.
  surname: AGRONSKAIA
  fullname: AGRONSKAIA, A.V.
  organization: Utrecht University
– sequence: 3
  givenname: J.
  surname: FOKKEMA
  fullname: FOKKEMA, J.
  organization: Utrecht University
– sequence: 4
  givenname: F.
  surname: MONTANARELLA
  fullname: MONTANARELLA, F.
  organization: Utrecht University
– sequence: 5
  givenname: A.
  surname: GREGORIO PUIG
  fullname: GREGORIO PUIG, A.
  organization: Utrecht University
– sequence: 6
  givenname: C.
  surname: DE MELLO DONEGA
  fullname: DE MELLO DONEGA, C.
  organization: Utrecht University
– sequence: 7
  givenname: A.
  surname: MEIJERINK
  fullname: MEIJERINK, A.
  organization: Utrecht University
– sequence: 8
  givenname: G.A.
  surname: BLAB
  fullname: BLAB, G.A.
  organization: Utrecht University
– sequence: 9
  givenname: H.C.
  surname: GERRITSEN
  fullname: GERRITSEN, H.C.
  email: H.C.Gerritsen@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30648740$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vFCEYxompsdvqwS9gSLzoYVr-zQ5cTJrGPzU1XuqZMPDOlpWBFWa22W8vdWqjJnJ5Q_jxywPPCTqKKQJCLyk5o3Wdb0d_RlnXySdoRfm6bZik8gitCGGsYR0jx-iklC0hRLaSPEPHnKyF7ARZoXST7kx2BefUz2XCJjq8h1zM5APg4uOmjmhi2pk8eVs3g3ez9Sbg0eTvlcRDytimnCHUS3vAwW9uFxEEsFNOEY_e5lRs2h2eo6eDCQVePMxT9O3D-5vLT831149XlxfXjRWCy4ZKRzhYOfSKkV5SkIpI6pi0ThhnrQNjrQA2UKY4d2tOjZLQqp5yKYxS_BS9W7y7uR_BWYhTNkHvsq-xDzoZr_8-if5Wb9Jer6VQneqq4M2DIKcfM5RJj75YCMFESHPRjHaKKybatqKv_0G3ac6xPq9SinS85ZJU6u1C3X9FyTA8hqFE39eoa436V42VffVn-kfyd28VOF-Au1rT4f8m_fnL1aL8CZ9Pq_8
CitedBy_id crossref_primary_10_3762_bjnano_12_9
crossref_primary_10_1038_s42003_021_02432_3
crossref_primary_10_1111_jmi_12939
crossref_primary_10_1002_smll_202004615
crossref_primary_10_1038_s41592_022_01749_z
crossref_primary_10_1038_s41596_021_00522_4
crossref_primary_10_1039_D0NR02563A
crossref_primary_10_1007_s43939_021_00011_1
crossref_primary_10_3390_molecules25245897
Cites_doi 10.1016/0022-2313(87)90177-3
10.1039/C7NR00927E
10.1016/0021-9797(68)90272-5
10.1002/anie.201709723
10.1039/C6NR01908K
10.1177/002215540405200102
10.1117/12.344636
10.1063/1.119043
10.1177/41.5.7682231
10.1038/srep43621
10.1364/OE.21.025655
10.1002/anie.201106651
10.1021/ja0363563
10.1007/s12551-010-0035-2
10.1039/df9511100055
10.1083/jcb.201009037
10.1007/s12154-015-0141-5
10.1016/j.optmat.2009.05.004
10.1016/S0065-2539(08)60600-9
10.1021/la00017a019
10.1021/ar9700320
10.1038/nmeth.3400
10.1021/la0347859
10.1021/jp971091y
10.1021/ja907069u
10.1149/2.040309jss
10.1021/jp025967z
10.1007/978-3-642-79017-1
10.1016/j.powtec.2004.03.013
10.1177/0192623307310950
10.1016/j.ultramic.2013.10.011
10.1016/S0022-5320(70)90167-X
10.1038/srep00865
10.1038/nmeth791
10.1126/science.1077194
10.1093/bioinformatics/btu202
10.1016/0304-3991(82)90181-4
10.1038/nmeth.1248
10.1021/acsnano.7b03975
10.1111/jmi.12071
10.1038/srep25950
10.1016/j.jsb.2008.07.003
10.1021/jp983241q
10.1016/S0022-3115(97)00224-9
10.1007/BF00901277
10.1371/journal.pone.0077209
10.1016/j.micron.2004.02.003
10.1016/0304-3991(88)90322-1
10.1038/ncomms4741
10.1093/jmicro/dfi043
10.1186/1477-3155-12-5
10.1021/jp802383a
10.1039/c0cs00055h
10.1021/acs.jpcc.7b06549
10.1103/PhysRev.171.283
10.1016/S0091-679X(06)79023-9
ContentType Journal Article
Copyright 2019 The Authors. published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Journal compilation © 2019 Royal Microscopical Society
Copyright_xml – notice: 2019 The Authors. published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
– notice: 2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
– notice: Journal compilation © 2019 Royal Microscopical Society
DBID 24P
WIN
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
5PM
DOI 10.1111/jmi.12778
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate J.J.H.A. VAN HEST ET AL
EISSN 1365-2818
EndPage 22
ExternalDocumentID 10_1111_jmi_12778
30648740
JMI12778
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Marie‐Sklodowska Curie action Phonsi
  funderid: H2020‐MSCA‐ITN‐642656
– fundername: NWO ‐ Microscopy Valley
  funderid: 12713; 12715
– fundername: European Union's Seventh Framework Programme FP7/2007‐2013/ for project GUIDEnano
  funderid: 604387
– fundername: European Union's Seventh Framework Programme FP7/2007‐2013/ for project GUIDEnano
  grantid: 604387
– fundername: NWO ‐ Microscopy Valley
  grantid: 12713; 12715
– fundername: Marie‐Sklodowska Curie action Phonsi
  grantid: H2020‐MSCA‐ITN‐642656
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
NPM
AAMNL
AAYXX
ABDPE
CITATION
7U5
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c4438-18d03ec8fb920b81e89081d28cd4adccdeacc4e2f12933d631a98e59b1384a993
IEDL.DBID 33P
ISSN 0022-2720
IngestDate Tue Sep 17 21:12:52 EDT 2024
Sat Aug 17 03:57:45 EDT 2024
Tue Nov 19 05:45:01 EST 2024
Thu Nov 21 22:05:12 EST 2024
Sat Sep 28 08:27:08 EDT 2024
Sat Aug 24 00:50:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords integrated correlative microscopy
luminescence
Correlative microscopy
fiducial markers
lanthanides
Language English
License Attribution
2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4438-18d03ec8fb920b81e89081d28cd4adccdeacc4e2f12933d631a98e59b1384a993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9665-6220
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12778
PMID 30648740
PQID 2190735380
PQPubID 1086390
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849797
proquest_miscellaneous_2179392455
proquest_journals_2190735380
crossref_primary_10_1111_jmi_12778
pubmed_primary_30648740
wiley_primary_10_1111_jmi_12778_JMI12778
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Journal of microscopy (Oxford)
PublicationTitleAlternate J Microsc
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1968; 26
2017; 7
2013; 2
2013; 21
1982; 10
2008; 36
1970; 31
2011; 192
2008; 5
2003; 19
1968; 171
2013; 8
2017; 9
2007; 79
1987; 37
2012; 51
2014; 5
1990
1999; 3636
1997; 101
2004; 35
2002; 106
2017; 121
2008; 112
2003; 125
2010; 2
1981; 30
2014; 12
2015; 12
2004; 142
2013; 2525
1997; 251
2011; 40
2002; 298
1993; 41
1981; 25
1994
1999; 103
2017; 174
2009; 131
2015; 8
2008; 164
2016; 6
2004; 52
2012; 2
2009; 31
1997; 70
2017; 11
1951; 11
1988; 24
2005; 54
1999; 32
2005; 2
2014; 30
2014; 143
2016; 8
1994; 96
1967
2018; 57
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Kociak M. (e_1_2_6_24_1) 2017; 174
e_1_2_6_13_1
Kumao A. (e_1_2_6_27_1) 1981; 30
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
Suzuki H. (e_1_2_6_52_1) 1967
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 25
  start-page: 87
  year: 1981
  end-page: 90
  article-title: Thin‐film aggregate color centers as media for frequency domain optical storage
  publication-title: Appl. Phys.
– volume: 31
  start-page: 526
  year: 1970
  end-page: 550
  article-title: Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration
  publication-title: J. Ultra. Mol. R.
– volume: 174
  start-page: 50
  year: 2017
  end-page: 69
  article-title: Cathodoluminescence in the scanning transmission electron microscope
  publication-title: Ultramicroscopy
– volume: 31
  start-page: 1715
  year: 2009
  end-page: 1719
  article-title: Synthesis and characterization of functionalized rhodamine B‐doped silica nanoparticles
  publication-title: Opt. Mater.
– volume: 24
  start-page: 7
  year: 1988
  end-page: 18
  article-title: A method for monitoring the collapse of plastic sections as a function of electron dose
  publication-title: Ultramicroscopy
– volume: 26
  start-page: 62
  year: 1968
  end-page: 69
  article-title: Controlled growth of monodisperse silica spheres in the micron size range
  publication-title: J. Colloid Interf. Sci.
– volume: 21
  start-page: 25655
  issue: 22
  year: 2013
  article-title: High‐resolution microscopy for biological specimens via cathodoluminescence of Eu‐ and Zn‐doped Y2O3 nanophosphors
  publication-title: Opt. Expr.
– volume: 101
  start-page: 9463
  year: 1997
  end-page: 9475
  article-title: (CdSe)ZnS core‐shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 5
  year: 2014
  article-title: Engineered nanoparticles interacting with cells: size matters
  publication-title: J. Nanobiotechnol.
– volume: 96
  start-page: 1427
  year: 1994
  end-page: 1438
  article-title: Dispersion of Rhodamine‐labelled silica spheres: synthesis, characterization and fluorescence confocal scanning laser microscopy
  publication-title: Langmuir
– year: 1990
– year: 1994
– volume: 35
  start-page: 399
  year: 2004
  end-page: 409
  article-title: Radiation damage in the TEM and SEM
  publication-title: Micron
– volume: 5
  start-page: 763
  year: 2008
  end-page: 775
  article-title: Quantum dots versus organic dyes as fluorescent labels
  publication-title: Nat. Methods
– volume: 32
  start-page: 407
  year: 1999
  end-page: 414
  article-title: Luminescence photophysics in semiconductor nanocrystals
  publication-title: Accounts Chem. Res.
– volume: 70
  start-page: 2132
  year: 1997
  end-page: 2134
  article-title: Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 865
  year: 2012
  article-title: Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours
  publication-title: Sci. Rep.
– volume: 41
  start-page: 777
  year: 1993
  end-page: 782
  article-title: Photoconversion and electron microscopic localization of the fluorescent axon tracer fluoro‐ruby
  publication-title: J. Histochem. Cytochem.
– volume: 79
  start-page: 575
  year: 2007
  end-page: 591
  article-title: Markers for correlated light and electron microscopy
  publication-title: Method. Cell Biol.
– volume: 2525
  start-page: 58
  year: 2013
  end-page: 70
  article-title: Integration of a high‐NA light microscope in a scanning electron microscope
  publication-title: J. Microsc‐Oxford
– volume: 7
  start-page: sp43621
  year: 2017
  article-title: Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers
  publication-title: Sci. Rep.
– volume: 40
  start-page: 1512
  year: 2011
  end-page: 1546
  article-title: Synthesis and properties of colloidal heteronanocrystals
  publication-title: Chem. Soc. Rev.
– volume: 121
  start-page: 19373
  year: 2017
  end-page: 19382
  article-title: Probing the influence of disorder on lanthanide luminescence using Eu‐doped LaPO nanoparticles
  publication-title: J. Phys. Chem. C
– volume: 192
  start-page: 111
  year: 2011
  end-page: 119
  article-title: Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial resolution
  publication-title: J. Cell. Biol.
– volume: 298
  start-page: 1759
  year: 2002
  end-page: 1762
  article-title: In vivo imaging of quantum dots encapsulated in phospholipid micelles
  publication-title: Science
– volume: 171
  start-page: 283
  year: 1968
  end-page: 291
  article-title: Radiative and multiphonon relaxation of rare‐earth ions in Y O
  publication-title: Phys. Rev.
– volume: 164
  start-page: 183
  year: 2008
  end-page: 189
  article-title: Integrated fluorescence and transmission electron microscopy
  publication-title: J. Struct. Biol.
– volume: 142
  start-page: 136
  year: 2004
  end-page: 153
  article-title: Synthesis and characterization of near‐monodisperse yttria particles by homogeneous precipitation method
  publication-title: Powder Technol
– volume: 3636
  start-page: 105
  year: 1999
  end-page: 115
  article-title: Development of standards for characterization of cathodoluminescence efficiency
  publication-title: Proc. SPIE
– volume: 143
  start-page: 41
  year: 2014
  end-page: 51
  article-title: High‐precision correlative fluorescence and electron cryo microscopy using two independent alignment markers
  publication-title: Ultramicroscopy
– volume: 6
  start-page: 25950
  year: 2016
  article-title: Correlative near‐infrared light and cathodoluminescence microscopy using Y O :Ln,Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging
  publication-title: Sci. Rep.
– volume: 19
  start-page: 6693
  year: 2003
  end-page: 6700
  article-title: A general method to coat colloidal particles with silica
  publication-title: Langmuir
– volume: 131
  start-page: 17042
  year: 2009
  end-page: 17043
  article-title: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 12727
  year: 2017
  end-page: 12734
  article-title: Nanoparticle discrimination based on wavelength and lifetime‐multiplexed cathodoluminescence microscopy
  publication-title: Nanoscale
– volume: 37
  start-page: 9
  year: 1987
  end-page: 20
  article-title: Energy transfer between Eu ions in a lattice with two different crystallographic sites: Y O :Eu , Gd O :Eu and Eu O
  publication-title: J. Lumin.
– volume: 57
  start-page: 257
  year: 2018
  end-page: 261
  article-title: Integrated transmission electron and single‐molecule fluorescence microscopy correlates reactivity with ultrastructure in a single catalyst particle
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 121
  year: 2010
  end-page: 135
  article-title: Multi‐dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy
  publication-title: Biophys. Rev.
– volume: 2
  start-page: 743
  year: 2005
  end-page: 749
  article-title: Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots
  publication-title: Nat. Methods
– volume: 11
  start-page: 9136
  year: 2017
  end-page: 9142
  article-title: Composite supraparticles with tunable light emission
  publication-title: ACS Nano
– volume: 8
  start-page: 11588
  year: 2016
  end-page: 11594
  article-title: Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds
  publication-title: Nanoscale
– volume: 2
  start-page: R201
  year: 2013
  end-page: R207
  article-title: Cathodoluminescence of powder layers of nanometer‐sized Y O :Eu and micrometer‐sized ZnO:Zn phosphor particles
  publication-title: ECS J. Solid State Sci.
– volume: 51
  start-page: 1428
  year: 2012
  end-page: 1431
  article-title: Integrated laser and electron microscopy correlates structure of fluid catalytic cracking particles to Brønsted acidity
  publication-title: Angew. Chem. Int. Edit.
– volume: 251
  start-page: 200
  year: 1997
  end-page: 217
  article-title: Defect production in ceramics
  publication-title: J. Nucl. Mater.
– volume: 36
  start-page: 112
  year: 2008
  end-page: 116
  article-title: The application of fluorescent quantum dots to confocal multiphoton and electron microscopic imaging
  publication-title: Toxicol. Pathol.
– volume: 12
  start-page: 503
  year: 2015
  end-page: 513
  article-title: Correlated light and electron microscopy: ultrastructure lights up!
  publication-title: Nat. Methods
– volume: 125
  start-page: 12567
  year: 2003
  end-page: 12575
  article-title: Large‐scale synthesis of nearly monodisperse CdSe/CdS Core/shell nanocrystals using air‐stable reagents via successive ion layer adsorption and reaction
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 13
  year: 2004
  end-page: 18
  article-title: Application of quantum dots as probes for correlative fluorescence, conventional and energy‐filtered transmission electron microscopy
  publication-title: J. Histochem. Cytochem.
– volume: 30
  start-page: 2389
  year: 2014
  end-page: 2390
  article-title: ThunderSTORM: a comprehensive ImageJ plugin for PALM and STORM data analysis and super‐resolution imaging
  publication-title: Bioinformatics
– volume: 30
  start-page: 161
  year: 1981
  end-page: 170
  article-title: Studies on specimen contamination by transmission electron microscopy
  publication-title: J. Electron Microsc.
– volume: 8
  start-page: 169
  year: 2015
  end-page: 177
  article-title: Multicolour correlative imaging using phosphor probes
  publication-title: J. Chem. Biol.
– volume: 54
  start-page: 325
  year: 2005
  end-page: 330
  article-title: Cathodoluminescence investigation of organic materials
  publication-title: J. Electron Micros.
– year: 1967
– volume: 8
  start-page: e77209
  year: 2013
  article-title: Correlative photoactivated localization and scanning electron microscopy
  publication-title: PLoS One
– volume: 103
  start-page: 1408
  year: 1999
  end-page: 1415
  article-title: Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 11707
  year: 2008
  end-page: 11716
  article-title: Monodispersed colloidal spheres for uniform Y O :Eu red‐phosphor particles and greatly enhanced luminescence by simultaneous Gd doping
  publication-title: J. Phys. Chem. C
– volume: 106
  start-page: 10610
  year: 2002
  end-page: 10617
  article-title: Size‐dependent chromaticity in YBO :Eu nanocrystals: correlation with microstructure and site symmetry
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 55
  year: 1951
  end-page: 75
  article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold
  publication-title: Discuss. Faraday Soc.
– volume: 10
  start-page: 1
  year: 1982
  end-page: 5
  article-title: Cryo electron microscopy
  publication-title: Ultramicroscopy
– volume: 5
  start-page: 3741
  year: 2014
  article-title: On‐the‐fly decoding luminescence lifetimes in the microsecond region for lanthanide‐encoded suspension arrays
  publication-title: Nat. Commun.
– ident: e_1_2_6_4_1
  doi: 10.1016/0022-2313(87)90177-3
– ident: e_1_2_6_14_1
  doi: 10.1039/C7NR00927E
– ident: e_1_2_6_50_1
  doi: 10.1016/0021-9797(68)90272-5
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.201709723
– ident: e_1_2_6_34_1
  doi: 10.1039/C6NR01908K
– volume-title: Electronic Absorption Spectra and Geometry of Organic Molecules
  year: 1967
  ident: e_1_2_6_52_1
  contributor:
    fullname: Suzuki H.
– ident: e_1_2_6_37_1
  doi: 10.1177/002215540405200102
– ident: e_1_2_6_46_1
  doi: 10.1117/12.344636
– ident: e_1_2_6_42_1
  doi: 10.1063/1.119043
– ident: e_1_2_6_44_1
  doi: 10.1177/41.5.7682231
– volume: 174
  start-page: 50
  year: 2017
  ident: e_1_2_6_24_1
  article-title: Cathodoluminescence in the scanning transmission electron microscope
  publication-title: Ultramicroscopy
  contributor:
    fullname: Kociak M.
– ident: e_1_2_6_19_1
  doi: 10.1038/srep43621
– ident: e_1_2_6_13_1
  doi: 10.1364/OE.21.025655
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.201106651
– ident: e_1_2_6_28_1
  doi: 10.1021/ja0363563
– ident: e_1_2_6_51_1
  doi: 10.1007/s12551-010-0035-2
– ident: e_1_2_6_53_1
  doi: 10.1039/df9511100055
– ident: e_1_2_6_26_1
  doi: 10.1083/jcb.201009037
– ident: e_1_2_6_33_1
  doi: 10.1007/s12154-015-0141-5
– ident: e_1_2_6_17_1
  doi: 10.1016/j.optmat.2009.05.004
– ident: e_1_2_6_20_1
  doi: 10.1016/S0065-2539(08)60600-9
– ident: e_1_2_6_55_1
  doi: 10.1021/la00017a019
– ident: e_1_2_6_36_1
  doi: 10.1021/ar9700320
– ident: e_1_2_6_6_1
  doi: 10.1038/nmeth.3400
– ident: e_1_2_6_18_1
  doi: 10.1021/la0347859
– ident: e_1_2_6_5_1
  doi: 10.1021/jp971091y
– ident: e_1_2_6_40_1
  doi: 10.1021/ja907069u
– ident: e_1_2_6_8_1
  doi: 10.1149/2.040309jss
– ident: e_1_2_6_57_1
  doi: 10.1021/jp025967z
– ident: e_1_2_6_3_1
  doi: 10.1007/978-3-642-79017-1
– ident: e_1_2_6_47_1
  doi: 10.1016/j.powtec.2004.03.013
– ident: e_1_2_6_9_1
  doi: 10.1177/0192623307310950
– ident: e_1_2_6_43_1
  doi: 10.1016/j.ultramic.2013.10.011
– ident: e_1_2_6_49_1
  doi: 10.1016/S0022-5320(70)90167-X
– ident: e_1_2_6_16_1
  doi: 10.1038/srep00865
– ident: e_1_2_6_15_1
  doi: 10.1038/nmeth791
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1077194
– ident: e_1_2_6_39_1
  doi: 10.1093/bioinformatics/btu202
– ident: e_1_2_6_58_1
  doi: 10.1016/0304-3991(82)90181-4
– ident: e_1_2_6_41_1
  doi: 10.1038/nmeth.1248
– ident: e_1_2_6_32_1
  doi: 10.1021/acsnano.7b03975
– ident: e_1_2_6_60_1
  doi: 10.1111/jmi.12071
– ident: e_1_2_6_12_1
  doi: 10.1038/srep25950
– ident: e_1_2_6_2_1
  doi: 10.1016/j.jsb.2008.07.003
– ident: e_1_2_6_22_1
  doi: 10.1021/jp983241q
– ident: e_1_2_6_59_1
  doi: 10.1016/S0022-3115(97)00224-9
– volume: 30
  start-page: 161
  year: 1981
  ident: e_1_2_6_27_1
  article-title: Studies on specimen contamination by transmission electron microscopy
  publication-title: J. Electron Microsc.
  contributor:
    fullname: Kumao A.
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00901277
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0077209
– ident: e_1_2_6_11_1
  doi: 10.1016/j.micron.2004.02.003
– ident: e_1_2_6_31_1
  doi: 10.1016/0304-3991(88)90322-1
– ident: e_1_2_6_30_1
  doi: 10.1038/ncomms4741
– ident: e_1_2_6_35_1
  doi: 10.1093/jmicro/dfi043
– ident: e_1_2_6_45_1
  doi: 10.1186/1477-3155-12-5
– ident: e_1_2_6_29_1
  doi: 10.1021/jp802383a
– ident: e_1_2_6_7_1
  doi: 10.1039/c0cs00055h
– ident: e_1_2_6_54_1
  doi: 10.1021/acs.jpcc.7b06549
– ident: e_1_2_6_56_1
  doi: 10.1103/PhysRev.171.283
– ident: e_1_2_6_48_1
  doi: 10.1016/S0091-679X(06)79023-9
SSID ssj0008580
Score 2.3595421
Snippet Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy...
Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images....
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13
SubjectTerms Cadmium selenides
Correlation
Correlative microscopy
Dyes
Electron beams
Electron bombardment
Electron density
Electron microscopy
Europium
Exposure
fiducial markers
Fluorescence
Gold
integrated correlative microscopy
Irradiation
Labels
lanthanides
Luminescence
Markers
Microscopes
Microscopy
Nanoparticles
Original
Overlaying
Quantum dots
Quenching
Recording
Rhodamine
Silica
Silicon dioxide
Switching
Title Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12778
https://www.ncbi.nlm.nih.gov/pubmed/30648740
https://www.proquest.com/docview/2190735380
https://search.proquest.com/docview/2179392455
https://pubmed.ncbi.nlm.nih.gov/PMC6849797
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6oIHhxX-pGFA9eKl2nCZ7EBRUUQQVvJVtxYKYj0-nBf-976bQ4iCB4aqFpGvryvnwveQvAiY25DGUh_Fjr1E-0SH2ltMa5bIs01oW2nGKHb5-zxzd-dU1pcs7bWJgmP0S34Uaa4fCaFFyq6ruSD_tnYZRlFOiLVoIL34ifOhTmKQ_aTOF01jjNKuS8eNo3Z9eiHwTzp5_kd_7qFqCblX8NfRWWp7yTXTQTZQ3mbLkOi00lys8NGL0499mKjUeqriZMloaRwwbKbWAZ7SfgpZQlmthND6zom5q229mQHHzGFUP2yzTV-hi4XOJsQGa_66gttcOG5P1HcTCfm_B6c_1yeetPazH4OkkQE0NugthqXigRBYqHlgskEyai2kfSaG0QwHVio4L4Q2x6cSgFt6lQYcwTiSRoCxbKUWl3gGmlE65MT2GXiYgiqQokRaFVgVbIfwIPjlup5B9Nyo28M1WG_dz9OQ_2W3nlU62rckRfRCyEcOzjqHuM-kKHILK0o5raICKh0ZmmHmw34u2-QtYYlSj0IJsRfNeAcnHPPin77y4nd48nIhOZB6dO8L8PPL9_uHM3u39vugdLyNNE4zC0DwuTcW0PYL4y9aGb9F-y1wi3
link.rule.ids 230,315,782,786,887,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoLSXpq-0btJWKT304mBb8lqCXkIebJoHhW6hN6OXycKut6zjQ_59Z-S1yRIChZ5ssCwLj2b0zWj0DcAXz6VOdaVibm0eC6vy2BhrcS77Kue2sl7S2eHxz-L6tzw5JZqcb_1ZmI4fYgi4kWYEe00KTgHp-1o-nx6mWVHITdgWIyFpTnP-Y7DDMpdJzxVOu40rXqGQx9O_ur4aPYCYDzMl7yPYsASd7fzf4F_A8xX0ZEfdXHkJG75-BU-6YpR3r2ExCRm0DVsuTNvcMl07RjkbKLqZZxRSwEuta_Syux5YNXUtRdzZnHJ8lg1DAMwslfuYBTpxNiPPP3TUV9thc0oApKMwd2_g19np5Hgcr8oxxFYINIupdAn3VlZGZYmRqZcK8YTLqPyRdtY6tOFW-KwiCMHdiKdaSZ8rk3IpNOKgXdiqF7V_B8waK6RxI4NdCpVl2lSIi1JvEmsQAiURfO7FUv7pWDfKwVuZT8vw5yLY7wVWrhSvKdEAo9FCK459HAyPUWVoH0TXftFSGzRK6HfmeQRvO_kOXyGHjKoURlCsSX5oQHTc60_q6U2g5R5JoQpVRPA1SP7xgZffr87Dzft_b_oJno4nV5fl5fn1xR48Q9imuvyhfdi6Xbb-A2w2rv0YNOAvUP0M4A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoCWXNH3GaZKqpYdeXGxLXkvkVJoseTUEmkJvRi_ThV1vWMeH_PvMyGuTJRQKPdlgeSw8mtE30ugbgM-eS53qSsXc2jwWVuWxMdbiWPZVzm1lvaSzw6c_i6vf8viEaHKO-rMwHT_EsOBGlhH8NRn4raseG_ls8jXNikKuw6ZAGE75fJxfD25Y5jLpqcJps3FJKxTSePpXVyejJwjzaaLkYwAbZqDxi__q-w5sL4En-9aNlJew5utX8KwrRXn_GuY3IX-2YYu5aZs7pmvHKGMDFTf1jBYU8FLrGmPsTgKrJq6l9XY2owyfRcMQ_jJLxT6mgUycTSnuD4L6WjtsRul_dBDm_g38Gp_cfD-Nl8UYYisEOsVUuoR7KyujssTI1EuFaMJlVPxIO2sdenArfFYRgOBuxFOtpM-VSbkUGlHQW9io57XfBWaNFdK4kUGRQmWZNhWiotSbxBoEQEkEn3qtlLcd50Y5xCqzSRn-XAT7vb7Kpdk1JbpfdFnow1HGx-ExGgztgujaz1tqgy4Jo848j-Bdp97hKxSOUY3CCIoVxQ8NiIx79Uk9-RNIuUdSqEIVEXwJiv97x8vzH2fhZu_fm36A59fH4_Ly7OriPWwhZlNd8tA-bNwtWn8A641rD8P4fwAR1AuG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+robust+and+versatile+single+nanoparticle+fiducial+markers+for+correlative+light+and+electron+microscopy&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=VAN+HEST%2C+J.J.H.A.&rft.au=AGRONSKAIA%2C+A.V.&rft.au=FOKKEMA%2C+J.&rft.au=MONTANARELLA%2C+F.&rft.date=2019-04-01&rft.issn=0022-2720&rft.eissn=1365-2818&rft.volume=274&rft.issue=1&rft.spage=13&rft.epage=22&rft_id=info:doi/10.1111%2Fjmi.12778&rft.externalDBID=10.1111%252Fjmi.12778&rft.externalDocID=JMI12778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon