Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy
Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence...
Saved in:
Published in: | Journal of microscopy (Oxford) Vol. 274; no. 1; pp. 13 - 22 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-04-2019
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet.
Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM.
Lay Description
Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet.
Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM. |
---|---|
AbstractList | Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye-labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold-core rhodamine B-labelled silica particles, 15 nm CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) and 230 nm Y
O
:Eu
particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold-core rhodamine B-labelled silica NPs and QDs are quenched after a single exposure to 60 ke
nm
with an energy of 120 keV, while Y
O
:Eu
NPs are robust and still show luminescence after five doses of 60 ke
nm
. In addition, the luminescence intensity of Y
O
:Eu
NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y
O
:Eu
NPs are promising as robust fiducial marker in CLEM. LAY DESCRIPTION: Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye-labelled silica particles, quantum dots and lanthanide-doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye-labelled silica NPs and QDs are quenched after a single exposure to 60 ke
nm
with an energy of 120 keV, while lanthanide-doped inorganic NPs are robust and still show luminescence after five doses of 60 ke
nm
. In addition, the luminescence intensity of lanthanide-doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide-doped NPs are promising as robust fiducial marker in CLEM. Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet.Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM.Lay DescriptionLuminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet.Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM. Summary Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. Currently used fiducial markers, e.g. dye‐labelled nanoparticles and quantum dots, suffer from irreversible quenching of the luminescence after electron beam exposure. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can (partially) withstand electron bombardment, are interesting because of the recent development of integrated CLEM microscopes. In addition, nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow switching back from EM to LM and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; 130 nm gold‐core rhodamine B‐labelled silica particles, 15 nm CdSe/CdS/ZnS core–shell–shell quantum dots (QDs) and 230 nm Y2O3:Eu3+ particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The gold‐core rhodamine B‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while Y2O3:Eu3+ NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of Y2O3:Eu3+ NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that Y2O3:Eu3+ NPs are promising as robust fiducial marker in CLEM. Lay Description Luminescent particles are used as fiducial markers in correlative light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images. The currently used fiducial markers, e.g. dyes and quantum dots, loose their luminescence after exposure to the electron beam of the electron microscope. This limits their use in CLEM, since samples have to be studied with light microscopy before the sample can be studied with electron microscopy. Robust fiducial markers, i.e. luminescent labels that can withstand electron exposure, are interesting because of recent developments in integrated CLEM microscopes. Also nonintegrated CLEM setups may benefit from such fiducial markers. Such markers would allow for switching back to fluorescence imaging after the recording of electron microscopy imaging and are not available yet. Here, we investigate the robustness of various luminescent nanoparticles (NPs) that have good contrast in electron microscopy; dye‐labelled silica particles, quantum dots and lanthanide‐doped inorganic particles. Robustness is studied by measuring the luminescence of (single) NPs after various cycles of electron beam exposure. The dye‐labelled silica NPs and QDs are quenched after a single exposure to 60 ke− nm–2 with an energy of 120 keV, while lanthanide‐doped inorganic NPs are robust and still show luminescence after five doses of 60 ke− nm–2. In addition, the luminescence intensity of lanthanide‐doped inorganic NPs is investigated as function of electron dose for various electron fluxes. The luminescence intensity initially drops to a constant value well above the single particle detection limit. The intensity loss does not depend on the electron flux, but on the total electron dose. The results indicate that lanthanide‐doped NPs are promising as robust fiducial marker in CLEM. |
Author | VAN HEST, J.J.H.A. DE MELLO DONEGA, C. GREGORIO PUIG, A. BLAB, G.A. MEIJERINK, A. AGRONSKAIA, A.V. GERRITSEN, H.C. FOKKEMA, J. MONTANARELLA, F. |
AuthorAffiliation | 1 Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands 2 Molecular Biophysics, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands 3 Soft Condensed Matter, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands |
AuthorAffiliation_xml | – name: 1 Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands – name: 2 Molecular Biophysics, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands – name: 3 Soft Condensed Matter, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands |
Author_xml | – sequence: 1 givenname: J.J.H.A. orcidid: 0000-0001-9665-6220 surname: VAN HEST fullname: VAN HEST, J.J.H.A. organization: Utrecht University – sequence: 2 givenname: A.V. surname: AGRONSKAIA fullname: AGRONSKAIA, A.V. organization: Utrecht University – sequence: 3 givenname: J. surname: FOKKEMA fullname: FOKKEMA, J. organization: Utrecht University – sequence: 4 givenname: F. surname: MONTANARELLA fullname: MONTANARELLA, F. organization: Utrecht University – sequence: 5 givenname: A. surname: GREGORIO PUIG fullname: GREGORIO PUIG, A. organization: Utrecht University – sequence: 6 givenname: C. surname: DE MELLO DONEGA fullname: DE MELLO DONEGA, C. organization: Utrecht University – sequence: 7 givenname: A. surname: MEIJERINK fullname: MEIJERINK, A. organization: Utrecht University – sequence: 8 givenname: G.A. surname: BLAB fullname: BLAB, G.A. organization: Utrecht University – sequence: 9 givenname: H.C. surname: GERRITSEN fullname: GERRITSEN, H.C. email: H.C.Gerritsen@uu.nl organization: Utrecht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30648740$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9vFCEYxompsdvqwS9gSLzoYVr-zQ5cTJrGPzU1XuqZMPDOlpWBFWa22W8vdWqjJnJ5Q_jxywPPCTqKKQJCLyk5o3Wdb0d_RlnXySdoRfm6bZik8gitCGGsYR0jx-iklC0hRLaSPEPHnKyF7ARZoXST7kx2BefUz2XCJjq8h1zM5APg4uOmjmhi2pk8eVs3g3ez9Sbg0eTvlcRDytimnCHUS3vAwW9uFxEEsFNOEY_e5lRs2h2eo6eDCQVePMxT9O3D-5vLT831149XlxfXjRWCy4ZKRzhYOfSKkV5SkIpI6pi0ThhnrQNjrQA2UKY4d2tOjZLQqp5yKYxS_BS9W7y7uR_BWYhTNkHvsq-xDzoZr_8-if5Wb9Jer6VQneqq4M2DIKcfM5RJj75YCMFESHPRjHaKKybatqKv_0G3ac6xPq9SinS85ZJU6u1C3X9FyTA8hqFE39eoa436V42VffVn-kfyd28VOF-Au1rT4f8m_fnL1aL8CZ9Pq_8 |
CitedBy_id | crossref_primary_10_3762_bjnano_12_9 crossref_primary_10_1038_s42003_021_02432_3 crossref_primary_10_1111_jmi_12939 crossref_primary_10_1002_smll_202004615 crossref_primary_10_1038_s41592_022_01749_z crossref_primary_10_1038_s41596_021_00522_4 crossref_primary_10_1039_D0NR02563A crossref_primary_10_1007_s43939_021_00011_1 crossref_primary_10_3390_molecules25245897 |
Cites_doi | 10.1016/0022-2313(87)90177-3 10.1039/C7NR00927E 10.1016/0021-9797(68)90272-5 10.1002/anie.201709723 10.1039/C6NR01908K 10.1177/002215540405200102 10.1117/12.344636 10.1063/1.119043 10.1177/41.5.7682231 10.1038/srep43621 10.1364/OE.21.025655 10.1002/anie.201106651 10.1021/ja0363563 10.1007/s12551-010-0035-2 10.1039/df9511100055 10.1083/jcb.201009037 10.1007/s12154-015-0141-5 10.1016/j.optmat.2009.05.004 10.1016/S0065-2539(08)60600-9 10.1021/la00017a019 10.1021/ar9700320 10.1038/nmeth.3400 10.1021/la0347859 10.1021/jp971091y 10.1021/ja907069u 10.1149/2.040309jss 10.1021/jp025967z 10.1007/978-3-642-79017-1 10.1016/j.powtec.2004.03.013 10.1177/0192623307310950 10.1016/j.ultramic.2013.10.011 10.1016/S0022-5320(70)90167-X 10.1038/srep00865 10.1038/nmeth791 10.1126/science.1077194 10.1093/bioinformatics/btu202 10.1016/0304-3991(82)90181-4 10.1038/nmeth.1248 10.1021/acsnano.7b03975 10.1111/jmi.12071 10.1038/srep25950 10.1016/j.jsb.2008.07.003 10.1021/jp983241q 10.1016/S0022-3115(97)00224-9 10.1007/BF00901277 10.1371/journal.pone.0077209 10.1016/j.micron.2004.02.003 10.1016/0304-3991(88)90322-1 10.1038/ncomms4741 10.1093/jmicro/dfi043 10.1186/1477-3155-12-5 10.1021/jp802383a 10.1039/c0cs00055h 10.1021/acs.jpcc.7b06549 10.1103/PhysRev.171.283 10.1016/S0091-679X(06)79023-9 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society. 2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society. Journal compilation © 2019 Royal Microscopical Society |
Copyright_xml | – notice: 2019 The Authors. published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society. – notice: 2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society. – notice: Journal compilation © 2019 Royal Microscopical Society |
DBID | 24P WIN NPM AAYXX CITATION 7U5 8FD L7M 7X8 5PM |
DOI | 10.1111/jmi.12778 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content PubMed CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | J.J.H.A. VAN HEST ET AL |
EISSN | 1365-2818 |
EndPage | 22 |
ExternalDocumentID | 10_1111_jmi_12778 30648740 JMI12778 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Marie‐Sklodowska Curie action Phonsi funderid: H2020‐MSCA‐ITN‐642656 – fundername: NWO ‐ Microscopy Valley funderid: 12713; 12715 – fundername: European Union's Seventh Framework Programme FP7/2007‐2013/ for project GUIDEnano funderid: 604387 – fundername: European Union's Seventh Framework Programme FP7/2007‐2013/ for project GUIDEnano grantid: 604387 – fundername: NWO ‐ Microscopy Valley grantid: 12713; 12715 – fundername: Marie‐Sklodowska Curie action Phonsi grantid: H2020‐MSCA‐ITN‐642656 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EAD EAP EAS EBB EBC EBD EBO EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FA8 FEDTE G-S G.N G8K GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OIG OK1 OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 TEORI TH9 TN5 TUS TWZ UB1 V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WIN WOHZO WOW WQJ WRC WVDHM WXSBR X7M XG1 XOL Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT NPM AAMNL AAYXX ABDPE CITATION 7U5 8FD L7M 7X8 5PM |
ID | FETCH-LOGICAL-c4438-18d03ec8fb920b81e89081d28cd4adccdeacc4e2f12933d631a98e59b1384a993 |
IEDL.DBID | 33P |
ISSN | 0022-2720 |
IngestDate | Tue Sep 17 21:12:52 EDT 2024 Sat Aug 17 03:57:45 EDT 2024 Tue Nov 19 05:45:01 EST 2024 Thu Nov 21 22:05:12 EST 2024 Sat Sep 28 08:27:08 EDT 2024 Sat Aug 24 00:50:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | integrated correlative microscopy luminescence Correlative microscopy fiducial markers lanthanides |
Language | English |
License | Attribution 2019 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4438-18d03ec8fb920b81e89081d28cd4adccdeacc4e2f12933d631a98e59b1384a993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9665-6220 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12778 |
PMID | 30648740 |
PQID | 2190735380 |
PQPubID | 1086390 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849797 proquest_miscellaneous_2179392455 proquest_journals_2190735380 crossref_primary_10_1111_jmi_12778 pubmed_primary_30648740 wiley_primary_10_1111_jmi_12778_JMI12778 |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Journal of microscopy (Oxford) |
PublicationTitleAlternate | J Microsc |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1968; 26 2017; 7 2013; 2 2013; 21 1982; 10 2008; 36 1970; 31 2011; 192 2008; 5 2003; 19 1968; 171 2013; 8 2017; 9 2007; 79 1987; 37 2012; 51 2014; 5 1990 1999; 3636 1997; 101 2004; 35 2002; 106 2017; 121 2008; 112 2003; 125 2010; 2 1981; 30 2014; 12 2015; 12 2004; 142 2013; 2525 1997; 251 2011; 40 2002; 298 1993; 41 1981; 25 1994 1999; 103 2017; 174 2009; 131 2015; 8 2008; 164 2016; 6 2004; 52 2012; 2 2009; 31 1997; 70 2017; 11 1951; 11 1988; 24 2005; 54 1999; 32 2005; 2 2014; 30 2014; 143 2016; 8 1994; 96 1967 2018; 57 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Kociak M. (e_1_2_6_24_1) 2017; 174 e_1_2_6_13_1 Kumao A. (e_1_2_6_27_1) 1981; 30 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 Suzuki H. (e_1_2_6_52_1) 1967 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – volume: 25 start-page: 87 year: 1981 end-page: 90 article-title: Thin‐film aggregate color centers as media for frequency domain optical storage publication-title: Appl. Phys. – volume: 31 start-page: 526 year: 1970 end-page: 550 article-title: Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration publication-title: J. Ultra. Mol. R. – volume: 174 start-page: 50 year: 2017 end-page: 69 article-title: Cathodoluminescence in the scanning transmission electron microscope publication-title: Ultramicroscopy – volume: 31 start-page: 1715 year: 2009 end-page: 1719 article-title: Synthesis and characterization of functionalized rhodamine B‐doped silica nanoparticles publication-title: Opt. Mater. – volume: 24 start-page: 7 year: 1988 end-page: 18 article-title: A method for monitoring the collapse of plastic sections as a function of electron dose publication-title: Ultramicroscopy – volume: 26 start-page: 62 year: 1968 end-page: 69 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: J. Colloid Interf. Sci. – volume: 21 start-page: 25655 issue: 22 year: 2013 article-title: High‐resolution microscopy for biological specimens via cathodoluminescence of Eu‐ and Zn‐doped Y2O3 nanophosphors publication-title: Opt. Expr. – volume: 101 start-page: 9463 year: 1997 end-page: 9475 article-title: (CdSe)ZnS core‐shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites publication-title: J. Phys. Chem. B – volume: 12 start-page: 5 year: 2014 article-title: Engineered nanoparticles interacting with cells: size matters publication-title: J. Nanobiotechnol. – volume: 96 start-page: 1427 year: 1994 end-page: 1438 article-title: Dispersion of Rhodamine‐labelled silica spheres: synthesis, characterization and fluorescence confocal scanning laser microscopy publication-title: Langmuir – year: 1990 – year: 1994 – volume: 35 start-page: 399 year: 2004 end-page: 409 article-title: Radiation damage in the TEM and SEM publication-title: Micron – volume: 5 start-page: 763 year: 2008 end-page: 775 article-title: Quantum dots versus organic dyes as fluorescent labels publication-title: Nat. Methods – volume: 32 start-page: 407 year: 1999 end-page: 414 article-title: Luminescence photophysics in semiconductor nanocrystals publication-title: Accounts Chem. Res. – volume: 70 start-page: 2132 year: 1997 end-page: 2134 article-title: Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites publication-title: Appl. Phys. Lett. – volume: 2 start-page: 865 year: 2012 article-title: Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours publication-title: Sci. Rep. – volume: 41 start-page: 777 year: 1993 end-page: 782 article-title: Photoconversion and electron microscopic localization of the fluorescent axon tracer fluoro‐ruby publication-title: J. Histochem. Cytochem. – volume: 79 start-page: 575 year: 2007 end-page: 591 article-title: Markers for correlated light and electron microscopy publication-title: Method. Cell Biol. – volume: 2525 start-page: 58 year: 2013 end-page: 70 article-title: Integration of a high‐NA light microscope in a scanning electron microscope publication-title: J. Microsc‐Oxford – volume: 7 start-page: sp43621 year: 2017 article-title: Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers publication-title: Sci. Rep. – volume: 40 start-page: 1512 year: 2011 end-page: 1546 article-title: Synthesis and properties of colloidal heteronanocrystals publication-title: Chem. Soc. Rev. – volume: 121 start-page: 19373 year: 2017 end-page: 19382 article-title: Probing the influence of disorder on lanthanide luminescence using Eu‐doped LaPO nanoparticles publication-title: J. Phys. Chem. C – volume: 192 start-page: 111 year: 2011 end-page: 119 article-title: Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial resolution publication-title: J. Cell. Biol. – volume: 298 start-page: 1759 year: 2002 end-page: 1762 article-title: In vivo imaging of quantum dots encapsulated in phospholipid micelles publication-title: Science – volume: 171 start-page: 283 year: 1968 end-page: 291 article-title: Radiative and multiphonon relaxation of rare‐earth ions in Y O publication-title: Phys. Rev. – volume: 164 start-page: 183 year: 2008 end-page: 189 article-title: Integrated fluorescence and transmission electron microscopy publication-title: J. Struct. Biol. – volume: 142 start-page: 136 year: 2004 end-page: 153 article-title: Synthesis and characterization of near‐monodisperse yttria particles by homogeneous precipitation method publication-title: Powder Technol – volume: 3636 start-page: 105 year: 1999 end-page: 115 article-title: Development of standards for characterization of cathodoluminescence efficiency publication-title: Proc. SPIE – volume: 143 start-page: 41 year: 2014 end-page: 51 article-title: High‐precision correlative fluorescence and electron cryo microscopy using two independent alignment markers publication-title: Ultramicroscopy – volume: 6 start-page: 25950 year: 2016 article-title: Correlative near‐infrared light and cathodoluminescence microscopy using Y O :Ln,Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging publication-title: Sci. Rep. – volume: 19 start-page: 6693 year: 2003 end-page: 6700 article-title: A general method to coat colloidal particles with silica publication-title: Langmuir – volume: 131 start-page: 17042 year: 2009 end-page: 17043 article-title: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 12727 year: 2017 end-page: 12734 article-title: Nanoparticle discrimination based on wavelength and lifetime‐multiplexed cathodoluminescence microscopy publication-title: Nanoscale – volume: 37 start-page: 9 year: 1987 end-page: 20 article-title: Energy transfer between Eu ions in a lattice with two different crystallographic sites: Y O :Eu , Gd O :Eu and Eu O publication-title: J. Lumin. – volume: 57 start-page: 257 year: 2018 end-page: 261 article-title: Integrated transmission electron and single‐molecule fluorescence microscopy correlates reactivity with ultrastructure in a single catalyst particle publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 121 year: 2010 end-page: 135 article-title: Multi‐dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy publication-title: Biophys. Rev. – volume: 2 start-page: 743 year: 2005 end-page: 749 article-title: Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots publication-title: Nat. Methods – volume: 11 start-page: 9136 year: 2017 end-page: 9142 article-title: Composite supraparticles with tunable light emission publication-title: ACS Nano – volume: 8 start-page: 11588 year: 2016 end-page: 11594 article-title: Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds publication-title: Nanoscale – volume: 2 start-page: R201 year: 2013 end-page: R207 article-title: Cathodoluminescence of powder layers of nanometer‐sized Y O :Eu and micrometer‐sized ZnO:Zn phosphor particles publication-title: ECS J. Solid State Sci. – volume: 51 start-page: 1428 year: 2012 end-page: 1431 article-title: Integrated laser and electron microscopy correlates structure of fluid catalytic cracking particles to Brønsted acidity publication-title: Angew. Chem. Int. Edit. – volume: 251 start-page: 200 year: 1997 end-page: 217 article-title: Defect production in ceramics publication-title: J. Nucl. Mater. – volume: 36 start-page: 112 year: 2008 end-page: 116 article-title: The application of fluorescent quantum dots to confocal multiphoton and electron microscopic imaging publication-title: Toxicol. Pathol. – volume: 12 start-page: 503 year: 2015 end-page: 513 article-title: Correlated light and electron microscopy: ultrastructure lights up! publication-title: Nat. Methods – volume: 125 start-page: 12567 year: 2003 end-page: 12575 article-title: Large‐scale synthesis of nearly monodisperse CdSe/CdS Core/shell nanocrystals using air‐stable reagents via successive ion layer adsorption and reaction publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 13 year: 2004 end-page: 18 article-title: Application of quantum dots as probes for correlative fluorescence, conventional and energy‐filtered transmission electron microscopy publication-title: J. Histochem. Cytochem. – volume: 30 start-page: 2389 year: 2014 end-page: 2390 article-title: ThunderSTORM: a comprehensive ImageJ plugin for PALM and STORM data analysis and super‐resolution imaging publication-title: Bioinformatics – volume: 30 start-page: 161 year: 1981 end-page: 170 article-title: Studies on specimen contamination by transmission electron microscopy publication-title: J. Electron Microsc. – volume: 8 start-page: 169 year: 2015 end-page: 177 article-title: Multicolour correlative imaging using phosphor probes publication-title: J. Chem. Biol. – volume: 54 start-page: 325 year: 2005 end-page: 330 article-title: Cathodoluminescence investigation of organic materials publication-title: J. Electron Micros. – year: 1967 – volume: 8 start-page: e77209 year: 2013 article-title: Correlative photoactivated localization and scanning electron microscopy publication-title: PLoS One – volume: 103 start-page: 1408 year: 1999 end-page: 1415 article-title: Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres publication-title: J. Phys. Chem. B – volume: 112 start-page: 11707 year: 2008 end-page: 11716 article-title: Monodispersed colloidal spheres for uniform Y O :Eu red‐phosphor particles and greatly enhanced luminescence by simultaneous Gd doping publication-title: J. Phys. Chem. C – volume: 106 start-page: 10610 year: 2002 end-page: 10617 article-title: Size‐dependent chromaticity in YBO :Eu nanocrystals: correlation with microstructure and site symmetry publication-title: J. Phys. Chem. B – volume: 11 start-page: 55 year: 1951 end-page: 75 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss. Faraday Soc. – volume: 10 start-page: 1 year: 1982 end-page: 5 article-title: Cryo electron microscopy publication-title: Ultramicroscopy – volume: 5 start-page: 3741 year: 2014 article-title: On‐the‐fly decoding luminescence lifetimes in the microsecond region for lanthanide‐encoded suspension arrays publication-title: Nat. Commun. – ident: e_1_2_6_4_1 doi: 10.1016/0022-2313(87)90177-3 – ident: e_1_2_6_14_1 doi: 10.1039/C7NR00927E – ident: e_1_2_6_50_1 doi: 10.1016/0021-9797(68)90272-5 – ident: e_1_2_6_21_1 doi: 10.1002/anie.201709723 – ident: e_1_2_6_34_1 doi: 10.1039/C6NR01908K – volume-title: Electronic Absorption Spectra and Geometry of Organic Molecules year: 1967 ident: e_1_2_6_52_1 contributor: fullname: Suzuki H. – ident: e_1_2_6_37_1 doi: 10.1177/002215540405200102 – ident: e_1_2_6_46_1 doi: 10.1117/12.344636 – ident: e_1_2_6_42_1 doi: 10.1063/1.119043 – ident: e_1_2_6_44_1 doi: 10.1177/41.5.7682231 – volume: 174 start-page: 50 year: 2017 ident: e_1_2_6_24_1 article-title: Cathodoluminescence in the scanning transmission electron microscope publication-title: Ultramicroscopy contributor: fullname: Kociak M. – ident: e_1_2_6_19_1 doi: 10.1038/srep43621 – ident: e_1_2_6_13_1 doi: 10.1364/OE.21.025655 – ident: e_1_2_6_23_1 doi: 10.1002/anie.201106651 – ident: e_1_2_6_28_1 doi: 10.1021/ja0363563 – ident: e_1_2_6_51_1 doi: 10.1007/s12551-010-0035-2 – ident: e_1_2_6_53_1 doi: 10.1039/df9511100055 – ident: e_1_2_6_26_1 doi: 10.1083/jcb.201009037 – ident: e_1_2_6_33_1 doi: 10.1007/s12154-015-0141-5 – ident: e_1_2_6_17_1 doi: 10.1016/j.optmat.2009.05.004 – ident: e_1_2_6_20_1 doi: 10.1016/S0065-2539(08)60600-9 – ident: e_1_2_6_55_1 doi: 10.1021/la00017a019 – ident: e_1_2_6_36_1 doi: 10.1021/ar9700320 – ident: e_1_2_6_6_1 doi: 10.1038/nmeth.3400 – ident: e_1_2_6_18_1 doi: 10.1021/la0347859 – ident: e_1_2_6_5_1 doi: 10.1021/jp971091y – ident: e_1_2_6_40_1 doi: 10.1021/ja907069u – ident: e_1_2_6_8_1 doi: 10.1149/2.040309jss – ident: e_1_2_6_57_1 doi: 10.1021/jp025967z – ident: e_1_2_6_3_1 doi: 10.1007/978-3-642-79017-1 – ident: e_1_2_6_47_1 doi: 10.1016/j.powtec.2004.03.013 – ident: e_1_2_6_9_1 doi: 10.1177/0192623307310950 – ident: e_1_2_6_43_1 doi: 10.1016/j.ultramic.2013.10.011 – ident: e_1_2_6_49_1 doi: 10.1016/S0022-5320(70)90167-X – ident: e_1_2_6_16_1 doi: 10.1038/srep00865 – ident: e_1_2_6_15_1 doi: 10.1038/nmeth791 – ident: e_1_2_6_10_1 doi: 10.1126/science.1077194 – ident: e_1_2_6_39_1 doi: 10.1093/bioinformatics/btu202 – ident: e_1_2_6_58_1 doi: 10.1016/0304-3991(82)90181-4 – ident: e_1_2_6_41_1 doi: 10.1038/nmeth.1248 – ident: e_1_2_6_32_1 doi: 10.1021/acsnano.7b03975 – ident: e_1_2_6_60_1 doi: 10.1111/jmi.12071 – ident: e_1_2_6_12_1 doi: 10.1038/srep25950 – ident: e_1_2_6_2_1 doi: 10.1016/j.jsb.2008.07.003 – ident: e_1_2_6_22_1 doi: 10.1021/jp983241q – ident: e_1_2_6_59_1 doi: 10.1016/S0022-3115(97)00224-9 – volume: 30 start-page: 161 year: 1981 ident: e_1_2_6_27_1 article-title: Studies on specimen contamination by transmission electron microscopy publication-title: J. Electron Microsc. contributor: fullname: Kumao A. – ident: e_1_2_6_38_1 doi: 10.1007/BF00901277 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pone.0077209 – ident: e_1_2_6_11_1 doi: 10.1016/j.micron.2004.02.003 – ident: e_1_2_6_31_1 doi: 10.1016/0304-3991(88)90322-1 – ident: e_1_2_6_30_1 doi: 10.1038/ncomms4741 – ident: e_1_2_6_35_1 doi: 10.1093/jmicro/dfi043 – ident: e_1_2_6_45_1 doi: 10.1186/1477-3155-12-5 – ident: e_1_2_6_29_1 doi: 10.1021/jp802383a – ident: e_1_2_6_7_1 doi: 10.1039/c0cs00055h – ident: e_1_2_6_54_1 doi: 10.1021/acs.jpcc.7b06549 – ident: e_1_2_6_56_1 doi: 10.1103/PhysRev.171.283 – ident: e_1_2_6_48_1 doi: 10.1016/S0091-679X(06)79023-9 |
SSID | ssj0008580 |
Score | 2.3595421 |
Snippet | Summary
Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy... Fiducial markers are used in correlated light and electron microscopy (CLEM) to enable accurate overlaying of fluorescence and electron microscopy images.... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 13 |
SubjectTerms | Cadmium selenides Correlation Correlative microscopy Dyes Electron beams Electron bombardment Electron density Electron microscopy Europium Exposure fiducial markers Fluorescence Gold integrated correlative microscopy Irradiation Labels lanthanides Luminescence Markers Microscopes Microscopy Nanoparticles Original Overlaying Quantum dots Quenching Recording Rhodamine Silica Silicon dioxide Switching |
Title | Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12778 https://www.ncbi.nlm.nih.gov/pubmed/30648740 https://www.proquest.com/docview/2190735380 https://search.proquest.com/docview/2179392455 https://pubmed.ncbi.nlm.nih.gov/PMC6849797 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6oIHhxX-pGFA9eKl2nCZ7EBRUUQQVvJVtxYKYj0-nBf-976bQ4iCB4aqFpGvryvnwveQvAiY25DGUh_Fjr1E-0SH2ltMa5bIs01oW2nGKHb5-zxzd-dU1pcs7bWJgmP0S34Uaa4fCaFFyq6ruSD_tnYZRlFOiLVoIL34ifOhTmKQ_aTOF01jjNKuS8eNo3Z9eiHwTzp5_kd_7qFqCblX8NfRWWp7yTXTQTZQ3mbLkOi00lys8NGL0499mKjUeqriZMloaRwwbKbWAZ7SfgpZQlmthND6zom5q229mQHHzGFUP2yzTV-hi4XOJsQGa_66gttcOG5P1HcTCfm_B6c_1yeetPazH4OkkQE0NugthqXigRBYqHlgskEyai2kfSaG0QwHVio4L4Q2x6cSgFt6lQYcwTiSRoCxbKUWl3gGmlE65MT2GXiYgiqQokRaFVgVbIfwIPjlup5B9Nyo28M1WG_dz9OQ_2W3nlU62rckRfRCyEcOzjqHuM-kKHILK0o5raICKh0ZmmHmw34u2-QtYYlSj0IJsRfNeAcnHPPin77y4nd48nIhOZB6dO8L8PPL9_uHM3u39vugdLyNNE4zC0DwuTcW0PYL4y9aGb9F-y1wi3 |
link.rule.ids | 230,315,782,786,887,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoLSXpq-0btJWKT304mBb8lqCXkIebJoHhW6hN6OXycKut6zjQ_59Z-S1yRIChZ5ssCwLj2b0zWj0DcAXz6VOdaVibm0eC6vy2BhrcS77Kue2sl7S2eHxz-L6tzw5JZqcb_1ZmI4fYgi4kWYEe00KTgHp-1o-nx6mWVHITdgWIyFpTnP-Y7DDMpdJzxVOu40rXqGQx9O_ur4aPYCYDzMl7yPYsASd7fzf4F_A8xX0ZEfdXHkJG75-BU-6YpR3r2ExCRm0DVsuTNvcMl07RjkbKLqZZxRSwEuta_Syux5YNXUtRdzZnHJ8lg1DAMwslfuYBTpxNiPPP3TUV9thc0oApKMwd2_g19np5Hgcr8oxxFYINIupdAn3VlZGZYmRqZcK8YTLqPyRdtY6tOFW-KwiCMHdiKdaSZ8rk3IpNOKgXdiqF7V_B8waK6RxI4NdCpVl2lSIi1JvEmsQAiURfO7FUv7pWDfKwVuZT8vw5yLY7wVWrhSvKdEAo9FCK459HAyPUWVoH0TXftFSGzRK6HfmeQRvO_kOXyGHjKoURlCsSX5oQHTc60_q6U2g5R5JoQpVRPA1SP7xgZffr87Dzft_b_oJno4nV5fl5fn1xR48Q9imuvyhfdi6Xbb-A2w2rv0YNOAvUP0M4A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoCWXNH3GaZKqpYdeXGxLXkvkVJoseTUEmkJvRi_ThV1vWMeH_PvMyGuTJRQKPdlgeSw8mtE30ugbgM-eS53qSsXc2jwWVuWxMdbiWPZVzm1lvaSzw6c_i6vf8viEaHKO-rMwHT_EsOBGlhH8NRn4raseG_ls8jXNikKuw6ZAGE75fJxfD25Y5jLpqcJps3FJKxTSePpXVyejJwjzaaLkYwAbZqDxi__q-w5sL4En-9aNlJew5utX8KwrRXn_GuY3IX-2YYu5aZs7pmvHKGMDFTf1jBYU8FLrGmPsTgKrJq6l9XY2owyfRcMQ_jJLxT6mgUycTSnuD4L6WjtsRul_dBDm_g38Gp_cfD-Nl8UYYisEOsVUuoR7KyujssTI1EuFaMJlVPxIO2sdenArfFYRgOBuxFOtpM-VSbkUGlHQW9io57XfBWaNFdK4kUGRQmWZNhWiotSbxBoEQEkEn3qtlLcd50Y5xCqzSRn-XAT7vb7Kpdk1JbpfdFnow1HGx-ExGgztgujaz1tqgy4Jo848j-Bdp97hKxSOUY3CCIoVxQ8NiIx79Uk9-RNIuUdSqEIVEXwJiv97x8vzH2fhZu_fm36A59fH4_Ly7OriPWwhZlNd8tA-bNwtWn8A641rD8P4fwAR1AuG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+robust+and+versatile+single+nanoparticle+fiducial+markers+for+correlative+light+and+electron+microscopy&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=VAN+HEST%2C+J.J.H.A.&rft.au=AGRONSKAIA%2C+A.V.&rft.au=FOKKEMA%2C+J.&rft.au=MONTANARELLA%2C+F.&rft.date=2019-04-01&rft.issn=0022-2720&rft.eissn=1365-2818&rft.volume=274&rft.issue=1&rft.spage=13&rft.epage=22&rft_id=info:doi/10.1111%2Fjmi.12778&rft.externalDBID=10.1111%252Fjmi.12778&rft.externalDocID=JMI12778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon |