Respiration resolved imaging with continuous stable state 2D acquisition using linear frequency SWEEP

Purpose To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. Methods We present a method where a continuous stable state of magnetization is swept smoothly across...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 82; no. 5; pp. 1631 - 1645
Main Authors: Jackson, L. H., Price, A. N., Hutter, J., Ho, A., Roberts, T. A., Slator, P. J., Clough, J. R., Deprez, M., McCabe, L., Malik, S. J., Chappell, L., Rutherford, M. A., Hajnal, J. V.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-11-2019
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. Methods We present a method where a continuous stable state of magnetization is swept smoothly across the anatomy of interest, creating an efficient approach to dense multiple 2D slice imaging. This is achieved by introducing a linear frequency offset to successive RF pulses shifting the excited slice by a fraction of the slice thickness with each successive repeat times (TR). Simulations and in vivo imaging were performed to assess how this affects the measured signal. Free breathing, respiration resolved 4D volumes in fetal/placental imaging is explored as potential application of this method. Results The SWEEP method maintained a stable signal state over a full acquisition reducing artifacts from unstable magnetization. Simulations demonstrated that the effects of SWEEP on slice profiles was of the same order as that produced by physiological motion observed with conventional methods. Respiration resolved 4D data acquired with this method shows reduced respiration artifacts and resilience to non‐rigid and non‐cyclic motion. Conclusions The SWEEP method is presented as a technique for improved acquisition efficiency of densely sampled short‐TR 2D sequences. Using conventional slice excitation the number of RF pulses required to enter a true steady state is excessively high when using short‐TR 2D acquisitions, SWEEP circumvents this limitation by creating a stable signal state that is preserved between slices.
AbstractList Purpose To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. Methods We present a method where a continuous stable state of magnetization is swept smoothly across the anatomy of interest, creating an efficient approach to dense multiple 2D slice imaging. This is achieved by introducing a linear frequency offset to successive RF pulses shifting the excited slice by a fraction of the slice thickness with each successive repeat times (TR). Simulations and in vivo imaging were performed to assess how this affects the measured signal. Free breathing, respiration resolved 4D volumes in fetal/placental imaging is explored as potential application of this method. Results The SWEEP method maintained a stable signal state over a full acquisition reducing artifacts from unstable magnetization. Simulations demonstrated that the effects of SWEEP on slice profiles was of the same order as that produced by physiological motion observed with conventional methods. Respiration resolved 4D data acquired with this method shows reduced respiration artifacts and resilience to non‐rigid and non‐cyclic motion. Conclusions The SWEEP method is presented as a technique for improved acquisition efficiency of densely sampled short‐TR 2D sequences. Using conventional slice excitation the number of RF pulses required to enter a true steady state is excessively high when using short‐TR 2D acquisitions, SWEEP circumvents this limitation by creating a stable signal state that is preserved between slices.
PURPOSETo investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. METHODSWe present a method where a continuous stable state of magnetization is swept smoothly across the anatomy of interest, creating an efficient approach to dense multiple 2D slice imaging. This is achieved by introducing a linear frequency offset to successive RF pulses shifting the excited slice by a fraction of the slice thickness with each successive repeat times (TR). Simulations and in vivo imaging were performed to assess how this affects the measured signal. Free breathing, respiration resolved 4D volumes in fetal/placental imaging is explored as potential application of this method. RESULTSThe SWEEP method maintained a stable signal state over a full acquisition reducing artifacts from unstable magnetization. Simulations demonstrated that the effects of SWEEP on slice profiles was of the same order as that produced by physiological motion observed with conventional methods. Respiration resolved 4D data acquired with this method shows reduced respiration artifacts and resilience to non-rigid and non-cyclic motion. CONCLUSIONSThe SWEEP method is presented as a technique for improved acquisition efficiency of densely sampled short-TR 2D sequences. Using conventional slice excitation the number of RF pulses required to enter a true steady state is excessively high when using short-TR 2D acquisitions, SWEEP circumvents this limitation by creating a stable signal state that is preserved between slices.
To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. We present a method where a continuous stable state of magnetization is swept smoothly across the anatomy of interest, creating an efficient approach to dense multiple 2D slice imaging. This is achieved by introducing a linear frequency offset to successive RF pulses shifting the excited slice by a fraction of the slice thickness with each successive repeat times (TR). Simulations and in vivo imaging were performed to assess how this affects the measured signal. Free breathing, respiration resolved 4D volumes in fetal/placental imaging is explored as potential application of this method. The SWEEP method maintained a stable signal state over a full acquisition reducing artifacts from unstable magnetization. Simulations demonstrated that the effects of SWEEP on slice profiles was of the same order as that produced by physiological motion observed with conventional methods. Respiration resolved 4D data acquired with this method shows reduced respiration artifacts and resilience to non-rigid and non-cyclic motion. The SWEEP method is presented as a technique for improved acquisition efficiency of densely sampled short-TR 2D sequences. Using conventional slice excitation the number of RF pulses required to enter a true steady state is excessively high when using short-TR 2D acquisitions, SWEEP circumvents this limitation by creating a stable signal state that is preserved between slices.
Author Ho, A.
Price, A. N.
Chappell, L.
Hutter, J.
Malik, S. J.
Slator, P. J.
Hajnal, J. V.
Jackson, L. H.
Rutherford, M. A.
Roberts, T. A.
McCabe, L.
Clough, J. R.
Deprez, M.
AuthorAffiliation 3 Centre for Medical Image Computing University College London London United Kingdom
2 Department of Women and Children's Health, School of Life Course Sciences King's College London London United Kingdom
1 Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering Kings College London London United Kingdom
AuthorAffiliation_xml – name: 2 Department of Women and Children's Health, School of Life Course Sciences King's College London London United Kingdom
– name: 3 Centre for Medical Image Computing University College London London United Kingdom
– name: 1 Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering Kings College London London United Kingdom
Author_xml – sequence: 1
  givenname: L. H.
  surname: Jackson
  fullname: Jackson, L. H.
  email: Laurence.Jackson@kcl.ac.uk
  organization: Kings College London
– sequence: 2
  givenname: A. N.
  surname: Price
  fullname: Price, A. N.
  organization: Kings College London
– sequence: 3
  givenname: J.
  surname: Hutter
  fullname: Hutter, J.
  organization: Kings College London
– sequence: 4
  givenname: A.
  surname: Ho
  fullname: Ho, A.
  organization: King's College London
– sequence: 5
  givenname: T. A.
  surname: Roberts
  fullname: Roberts, T. A.
  organization: Kings College London
– sequence: 6
  givenname: P. J.
  surname: Slator
  fullname: Slator, P. J.
  organization: University College London
– sequence: 7
  givenname: J. R.
  surname: Clough
  fullname: Clough, J. R.
  organization: Kings College London
– sequence: 8
  givenname: M.
  surname: Deprez
  fullname: Deprez, M.
  organization: Kings College London
– sequence: 9
  givenname: L.
  surname: McCabe
  fullname: McCabe, L.
  organization: Kings College London
– sequence: 10
  givenname: S. J.
  surname: Malik
  fullname: Malik, S. J.
  organization: Kings College London
– sequence: 11
  givenname: L.
  surname: Chappell
  fullname: Chappell, L.
  organization: King's College London
– sequence: 12
  givenname: M. A.
  surname: Rutherford
  fullname: Rutherford, M. A.
  organization: Kings College London
– sequence: 13
  givenname: J. V.
  surname: Hajnal
  fullname: Hajnal, J. V.
  organization: Kings College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31183892$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFP3DAQhS1EBQvlwB-oLPUCh4DteJP4UgnBQiuBWtEijpZjjxejxF7sBLT_Hi9LEVTqaWTPN0_z5u2gTR88ILRPyRElhB33sT9idVPyDTShU8YKNhV8E01IzUlRUsG30U5K94QQIWq-hbZLSpuyEWyC4BrSwkU1uOBxhBS6RzDY9Wru_Bw_ueEO6-AH58cwJpwG1XawKgNgdoaVfhhdci_DY1pNdM6DithGeBjB6yX-fTub_fqMPlnVJdh7rbvo5nz25_R7cfnz4sfpyWWhOS95YZhQoC1p86uhup1aZogl-YsKUwlOtRKMaUEbZeoauDXUKFY13OrSWGjLXfRtrbsY2x6MBj9E1clFzIbiUgbl5MeOd3dyHh5lVTWMC54FDl4FYsgG0iB7lzR0nfKQDyAZq6a1KPPtMvr1H_Q-jNFneyuKk7qpaJWpwzWlY0gpgn1bhhK5Ck_m8ORLeJn98n77N_JvWhk4XgNProPl_5Xk1fXVWvIZ2fGoeg
CitedBy_id crossref_primary_10_1016_j_mric_2021_06_007
crossref_primary_10_1016_j_placenta_2020_08_001
crossref_primary_10_1016_j_placenta_2020_05_001
Cites_doi 10.1002/jmri.21339
10.1002/mrm.27040
10.1016/j.ejrad.2017.05.028
10.1002/mrm.10260
10.1002/mrm.25665
10.1002/jmri.24619
10.1007/s00247-018-4116-x
10.1002/mrm.22162
10.1002/mrm.26108
10.1002/mrm.10611
10.1007/978-3-642-15711-0_1
10.1002/jmri.24850
10.1002/mrm.1170
10.1002/mrm.22306
10.1002/cmr.1820030302
10.1109/TMI.2017.2737081
10.1002/mrm.27167
10.1109/83.902291
10.1002/mrm.25834
10.1148/rg.2015140289
10.1148/rg.284075031
10.1109/TMI.2010.2051680
10.1016/j.media.2012.07.004
10.1002/cmr.1820030402
10.1118/1.4894726
10.1016/j.media.2011.11.008
10.1002/mrm.26866
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27834
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate JACKSON et al
EISSN 1522-2594
EndPage 1645
ExternalDocumentID 10_1002_mrm_27834
31183892
MRM27834
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome/EPSRC Centre for Medical Engineering
  funderid: WT 203148/Z/16/Z
– fundername: National Institutes of Health Human Placenta Project
  funderid: 1U01HD087202‐01
– fundername: Wellcome Trust
  funderid: 201374/Z/16/Z
– fundername: EPSRC
  funderid: N018702, M020533
– fundername: National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London
– fundername: Wellcome Trust
  grantid: 201374
– fundername: NICHD NIH HHS
  grantid: U01 HD087202
– fundername: Wellcome Trust
– fundername: Department of Health
  grantid: RP-2014-05-019
– fundername: Wellcome Trust
  grantid: 201374/Z/16/Z
– fundername: Wellcome Trust
  grantid: 203148
– fundername: Wellcome/EPSRC Centre for Medical Engineering
  grantid: WT 203148/Z/16/Z
– fundername: National Institutes of Health Human Placenta Project
  grantid: 1U01HD087202‐01
– fundername: EPSRC
  grantid: N018702, M020533
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ABDPE
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4434-d29aecf0b44381cb5f2d0f0ecf19d6941ca922c918ad77e4fd1da2684fc3dfeb3
IEDL.DBID 33P
ISSN 0740-3194
IngestDate Tue Sep 17 20:40:12 EDT 2024
Sat Aug 17 02:04:42 EDT 2024
Thu Oct 10 22:40:27 EDT 2024
Thu Nov 21 21:10:26 EST 2024
Sat Sep 28 08:29:12 EDT 2024
Sat Aug 24 01:13:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 4D
steady state
RF
placental
free-breathing
fetal
angiography
Language English
License Attribution
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-d29aecf0b44381cb5f2d0f0ecf19d6941ca922c918ad77e4fd1da2684fc3dfeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27834
PMID 31183892
PQID 2264078616
PQPubID 1016391
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6682494
proquest_miscellaneous_2265793389
proquest_journals_2264078616
crossref_primary_10_1002_mrm_27834
pubmed_primary_31183892
wiley_primary_10_1002_mrm_27834_MRM27834
PublicationCentury 2000
PublicationDate November 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 35
1991; 3
2010
2016; 76
2016; 75
2018; 80
2016; 123
1994
2004
2012; 16
1991
2014; 41
2001; 46
2010; 63
2018; 48
2002; 48
2017; 93
2017; 36
2003; 1042
2010; 29
2017; 77
2015; 41
2008; 28
2015
1981
2008; 157
2001; 10
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Odille F (e_1_2_7_26_1) 2008; 157
Hughes E (e_1_2_7_22_1) 2016; 123
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Deimling M (e_1_2_7_11_1) 1994
e_1_2_7_24_1
e_1_2_7_32_1
Bernstein MA (e_1_2_7_16_1) 2004
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – start-page: 125
  year: 1991
  end-page: 143
– volume: 79
  start-page: 2164
  year: 2018
  end-page: 2169
  article-title: Diaphragm position can be accurately estimated from the scattering of a parallel transmit RF coil at 7 T
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1230
  year: 2010
  end-page: 1237
  article-title: Respiratory and cardiac self‐gated free‐breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition
  publication-title: Magn Reson Med
– volume: 46
  start-page: 149
  year: 2001
  end-page: 158
  article-title: Characterization and reduction of the transient response in steady‐state MR imaging
  publication-title: Magn Reson Med
– year: 1981
– volume: 80
  start-page: 1812
  year: 2018
  end-page: 1823
  article-title: Time‐of‐flight MR‐angiography with a helical trajectory and slice‐super‐resolution reconstruction
  publication-title: Magn Reson Med
– volume: 77
  start-page: 221
  year: 2017
  end-page: 228
  article-title: Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1739
  year: 2010
  end-page: 1758
  article-title: Robust super‐resolution volume reconstruction from slice acquisitions: application to fetal brain MRI
  publication-title: IEEE Trans Med Imaging
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  article-title: Active contours without edges
  publication-title: IEEE Trans Image Process
– volume: 157
  start-page: 146
  year: 2008
  end-page: 157
  article-title: Generalized reconstruction by inversion of coupled systems (GRICS)
  publication-title: Appl Free‐Breathing MRI
– year: 1994
  article-title: Magnetization prepared true FISP imaging
  publication-title: Inter Soc Magn Reson Med
– volume: 41
  start-page: 266
  year: 2015
  end-page: 295
  article-title: Extended phase graphs: dephasing, RF pulses, and echoes—Pure and simple
  publication-title: J Magn Reson Imaging
– volume: 28
  start-page: 1
  year: 2008
  end-page: 12
  article-title: Principles of whole‐body continuously‐moving‐table MRI
  publication-title: J Magn Reson Imaging
– volume: 36
  start-page: 2031
  year: 2017
  end-page: 2044
  article-title: PVR: Patch‐to‐volume reconstruction for large area motion correction of fetal MRI
  publication-title: IEEE Trans Med Imaging
– volume: 63
  start-page: 701
  year: 2010
  end-page: 712
  article-title: Compensation of breathing motion artifacts for MRI with continuously moving table
  publication-title: Magn Reson Med
– volume: 123
  start-page: 25
  year: 2016
  article-title: Magnetic resonance imaging quantification of venous return in pregnant women: a comparison between supine and left lateral tilt position: pm. 35
  publication-title: BJOG
– volume: 80
  start-page: 767
  year: 2018
  end-page: 779
  article-title: Extended phase graph formalism for systems with magnetization transfer and exchange
  publication-title: Magn Reson Med
– volume: 16
  start-page: 806
  year: 2012
  end-page: 818
  article-title: Manifold learning for image‐based breathing gating in ultrasound and MRI
  publication-title: Med Image Anal
– start-page: 1
  year: 2010
  end-page: 8
– volume: 76
  start-page: 417
  year: 2016
  end-page: 429
  article-title: Pseudo‐projection‐driven, self‐gated cardiac cine imaging using cartesian golden step phase encoding
  publication-title: Magn Reson Med
– year: 2004
– volume: 48
  start-page: 1197
  year: 2018
  end-page: 1208
  article-title: Fast, free‐breathing and motion‐minimized techniques for pediatric body magnetic resonance imaging
  publication-title: Pediatric Radiol
– volume: 93
  start-page: 30
  year: 2017
  end-page: 39
  article-title: Liver MRI: from basic protocol to advanced techniques
  publication-title: Eur J Radiol
– volume: 16
  start-page: 1550
  year: 2012
  end-page: 1564
  article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
  publication-title: Med Image Anal
– start-page: 887
  year: 2015
  end-page: 901
  article-title: Motion artifacts in MRI: a complex problem with many partial solutions
  publication-title: J Magn Reson Imaging
– volume: 1042
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: k‐t BLAST and k‐t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1439
  year: 2015
  end-page: 1460
  article-title: Body MR imaging: artifacts, k‐space, and solutions
  publication-title: RadioGraphics
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  article-title: XD‐GRASP: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1147
  year: 2008
  end-page: 1160
  article-title: Steady‐state MR imaging sequences: physics, classification, and clinical applications
  publication-title: RadioGraphics
– volume: 48
  start-page: 684
  year: 2002
  end-page: 688
  article-title: Are TrueFISP images T /T ‐weighted?
  publication-title: Magn Reson Med
– volume: 3
  start-page: 179
  year: 1991
  end-page: 192
  article-title: Echoes—How to generate, recognize, use or avoid them in MRimaging sequences. Part II: echoes in imaging sequences
  publication-title: Concepts Magn Reson
– volume: 41
  year: 2014
  article-title: Investigation of sagittal image acquisition for 4D‐MRI with body area as respiratory surrogate
  publication-title: Med Phys
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.21339
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.27040
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ejrad.2017.05.028
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.10260
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.25665
– ident: e_1_2_7_19_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_7_2_1
  doi: 10.1007/s00247-018-4116-x
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.22162
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.26108
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.10611
– ident: e_1_2_7_29_1
  doi: 10.1007/978-3-642-15711-0_1
– ident: e_1_2_7_27_1
  doi: 10.1002/jmri.24850
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.1170
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.22306
– ident: e_1_2_7_18_1
  doi: 10.1002/cmr.1820030302
– ident: e_1_2_7_8_1
  doi: 10.1109/TMI.2017.2737081
– year: 1994
  ident: e_1_2_7_11_1
  article-title: Magnetization prepared true FISP imaging
  publication-title: Inter Soc Magn Reson Med
  contributor:
    fullname: Deimling M
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.27167
– ident: e_1_2_7_23_1
  doi: 10.1109/83.902291
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.25834
– ident: e_1_2_7_4_1
  doi: 10.1148/rg.2015140289
– volume: 123
  start-page: 25
  year: 2016
  ident: e_1_2_7_22_1
  article-title: Magnetic resonance imaging quantification of venous return in pregnant women: a comparison between supine and left lateral tilt position: pm. 35
  publication-title: BJOG
  contributor:
    fullname: Hughes E
– ident: e_1_2_7_24_1
– ident: e_1_2_7_10_1
  doi: 10.1148/rg.284075031
– volume: 157
  start-page: 146
  year: 2008
  ident: e_1_2_7_26_1
  article-title: Generalized reconstruction by inversion of coupled systems (GRICS)
  publication-title: Appl Free‐Breathing MRI
  contributor:
    fullname: Odille F
– ident: e_1_2_7_7_1
  doi: 10.1109/TMI.2010.2051680
– ident: e_1_2_7_9_1
  doi: 10.1016/j.media.2012.07.004
– ident: e_1_2_7_17_1
  doi: 10.1002/cmr.1820030402
– ident: e_1_2_7_21_1
  doi: 10.1118/1.4894726
– volume-title: Handbook of MRI Pulse Sequences
  year: 2004
  ident: e_1_2_7_16_1
  contributor:
    fullname: Bernstein MA
– ident: e_1_2_7_28_1
  doi: 10.1016/j.media.2011.11.008
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.26866
SSID ssj0009974
Score 2.3778648
Snippet Purpose To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a...
To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable...
PurposeTo investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a...
PURPOSETo investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1631
SubjectTerms angiography
Brain Mapping - methods
Computer Simulation
Data acquisition
Female
fetal
Fetuses
free‐breathing
Full Papers—Imaging Methodology
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging
Magnetic Resonance Angiography
Magnetic Resonance Imaging - methods
Magnetization
Placenta
Placenta - blood supply
Placenta - diagnostic imaging
placental
Pregnancy
Radio frequency
Respiration
Sequences
steady state
Title Respiration resolved imaging with continuous stable state 2D acquisition using linear frequency SWEEP
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27834
https://www.ncbi.nlm.nih.gov/pubmed/31183892
https://www.proquest.com/docview/2264078616
https://search.proquest.com/docview/2265793389
https://pubmed.ncbi.nlm.nih.gov/PMC6682494
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NpCFeYONjdIPJQzzwEkgcNx_a0wRFvHSqWhC8RU5ss0o0hYYg7b_nzk5TKoQ0aW9R7CQnn335nX33O4Ajzk1g4_zCUBlPpFTmRYTak10eyUQhQJW0NXA5in_fJuc9osn5Oc-FcfwQ7YYbrQxrr2mBy7w6XZCGTmaTE1smAu0vegk2fSMcLAh3U8fAHAuyM6mYswr5_LR9cvlf9AZgvo2TfI1f7Q_oYvO_RP8EGw3uZL_cRPkMH3S5BWv95mR9Cz7aUNCi2gY9bE7fUWMMnfHp_bNWbDyx5YwY7dsyim8fl_W0rhiCy_xeM5uXxPg5k8VjPXZxYIxi6u8YiStnzMxc0PZfNrrp9QY7cH3Ruzq79JpiDF4hRCg8xVOpC-PngkjBirxruPKNj7eCVFE2bCFTzos0SKSKYy2MCpQkKhlT4CxAl30XVstpqfeA5bEKJCI3HNhYSDQhKqeqM9pXSZxHJurA4Vwt2YPj3MgcuzLPcOgyO3Qd2J8rLGuWXZVRVjBinijAd_xom3HB0CmILDWOC_XpolFCoNaBL06_7VdCdLewgXcgXtJ824HIuJdbyvEfS8odRQl6sijWsdX8-4Jn_WHfXnz9967fYB2BWupyIPdh9WlW6wNYqVT93c76F02XBr0
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoQ1e2Mb4KGObN_Gwl9DEcfMh7WVaizqNIsSHtrfIiW2oRFNoCRL_PXd2mq5CkybtLYqdxPL5Lj-f734HcMC5CWycXxgq44mUyryIUHuywyOZKASoklwD_fP45HfS7RFNztdZLozjh2gcbqQZ1l6TgpNDuj1nDR1NRoe2TsQyrIoIFyIlcISnc8rd1HEwx4IsTSpmvEI-bzePLv6NnkHM55GSfyJY-ws6evV_g38NGzX0ZN_cWnkDS7rchJeD-nB9E17YaNBi-hb0WX0Aj0JjuB8f3zxoxYYjW9GIkeuWUYj7sKzG1ZQhvsxvNLOpSYx3mSzuqqELBWMUVn_FaLxywszExW0_svNfvd7pFlwe9S6-9726HoNXCBEKT_FU6sL4uSBesCLvGK584-OtIFWUEFvIlPMiDRKp4lgLowIliU3GFLgQcNe-DSvluNS7wPJYBRLBG85sLCRaEZVT4RntqyTOIxO14PNMLtmto93IHMEyz3DqMjt1LdifSSyrNW-aUWIwwp4owHd8appRZ-ggRJYa54X6dNAuIVZrwY4TcPOVEHdc2MBbEC-IvulAfNyLLeXw2vJyR1GCm1kc1hcr-r8PPBucDezF3r93_Qhr_YvBcXb84-TnO1hH3Ja6lMh9WLmfVPo9LE9V9cGqwBPNNgrl
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-NTqC9bIyPUQabQTzwEkgcNx_a07S2YtqKKmAab5ET21slmpZ2QeK_585Owyo0CWlvUewkls93-Z199zuAI85NYOP8wlAZT6RU5kWE2pMdHslEIUCVtDVwdhmfXyfdHtHkfFrkwjh-iGbDjTTD2mtS8Kkyp4-koePZ-MSWiViBlwJhOBHnh-HwkXE3dRTMsSBDk4oFrZDPT5tHl39GTxDm00DJvwGs_QP13_zX2NfhdQ082We3Ut7CC11uwNqgPlrfgFUbC1rMN0Ff1MfvKDKG3vjk5k4rNhrbekaMNm4ZBbiPympSzRmiy_xGM5uYxHiXyeK2GrlAMEZB9b8YDVfOmJm5qO17dvmz1xtuwY9-7-rLmVdXY_AKIULhKZ5KXRg_F8QKVuQdw5VvfLwVpIrSYQuZcl6kQSJVHGthVKAkccmYApcB-uzb0Conpd4BlscqkAjdcGJjIdGGqJzKzmhfJXEemagNhwuxZFNHupE5emWe4dRldurasLcQWFbr3TyjtGAEPVGA7zhomlFj6BhElhrnhfp00CohUmvDOyff5ish-lvYwNsQL0m-6UBs3Mst5ei3ZeWOogRdWRzWsZX8vweeDS4G9mL3-V0_wtqw28--fz3_9h5eIWhLXT7kHrT-zCq9DytzVX2wCvAAkmAJiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiration+resolved+imaging+with+continuous+stable+state+2D+acquisition+using+linear+frequency+SWEEP&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jackson%2C+L.+H.&rft.au=Price%2C+A.+N.&rft.au=Hutter%2C+J.&rft.au=Ho%2C+A.&rft.date=2019-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=5&rft.spage=1631&rft.epage=1645&rft_id=info:doi/10.1002%2Fmrm.27834&rft.externalDBID=10.1002%252Fmrm.27834&rft.externalDocID=MRM27834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon