How Do Climate Change Experiments Alter Plot-Scale Climate?

To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compi...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters Vol. 22; no. 4; pp. 748 - 763
Main Authors: Ettinger, A. K., Chuine, I., Cook, B. I., Dukes, J. S., Ellison, A. M., Johnston, M. R., Panetta, A. M., Rollinson, C. R., Vitasse, Y., Wolkovich, E. M.
Format: Journal Article
Language:English
Published: Goddard Space Flight Center Wiley 01-04-2019
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs.unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6° Celsius degrees (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1°Celsius degrees (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2° Celsius degrees (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design,and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
AbstractList To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6  C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1  C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2  C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 ∘C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 ∘C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 ∘C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.
To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 ∘C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 ∘C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 ∘C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.
Abstract To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6  C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1  C (47% of target) on average, for infrared studies with feedback control ( n  = 3) vs. by 2.2  C (80% of target) on average for infrared with constant wattage designs ( n  = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.
Drought sensitivity is known to affect plant species distribution. However, since every stage of plant life cyclehas its own water requirements, plant performance and productivity is largely influenced by the timing of waterstress. Variation in drought sensitivity between stages might explain recently observed changes in tree agestructure along environmental gradients as well as species-specific responses to drought, yet it has poorly beentaken into account in species distribution models (SDMs). In this paper we discuss how plant responses to wateravailability during various life stages influence species distribution and abundance. We define the role of wateravailability at the stage of gametophyte, zygote, seed and seedling and explain the nature of drought-relatedinjuries. Moreover, we review examples that illustrate how plants adjust their phenology to cope with waterstress at early stages of plant life cycle. We also discuss possible ways forward of incorporating the effect of wateravailability on different stages of the reproductive cycle into correlative and process-based plant species distributionmodels (SDMs) in order to improve the accuracy of their predictions
To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs.unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6° Celsius degrees (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1°Celsius degrees (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2° Celsius degrees (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design,and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
Audience PUBLIC
Author Panetta, A. M.
Ettinger, A. K.
Johnston, M. R.
Vitasse, Y.
Cook, B. I.
Ellison, A. M.
Rollinson, C. R.
Wolkovich, E. M.
Chuine, I.
Dukes, J. S.
Author_xml – sequence: 1
  givenname: A. K.
  surname: Ettinger
  fullname: Ettinger, A. K.
  organization: Harvard Univ
– sequence: 2
  givenname: I.
  surname: Chuine
  fullname: Chuine, I.
  organization: University of Montpellier
– sequence: 3
  givenname: B. I.
  surname: Cook
  fullname: Cook, B. I.
  organization: Columbia Univ
– sequence: 4
  givenname: J. S.
  surname: Dukes
  fullname: Dukes, J. S.
  organization: Purdue Univ
– sequence: 5
  givenname: A. M.
  surname: Ellison
  fullname: Ellison, A. M.
  organization: Harvard Univ
– sequence: 6
  givenname: M. R.
  surname: Johnston
  fullname: Johnston, M. R.
  organization: Harvard Univ
– sequence: 7
  givenname: A. M.
  surname: Panetta
  fullname: Panetta, A. M.
  organization: Colorado Univ
– sequence: 8
  givenname: C. R.
  surname: Rollinson
  fullname: Rollinson, C. R.
  organization: The Morton Arboretum
– sequence: 9
  givenname: Y.
  surname: Vitasse
  fullname: Vitasse, Y.
  organization: Swiss Federal Inst. for Snow and Avalanche Research
– sequence: 10
  givenname: E. M.
  surname: Wolkovich
  fullname: Wolkovich, E. M.
  organization: Harvard Univ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30687988$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02392279$$DView record in HAL
BookMark eNp1kM9LwzAYhoNM3A89eBcpePLQLV-TtQ0eZNTqhIKCO3gLafvVdXTtbDrn_nszuw0vfpeE8OTh_d4-6ZRViYRcAh2CmREWOATmOOyE9IC7YFOH-53jnb13SV_rBaXgCA_OSJdR1_eE7_fI3bTaWA-VFRT5UjVoBXNVfqAVfq-wzpdYNtqaFA3W1mtRNfZbogo8sPfn5DRThcaL_Tkgs8dwFkzt6OXpOZhEdsI5Y7ZIYzfmSqQmYaIUT-OEIfgZY0kyFpQnPmZ8zMZu6nMQmAGkcYpMxAAx9SgbkNtWO1eFXJlUqt7KSuVyOonk7s1sKBzHE19g2JuWXdXV5xp1IxfVui5NOumAL5hr9v5jTOpK6xqzoxao3DUqTaPyt1HDXu-N63iJ6ZE8VGiAUQts8gK3_5tkGIUH5VX7o1RaybKpTTgKgppxTRE_XTqGqg
CitedBy_id crossref_primary_10_1111_gcb_16627
crossref_primary_10_1016_j_agrformet_2021_108526
crossref_primary_10_1016_j_copbio_2023_102918
crossref_primary_10_3389_fmicb_2023_1165045
crossref_primary_10_1002_ecs2_3778
crossref_primary_10_1111_2041_210X_13391
crossref_primary_10_3389_fpls_2022_826205
crossref_primary_10_1007_s11258_021_01178_6
crossref_primary_10_1016_j_agrformet_2023_109456
crossref_primary_10_1371_journal_pclm_0000320
crossref_primary_10_1016_j_marpolbul_2021_112713
crossref_primary_10_1002_ece3_11630
crossref_primary_10_1111_ejss_13071
crossref_primary_10_1111_ele_13693
crossref_primary_10_1093_aobpla_plaa027
crossref_primary_10_1093_treephys_tpaa054
crossref_primary_10_3389_fpls_2020_539584
crossref_primary_10_1111_2041_210X_13932
crossref_primary_10_1016_j_jhydrol_2020_125819
crossref_primary_10_1016_j_actao_2020_103606
crossref_primary_10_1111_nph_17803
crossref_primary_10_3389_ffgc_2020_00038
crossref_primary_10_1038_s41467_022_33278_w
crossref_primary_10_1139_as_2022_0030
crossref_primary_10_1111_gcb_14918
crossref_primary_10_1111_plb_13063
crossref_primary_10_1002_ece3_8406
crossref_primary_10_1002_fee_2337
crossref_primary_10_1016_j_scitotenv_2020_144749
crossref_primary_10_1111_nph_17270
crossref_primary_10_17660_ActaHortic_2021_1311_38
crossref_primary_10_1002_ecy_3598
crossref_primary_10_1042_BCJ20220433
crossref_primary_10_1111_jvs_12911
crossref_primary_10_1111_gcb_14894
crossref_primary_10_1073_pnas_2003361117
crossref_primary_10_1111_gcb_15685
Cites_doi 10.1126/science.aas9313
10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
10.1111/gcb.13383
10.1126/science.215.4539.1498
10.1073/pnas.0605642104
10.1038/nclimate1787
10.1111/j.1469-8137.2010.03252.x
10.1016/bs.aecr.2016.07.001
10.1093/icb/ict085
10.1111/j.1466-822X.2006.00245.x
10.1890/ES14-00143.1
10.2307/3546421
10.1007/BF00541106
10.1111/j.1461-0248.2011.01716.x
10.1111/gcb.12919
10.1111/j.1365-2486.2011.02626.x
10.1073/pnas.1605365113
10.1038/nclimate1633
10.1038/srep04364
10.1890/ES13.00183.1
10.1111/j.1365-2486.2007.01486.x
10.1016/j.tree.2006.04.009
10.1111/gcb.12420
10.1093/ee/10.5.716
10.2307/1948498
10.1111/j.2041-210X.2011.00100.x
10.2307/2390583
10.1007/s10533-014-0001-3
10.1890/13-2186.1
10.1111/1365-2435.12309
10.1111/gcb.12831
10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
10.1111/j.1472-4642.2011.00880.x
10.1007/s00704-013-0942-9
10.1073/pnas.1606734113
10.1111/oik.03688
10.1073/pnas.0606292104
10.1111/gcb.12028
10.1038/nature11014
10.3354/cr01306
10.1007/s40641-018-0093-2
10.1016/j.agrformet.2009.06.007
10.1093/ilar.43.4.202
10.1007/s10533-009-9297-9
10.1093/biosci/biv099
10.1038/nature17142
10.1175/JCLI-D-14-00153.1
10.1111/j.1461-0248.2008.01277.x
10.1029/2005GL024379
10.1111/j.1469-8137.1992.tb04228.x
10.1007/BF00321185
10.1111/j.1466-822X.2004.00112.x
10.1111/j.1365-2699.2012.02690.x
10.1126/science.aan2874
10.1029/1999WR900047
10.1111/j.1600-0706.2009.18343.x
10.1111/gcb.12855
10.1111/j.1365-2486.1997.gcb136.x
10.1002/2015JD024584
10.1146/annurev.ecolsys.37.091305.110100
10.2307/1941962
10.2307/2261178
10.1098/rspb.2013.2612
10.1163/22941932-90000435
10.1007/978-1-4615-7358-6_1
10.1111/j.1365-2486.2005.1028.x
10.1890/070037
10.1098/rspb.2011.2367
10.1111/1365-2656.12328
10.1146/annurev.energy.32.053006.141119
10.1890/0012-9658(2006)87[1896:PBCOTC]2.0.CO;2
10.1073/pnas.0600815103
10.1002/2016GL071921
10.1111/j.1461-0248.2011.01689.x
10.1159/000056144
10.1111/j.1466-822X.2004.00090.x
10.2307/1942661
10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
10.1111/j.1365-2486.2011.02612.x
10.1038/nature02121
10.1029/2004GL021935
10.1017/CBO9780511806384
10.12987/yale/9780300209549.003.0016
10.1017/qua.2017.62
10.2307/1942058
10.1111/j.1365-2486.2004.00859.x
10.1029/2001GB001573
10.1175/JCLI-D-12-00579.1
10.1038/nclimate2497
10.1007/s00484-013-0718-z
10.1111/nph.14035
10.1038/35041539
10.1890/ES13-00234.1
10.1046/j.1365-2486.1997.00072.x
10.1016/S0169-5347(98)01554-7
ContentType Journal Article
Copyright Copyright Determination: GOV_PERMITTED
2019 John Wiley & Sons Ltd/CNRS
2019 John Wiley & Sons Ltd/CNRS.
Copyright © 2019 John Wiley & Sons Ltd/CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Determination: GOV_PERMITTED
– notice: 2019 John Wiley & Sons Ltd/CNRS
– notice: 2019 John Wiley & Sons Ltd/CNRS.
– notice: Copyright © 2019 John Wiley & Sons Ltd/CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CYE
CYI
NPM
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
1XC
DOI 10.1111/ele.13223
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
DatabaseTitleList PubMed

Entomology Abstracts
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1461-0248
Editor Jeffers, Elizabeth
Editor_xml – sequence: 1
  givenname: Elizabeth
  surname: Jeffers
  fullname: Jeffers, Elizabeth
EndPage 763
ExternalDocumentID oai_HAL_hal_02392279v1
10_1111_ele_13223
30687988
ELE13223
20190000645
Genre reviewArticle
Journal Article
Review
GrantInformation NSF DBI 14-01854
GrantInformation_xml – fundername: Radcliffe Institute for Advanced Study at Harvard University
– fundername: National Science Foundation
  funderid: NSF DBI 14‐01854
– fundername: National Science Foundation
  grantid: NSF DBI 14-01854
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1OC
29G
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
CYE
CYI
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
ABTAH
ACBWZ
ASPBG
AVWKF
AZFZN
CAG
COF
FEDTE
HF~
HVGLF
LW6
ZY4
NPM
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
1XC
ID FETCH-LOGICAL-c4433-9db6b4a9d322caa4dbc3e18f33cc5904c8ef45356d8419ef11dbde39b11b0703
IEDL.DBID 33P
ISSN 1461-023X
IngestDate Wed Nov 06 06:45:55 EST 2024
Thu Oct 10 18:41:13 EDT 2024
Fri Aug 23 00:22:31 EDT 2024
Wed Oct 16 00:51:47 EDT 2024
Sat Aug 24 00:51:28 EDT 2024
Fri Nov 15 15:19:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Warming Experiment
feedback
target temperature
spring phenology
active-warming
budburst
global warming
microclimate
structural control
direct and indirect effects
soil moisture
hidden treatment
warming experiment
Species distribution models
Life cycle
Species distribution
Water availability
Drought
Language English
License 2019 John Wiley & Sons Ltd/CNRS.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-9db6b4a9d322caa4dbc3e18f33cc5904c8ef45356d8419ef11dbde39b11b0703
Notes GSFC
GSFC-E-DAA-TN65060
Goddard Space Flight Center
ORCID 0000-0002-6228-6732
0000-0003-3308-8785
OpenAccessLink https://ntrs.nasa.gov/citations/20190000645
PMID 30687988
PQID 2189366870
PQPubID 32390
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02392279v1
proquest_journals_2189366870
crossref_primary_10_1111_ele_13223
pubmed_primary_30687988
wiley_primary_10_1111_ele_13223_ELE13223
nasa_ntrs_20190000645
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2019
Publisher Wiley
Blackwell Publishing Ltd
Publisher_xml – name: Wiley
– name: Blackwell Publishing Ltd
References 2002; 16
1971; 41
2007; 104
2010; 97
2013; 3
2013; 4
2012; 485
2018; 360
1992; 122
2017; 44
2017; 88
1982; 54
2014b; 28
2006; 37
2014; 27
2000; 50
2010; 186
2012; 18
1999; 84
2012; 15
2011; 14
2007; 32
1997; 3
1996; 108
2017; 358
2013; 19
2009; 12
2000; 408
2014b; 116
2014; 5
2014; 4
2018; 4
1986; 7
2010; 119
2015; 84
2006; 21
1984; 54
2013; 53
2002; 43
1999; 14
2016; 113
2014; 58
2005; 32
1982; 215
2007; 5
2014a; 20
2014; 281
2014; 95
2017; 126
1989
1995; 9
2015; 5
2011; 2
2006; 15
2008; 14
2016; 121
2012; 39
2002
2004; 427
2003; 73
1995; 5
2001; 64
2016; 55
2004; 10
1995; 83
2016; 7
2006; 87
1993; 93
2015; 64
2015; 65
2004; 13
2015; 21
2016; 212
1999; 35
2016; 531
2018
2017
2014a; 121
2016
2013
2012; 279
2005; 11
1981; 10
1994; 4
2009; 149
2006; 103
2016; 22
1998; 79
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_28_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_29_1
e_1_2_12_32_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
Templer P.H. (e_1_2_12_89_1) 2016; 7
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
Milcu A. (e_1_2_12_55_1) 2016
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Chang.
– volume: 212
  start-page: 354
  year: 2016
  end-page: 367
  article-title: Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in eucalyptus tereticornis
  publication-title: New Phytol.
– volume: 5
  start-page: 475
  year: 2007
  end-page: 482
  article-title: Novel climates, no‐analog communities, and ecological surprises
  publication-title: Front. Ecol. Environ.
– volume: 15
  start-page: 164
  year: 2012
  end-page: 175
  article-title: Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time
  publication-title: Ecol. Lett.
– volume: 3
  start-page: 482
  year: 2013
  article-title: Projections of declining surface‐water availability for the southwestern United States
  publication-title: Nat. Clim. Chang.
– volume: 39
  start-page: 1266
  year: 2012
  end-page: 1277
  article-title: Niche models tell half the story: spatial context and life‐history traits influence species responses to global change
  publication-title: J. Biogeogr.
– volume: 21
  start-page: 3138
  year: 2015
  end-page: 3151
  article-title: Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming
  publication-title: Glob. Change Biol.
– volume: 531
  start-page: 633
  year: 2016
  end-page: 636
  article-title: Boreal and temperate trees show strong acclimation of respiration to warming
  publication-title: Nature
– volume: 73
  start-page: 69
  year: 2003
  end-page: 86
  article-title: Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods
  publication-title: Ecol. Monogr.
– volume: 64
  start-page: 99
  year: 2015
  end-page: 110
  article-title: Modeling monthly temperature in mountainous ecoregions: importance of spatial scale for ecological research
  publication-title: Clim. Res.
– volume: 4
  start-page: 4364
  year: 2014
  article-title: The key role of dry days in changing regional climate and precipitation regimes
  publication-title: Sci. Rep.
– volume: 215
  start-page: 1498
  year: 1982
  end-page: 1501
  article-title: Influence of land‐surface evapotranspiration on the earth's climate
  publication-title: Science
– volume: 18
  start-page: 661
  year: 2012
  end-page: 672
  article-title: Climate change might increase the invasion potential of the alien c4 grass setaria parviflora (Poaceae) in the Mediterranean Basin
  publication-title: Divers. Distrib.
– volume: 5
  start-page: 132
  year: 1995
  end-page: 150
  article-title: Global warming and soil microclimate: results from a meadow‐warming experiment
  publication-title: Ecol. Appl.
– volume: 93
  start-page: 18
  year: 1993
  end-page: 24
  article-title: Soil warming and trace gas fluxes: experimental design and preliminary flux results
  publication-title: Oecologia
– volume: 19
  start-page: 64
  year: 2013
  end-page: 74
  article-title: Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth
  publication-title: Glob. Change Biol.
– volume: 104
  start-page: 198
  year: 2007
  end-page: 202
  article-title: Divergence of reproductive phenology under climate warming
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 16
  start-page: 3–1
  year: 2002
  end-page: 3–18
  article-title: Plant community composition mediates both large transient decline and predicted long‐term recovery of soil carbon under climate warming
  publication-title: Global Biogeochem. Cycles
– start-page: 233
  year: 2017
  end-page: 249
– volume: 58
  start-page: 1251
  year: 2014
  end-page: 1257
  article-title: Tree leaf out response to temperature: comparing field observations, remote sensing, and a warming experiment
  publication-title: Int. J. Biometeorol.
– volume: 50
  start-page: 871
  year: 2000
  end-page: 882
  article-title: Global warming and terrestrial ecosystems: a conceptual framework for analysis ecosystem responses to global warming will be complex and varied. Ecosystem warming experiments hold great potential for providing insights on ways terrestrial ecosystems will respond to upcoming decades of climate change. Documentation of initial conditions provides the context for understanding and predicting ecosystem responses
  publication-title: Bioscience
– volume: 104
  start-page: 5738
  year: 2007
  end-page: 5742
  article-title: Projected distributions of novel and disappearing climates by 2100 AD
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 334
  year: 2009
  end-page: 350
  article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges
  publication-title: Ecol. Lett.
– volume: 88
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Centennial to millennial hydroclimatic fluctuations in the humid northeast United States during the holocene
  publication-title: Quatern. Res.
– start-page: 3
  year: 1989
  end-page: 19
– volume: 4
  start-page: 617
  year: 1994
  end-page: 625
  article-title: Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures
  publication-title: Ecological applications
– volume: 79
  start-page: 1261
  year: 1998
  end-page: 1271
  article-title: Effects of experimental warming on plant reproductive phenology in a subalpine meadow
  publication-title: Ecology
– volume: 7
  year: 2016
  article-title: Ecosystem warming increases sap flow rates of northern red oak trees
  publication-title: Ecosphere
– volume: 2
  start-page: 534
  year: 2011
  end-page: 540
  article-title: Heating up the forest: open‐top chamber warming manipulation of arthropod communities at Harvard and Duke Forests
  publication-title: Methods Ecol. Evol.
– volume: 43
  start-page: 202
  year: 2002
  end-page: 206
  article-title: Practical aspects of experimental design in animal research
  publication-title: ILAR J.
– volume: 53
  start-page: 965
  year: 2013
  end-page: 974
  article-title: Using physiology to predict the responses of ants to climatic warming
  publication-title: Integr. Comp. Biol.
– volume: 21
  start-page: 2349
  year: 2015
  end-page: 2356
  article-title: Convergent ecosystem responses to 23‐year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long‐term climate–soil carbon feedback
  publication-title: Glob. Change Biol.
– volume: 13
  start-page: 471
  year: 2004
  end-page: 473
  article-title: Bioclimate envelope models: what they detect and what they hide – response to Hampe (2004)
  publication-title: Glob. Ecol. Biogeogr.
– volume: 108
  start-page: 583
  year: 1996
  end-page: 595
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
– volume: 14
  start-page: 135
  year: 1999
  end-page: 139
  article-title: Does global change increase the success of biological invaders?
  publication-title: Trends Ecol. Evol.
– volume: 11
  start-page: 2041
  year: 2005
  end-page: 2056
  article-title: Theory and performance of an infrared heater for ecosystem warming
  publication-title: Glob. Change Biol.
– start-page: 080119
  year: 2016
  article-title: Systematic variability enhances the reproducibility of an ecological study
  publication-title: bioRxiv(beta)
– volume: 4
  start-page: 164
  year: 2018
  end-page: 179
  article-title: Climate change and drought: from past to future
  publication-title: Curr. Clim. Change Rep.
– volume: 116
  start-page: 287
  year: 2014b
  end-page: 299
  article-title: Microclimate and ecological threshold responses in a warming and wetting experiment following whole tree harvest
  publication-title: Theoret. Appl. Climatol.
– volume: 13
  start-page: 469
  year: 2004
  end-page: 471
  article-title: Bioclimate envelope models: what they detect and what they hide
  publication-title: Glob. Ecol. Biogeogr.
– volume: 32
  start-page: e01221
  year: 2005
  article-title: Maximum and minimum temperature trends for the globe: an update through 2004
  publication-title: Geophys. Res. Lett.
– year: 2002
– volume: 5
  start-page: 1
  year: 2014
  end-page: 17
  article-title: Changes in ant community composition caused by 20 years of experimental warming vs. 13 years of natural climate shift
  publication-title: Ecosphere
– volume: 281
  start-page: 20132612
  year: 2014
  article-title: Increased temperature variation poses a greater risk to species than climate warming
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
– volume: 97
  start-page: 7
  year: 2010
  end-page: 19
  article-title: Short‐term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline
  publication-title: Biogeochemistry
– volume: 427
  start-page: 145
  year: 2004
  end-page: 148
  article-title: Extinction risk from climate change
  publication-title: Nature
– volume: 27
  start-page: 7921
  year: 2014
  end-page: 7948
  article-title: Dynamical and thermodynamical causes of large‐scale changes in the hydrological cycle over north america in response to global warming
  publication-title: J. Clim.
– volume: 35
  start-page: 1839
  year: 1999
  end-page: 1851
  article-title: Ground‐based investigation of soilmoisture variability within remote sensing footprints during the southern great plains 1997 (sgp97) hydrology experiment
  publication-title: Water Resour. Res.
– year: 2013
– volume: 20
  start-page: 1136
  year: 2014a
  end-page: 1145
  article-title: The seasonal timing of warming that controls onset of the growing season
  publication-title: Glob. Change Biol.
– volume: 27
  start-page: 511
  year: 2014
  end-page: 526
  article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks
  publication-title: J. Clim.
– volume: 95
  start-page: 2646
  year: 2014
  end-page: 2656
  article-title: Resistance and resilience of a grassland ecosystem to climate extremes
  publication-title: Ecology
– volume: 113
  start-page: 10589
  year: 2016
  end-page: 10594
  article-title: Nonlinear, interacting responses to climate limit grassland production under global change
  publication-title: Proc. Natl Acad. Sci.
– volume: 408
  start-page: 184
  year: 2000
  end-page: 187
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 65
  start-page: 922
  year: 2015
  end-page: 931
  article-title: Global change experiments: challenges and opportunities
  publication-title: Bioscience
– volume: 10
  start-page: 2020
  year: 2004
  end-page: 2027
  article-title: Patterns and uncertainties of species’ range shifts under climate change
  publication-title: Glob. Change Biol.
– volume: 149
  start-page: 1791
  year: 2009
  end-page: 1799
  article-title: Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality
  publication-title: Agric. For. Meteorol.
– volume: 41
  start-page: 351
  year: 1971
  end-page: 389
  article-title: Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community
  publication-title: Ecol. Monogr.
– volume: 360
  start-page: 317
  year: 2018
  end-page: 320
  article-title: Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20‐year field experiment
  publication-title: Science
– year: 2018
– volume: 84
  start-page: 785
  year: 2015
  end-page: 796
  article-title: The effects of experimental warming on the timing of a plant–insect herbivore interaction
  publication-title: J. Anim. Ecol.
– volume: 10
  start-page: 716
  year: 1981
  end-page: 720
  article-title: Evaluation of plant density and temperature in predator‐prey interactions in field cages
  publication-title: Environ. Entomol.
– volume: 55
  start-page: 437
  year: 2016
  end-page: 473
– volume: 54
  start-page: 50
  year: 1982
  end-page: 54
  article-title: Photosynthetic and growth response to fumigation with SO2 at elevated CO2 for C3 and C4 plants
  publication-title: Oecologia
– volume: 9
  start-page: 340
  year: 1995
  end-page: 350
  article-title: Temperature effects of passive greenhouse apparatus in high‐latitude climate change experiments
  publication-title: Funct. Ecol.
– volume: 3
  start-page: 259
  year: 1997
  end-page: 267
  article-title: Temperature‐controlled open‐top chambers for global change research
  publication-title: Global Change Biology
– volume: 5
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Geographic differences in effects of experimental warming on ant species diversity and community composition
  publication-title: Ecosphere
– volume: 32
  year: 2005
  article-title: Improved understanding of soil moisture variability dynamics
  publication-title: Geophys. Res. Lett.
– volume: 122
  start-page: 239
  year: 1992
  end-page: 251
  article-title: Predicting plant responses to global environmental change
  publication-title: New Phytol.
– volume: 485
  start-page: 494
  year: 2012
  end-page: 497
  article-title: Warming experiments underpredict plant phenological responses to climate change
  publication-title: Nature
– volume: 14
  start-page: 1191
  year: 2011
  end-page: 1200
  article-title: Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure
  publication-title: Ecol. Lett.
– volume: 15
  start-page: 395
  year: 2006
  end-page: 405
  article-title: Towards European climate risk surfaces: the extent and distribution of analogous and non‐analogous climates 1931–2100
  publication-title: Glob. Ecol. Biogeogr.
– volume: 21
  start-page: 2334
  year: 2015
  end-page: 2348
  article-title: Design and performance of combined infrared canopy and below‐ground warming in the B4WarmED (Boreal forest warming at an ecotone in danger) experiment
  publication-title: Glob. Change Biol.
– volume: 119
  start-page: 791
  year: 2010
  end-page: 795
  article-title: Like moths to a street lamp: exaggerated animal densities in plot‐level global change field experiments
  publication-title: Oikos
– volume: 21
  start-page: 400
  year: 2006
  end-page: 407
  article-title: How close are we to a predictive science of the biosphere?
  publication-title: Trends Ecol. Evol.
– volume: 44
  start-page: 236
  year: 2017
  end-page: 244
  article-title: Divergent surface and total soil moisture projections under global warming
  publication-title: Geophys. Res. Lett.
– volume: 18
  start-page: 1754
  year: 2012
  end-page: 1768
  article-title: Interactive responses of old‐field plant growth and composition to warming and precipitation
  publication-title: Glob. Change Biol.
– volume: 18
  start-page: 1108
  year: 2012
  end-page: 1116
  article-title: Experimental warming alters spring phenology of certain plant functional groups in an early successional forest community
  publication-title: Glob. Change Biol.
– volume: 113
  start-page: 13797
  year: 2016
  end-page: 13802
  article-title: Temperature response of soil respiration largely unaltered with experimental warming
  publication-title: Proc. Natl Acad. Sci.
– volume: 358
  start-page: 101
  year: 2017
  end-page: 105
  article-title: Long‐term pattern and magnitude of soil carbon feedback to the climate system in a warming world
  publication-title: Science
– volume: 5
  start-page: 148
  year: 2015
  end-page: 152
  article-title: Geographic range predicts photosynthetic and growth response to warming in co‐occurring tree species
  publication-title: Nat. Clim. Chang.
– volume: 14
  start-page: 309
  year: 2008
  end-page: 320
  article-title: Infrared heater arrays for warming ecosystem field plots
  publication-title: Glob. Change Biol.
– volume: 83
  start-page: 967
  year: 1995
  end-page: 977
  article-title: Phenology and growth of three temperate forest life forms in response to artificial soil warming
  publication-title: J. Ecol.
– volume: 87
  start-page: 1896
  year: 2006
  end-page: 1906
  article-title: Predicting biodiversity change: outside the climate envelope, beyond the species‐area curve
  publication-title: Ecology
– volume: 121
  start-page: 5138
  year: 2016
  end-page: 5158
  article-title: Reassessing changes in diurnal temperature range: intercomparison and evaluation of existing global data set estimates
  publication-title: J. Geophys. Res. Atmos.
– volume: 279
  start-page: 2072
  year: 2012
  end-page: 2080
  article-title: On a collision course: competition and dispersal differences create no‐analogue communities and cause extinctions during climate change
  publication-title: Proc. R. Soc. B Biol. Sci.
– volume: 103
  start-page: 13740
  year: 2006
  end-page: 13744
  article-title: Diverse responses of phenology to global changes in a grassland ecosystem
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 186
  start-page: 900
  year: 2010
  end-page: 910
  article-title: Changes in leaf phenology of three European oak species in response to experimental climate change
  publication-title: New Phytol.
– volume: 28
  start-page: 1344
  year: 2014b
  end-page: 1355
  article-title: Tree phenology responses to winter chilling, spring warming, at north and south range limits
  publication-title: Funct. Ecol.
– volume: 126
  start-page: 8
  year: 2017
  end-page: 17
  article-title: Effects of experimental warming on biodiversity depend on ecosystem type and local species composition
  publication-title: Oikos
– volume: 3
  start-page: 20
  year: 1997
  end-page: 32
  article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems
  publication-title: Glob. Change Biol.
– volume: 22
  start-page: 3444
  year: 2016
  end-page: 3460
  article-title: Can phenological models predict tree phenology accurately in the future? the unrevealed hurdle of endodormancy break
  publication-title: Glob. Change Biol.
– volume: 32
  start-page: 1
  year: 2007
  end-page: 29
  article-title: Feedbacks of terrestrial ecosystems to climate change
  publication-title: Annu. Rev. Environ. Resour.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 28
  article-title: Soil respiration in a northeastern US temperate forest: a 22‐year synthesis
  publication-title: Ecosphere
– volume: 84
  start-page: 417
  year: 1999
  end-page: 434
  article-title: Plant responses to species removal and experimental warming in Alaskan tussock tundra
  publication-title: Oikos
– volume: 54
  start-page: 187
  year: 1984
  end-page: 211
  article-title: Pseudoreplication and the design of ecological field experiments
  publication-title: Ecol. Monogr.
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 121
  start-page: 339
  year: 2014a
  end-page: 354
  article-title: Do ‘hot moments’ become hotter under climate change? Soil nitrogen dynamics from a climate manipulation experiment in a post‐harvest forest
  publication-title: Biogeochemistry
– volume: 64
  start-page: 1
  year: 2001
  end-page: 7
  article-title: Progress in the search for ideal drugs
  publication-title: Pharmacology
– volume: 7
  start-page: 31
  year: 1986
  end-page: 38
  article-title: Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation
  publication-title: IAWA J.
– ident: e_1_2_12_73_1
  doi: 10.1126/science.aas9313
– ident: e_1_2_12_80_1
  doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
– ident: e_1_2_12_11_1
  doi: 10.1111/gcb.13383
– ident: e_1_2_12_83_1
  doi: 10.1126/science.215.4539.1498
– ident: e_1_2_12_82_1
  doi: 10.1073/pnas.0605642104
– ident: e_1_2_12_78_1
  doi: 10.1038/nclimate1787
– ident: e_1_2_12_58_1
  doi: 10.1111/j.1469-8137.2010.03252.x
– ident: e_1_2_12_2_1
  doi: 10.1016/bs.aecr.2016.07.001
– ident: e_1_2_12_20_1
  doi: 10.1093/icb/ict085
– ident: e_1_2_12_60_1
  doi: 10.1111/j.1466-822X.2006.00245.x
– ident: e_1_2_12_64_1
  doi: 10.1890/ES14-00143.1
– ident: e_1_2_12_38_1
  doi: 10.2307/3546421
– ident: e_1_2_12_9_1
  doi: 10.1007/BF00541106
– ident: e_1_2_12_23_1
  doi: 10.1111/j.1461-0248.2011.01716.x
– ident: e_1_2_12_49_1
  doi: 10.1111/gcb.12919
– ident: e_1_2_12_39_1
  doi: 10.1111/j.1365-2486.2011.02626.x
– ident: e_1_2_12_8_1
  doi: 10.1073/pnas.1605365113
– ident: e_1_2_12_17_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_12_67_1
  doi: 10.1038/srep04364
– ident: e_1_2_12_31_1
  doi: 10.1890/ES13.00183.1
– ident: e_1_2_12_48_1
  doi: 10.1111/j.1365-2486.2007.01486.x
– ident: e_1_2_12_57_1
  doi: 10.1016/j.tree.2006.04.009
– ident: e_1_2_12_12_1
  doi: 10.1111/gcb.12420
– ident: e_1_2_12_88_1
  doi: 10.1093/ee/10.5.716
– ident: e_1_2_12_18_1
  doi: 10.2307/1948498
– ident: e_1_2_12_63_1
  doi: 10.1111/j.2041-210X.2011.00100.x
– ident: e_1_2_12_45_1
  doi: 10.2307/2390583
– ident: e_1_2_12_51_1
  doi: 10.1007/s10533-014-0001-3
– ident: e_1_2_12_40_1
  doi: 10.1890/13-2186.1
– ident: e_1_2_12_13_1
  doi: 10.1111/1365-2435.12309
– ident: e_1_2_12_36_1
  doi: 10.1111/gcb.12831
– ident: e_1_2_12_22_1
  doi: 10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
– ident: e_1_2_12_10_1
  doi: 10.1111/j.1472-4642.2011.00880.x
– ident: e_1_2_12_52_1
  doi: 10.1007/s00704-013-0942-9
– ident: e_1_2_12_101_1
  doi: 10.1073/pnas.1606734113
– ident: e_1_2_12_32_1
  doi: 10.1111/oik.03688
– ident: e_1_2_12_98_1
  doi: 10.1073/pnas.0606292104
– ident: e_1_2_12_6_1
  doi: 10.1111/gcb.12028
– ident: e_1_2_12_99_1
  doi: 10.1038/nature11014
– ident: e_1_2_12_76_1
  doi: 10.3354/cr01306
– ident: e_1_2_12_15_1
  doi: 10.1007/s40641-018-0093-2
– ident: e_1_2_12_3_1
  doi: 10.1016/j.agrformet.2009.06.007
– ident: e_1_2_12_43_1
  doi: 10.1093/ilar.43.4.202
– ident: e_1_2_12_33_1
  doi: 10.1007/s10533-009-9297-9
– ident: e_1_2_12_19_1
  doi: 10.1093/biosci/biv099
– ident: e_1_2_12_72_1
  doi: 10.1038/nature17142
– ident: e_1_2_12_79_1
  doi: 10.1175/JCLI-D-14-00153.1
– ident: e_1_2_12_44_1
  doi: 10.1111/j.1461-0248.2008.01277.x
– ident: e_1_2_12_25_1
– ident: e_1_2_12_96_1
  doi: 10.1029/2005GL024379
– ident: e_1_2_12_100_1
  doi: 10.1111/j.1469-8137.1992.tb04228.x
– ident: e_1_2_12_65_1
  doi: 10.1007/BF00321185
– ident: e_1_2_12_62_1
  doi: 10.1111/j.1466-822X.2004.00112.x
– ident: e_1_2_12_87_1
  doi: 10.1111/j.1365-2699.2012.02690.x
– ident: e_1_2_12_53_1
  doi: 10.1126/science.aan2874
– ident: e_1_2_12_26_1
  doi: 10.1029/1999WR900047
– ident: e_1_2_12_56_1
  doi: 10.1111/j.1600-0706.2009.18343.x
– ident: e_1_2_12_74_1
  doi: 10.1111/gcb.12855
– ident: e_1_2_12_50_1
  doi: 10.1111/j.1365-2486.1997.gcb136.x
– ident: e_1_2_12_92_1
  doi: 10.1002/2015JD024584
– start-page: 080119
  year: 2016
  ident: e_1_2_12_55_1
  article-title: Systematic variability enhances the reproducibility of an ecological study
  publication-title: bioRxiv(beta)
  contributor:
    fullname: Milcu A.
– ident: e_1_2_12_61_1
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_2_12_66_1
  doi: 10.2307/1941962
– ident: e_1_2_12_27_1
  doi: 10.2307/2261178
– ident: e_1_2_12_95_1
  doi: 10.1098/rspb.2013.2612
– ident: e_1_2_12_24_1
  doi: 10.1163/22941932-90000435
– ident: e_1_2_12_29_1
  doi: 10.1007/978-1-4615-7358-6_1
– ident: e_1_2_12_47_1
  doi: 10.1111/j.1365-2486.2005.1028.x
– ident: e_1_2_12_97_1
  doi: 10.1890/070037
– ident: e_1_2_12_94_1
  doi: 10.1098/rspb.2011.2367
– volume: 7
  year: 2016
  ident: e_1_2_12_89_1
  article-title: Ecosystem warming increases sap flow rates of northern red oak trees
  publication-title: Ecosphere
  contributor:
    fullname: Templer P.H.
– ident: e_1_2_12_46_1
  doi: 10.1111/1365-2656.12328
– ident: e_1_2_12_28_1
  doi: 10.1146/annurev.energy.32.053006.141119
– ident: e_1_2_12_42_1
  doi: 10.1890/0012-9658(2006)87[1896:PBCOTC]2.0.CO;2
– ident: e_1_2_12_86_1
– ident: e_1_2_12_14_1
  doi: 10.1073/pnas.0600815103
– ident: e_1_2_12_5_1
  doi: 10.1002/2016GL071921
– ident: e_1_2_12_81_1
  doi: 10.1111/j.1461-0248.2011.01689.x
– ident: e_1_2_12_85_1
  doi: 10.1159/000056144
– ident: e_1_2_12_34_1
  doi: 10.1111/j.1466-822X.2004.00090.x
– ident: e_1_2_12_41_1
  doi: 10.2307/1942661
– ident: e_1_2_12_69_1
  doi: 10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
– ident: e_1_2_12_7_1
  doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
– ident: e_1_2_12_75_1
  doi: 10.1111/j.1365-2486.2011.02612.x
– ident: e_1_2_12_91_1
  doi: 10.1038/nature02121
– ident: e_1_2_12_90_1
  doi: 10.1029/2004GL021935
– ident: e_1_2_12_70_1
  doi: 10.1017/CBO9780511806384
– ident: e_1_2_12_37_1
  doi: 10.12987/yale/9780300209549.003.0016
– ident: e_1_2_12_84_1
  doi: 10.1017/qua.2017.62
– ident: e_1_2_12_35_1
  doi: 10.2307/1942058
– ident: e_1_2_12_93_1
  doi: 10.1111/j.1365-2486.2004.00859.x
– ident: e_1_2_12_77_1
  doi: 10.1029/2001GB001573
– ident: e_1_2_12_30_1
  doi: 10.1175/JCLI-D-12-00579.1
– ident: e_1_2_12_71_1
  doi: 10.1038/nclimate2497
– ident: e_1_2_12_68_1
  doi: 10.1007/s00484-013-0718-z
– ident: e_1_2_12_4_1
  doi: 10.1111/nph.14035
– ident: e_1_2_12_16_1
  doi: 10.1038/35041539
– ident: e_1_2_12_54_1
  doi: 10.1890/ES13-00234.1
– ident: e_1_2_12_59_1
  doi: 10.1046/j.1365-2486.1997.00072.x
– ident: e_1_2_12_21_1
  doi: 10.1016/S0169-5347(98)01554-7
SSID ssj0012971
Score 2.5056467
SecondaryResourceType review_article
Snippet To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation....
Abstract To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and...
Drought sensitivity is known to affect plant species distribution. However, since every stage of plant life cyclehas its own water requirements, plant...
SourceID hal
proquest
crossref
pubmed
wiley
nasa
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 748
SubjectTerms active‐warming
Biodiversity and Ecology
budburst
Case studies
Climate change
Climatic data
Data retrieval
Design of experiments
direct and indirect effects
Drying
Environmental Sciences
Experimental design
Experiments
feedback
Feedback control
Field tests
Global Changes
global warming
hidden treatment
Masks
Meteorology And Climatology
microclimate
Sensitivity analysis
soil moisture
Soil temperature
spring phenology
structural control
target temperature
Temperature effects
warming experiment
Title How Do Climate Change Experiments Alter Plot-Scale Climate?
URI https://ntrs.nasa.gov/citations/20190000645
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13223
https://www.ncbi.nlm.nih.gov/pubmed/30687988
https://www.proquest.com/docview/2189366870
https://hal.science/hal-02392279
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5sQfDis2q0ShAPXiLdR9IED1I0pYcigh56C_sqCqUtTSv05k_wN_pLnNk0UUFB8BaymzDM7MzO7M58Q8i5sTrSieaBkpIFgrY4NnKXAWPGqIjRSEp3dPHQvhvEtynC5FyVtTAFPkR14Iaa4ew1KrhU-RclB6t8iaEUIn1ClODKN_h9dYPAkiLYEhGEy4wPVqhCmMVTffltL6o9YSZkfSxz-ZO3-d15dbtPd-tfdG-TzZXT6XeKVbJD1ux4l6wXbSiX8JQ66OrlHsEsWt9MfD16Bk_W-kVZsP_ZBiD33fW6Px1N5u-vbzlI2JazrxvksZs-3vSCVYOFQAvBQSogDiVkYoAcLaUwSnNL4yHnWodJS-jYDkXIw8jEgiZ2SKlRxvJEUarQVOwDuyZje0h8HkreZhL0OdHC8JZkUnFlFQLWM5Uoj5yVnM6mBYxGVoYfwJDMMQQmgQyqcQS-7nX6Gb7DElzEOnyhHmmgiLLxfJZnDCvhnVsVeqRZyixbqSGMU3DHoghskkcOCjlWv4dYKUawNo9cOHH9TleW9lP3cPT3qcdkA4krcnyapD6fLewJqeVmcerW6QeLyuTM
link.rule.ids 230,315,782,786,887,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB96llJftLVWo7YN0oe-pNz-ScyCIKKRKz1F6D34tuy_w4LciTkF3_wIfkY_iTObS1RoodC3kN2EYWZndmZ35jcAX31whVNOZNYYnknWF9TI3WSce28Lzgpj4tHFr52Ts_KwIpic3bYWpsGH6A7cSDOivSYFpwPpZ1qOZvk7xVKiB69lIRU1bhDitLtD4KoJt2SBATMXZ3NcIcrj6T59sRv1zikXcmFiavMnf_Ol-xr3n6Pl_6P8HSzN_c50v1ko7-FVmKzAm6YT5S0-VRG9-vYDUCJt6qepu_iNzmxIm8rg9KkTQJ3GG_b08mI6e7i7r1HIoZ29twqjo2p0MMjmPRYyJ6VAwaBErDTKIznOGOmtE4GVYyGcy1VfujKMZS7ywpeSqTBmzFsfhLKMWbIWH5Ff00lYh1TkRuxwgyqtnPSib7ixwgZLmPXcKpvAdstqfdkgaeg2AkGG6MgQnIRC6MYJ-3qwP9T0jqpwCe7whiWwSjLSk9lVrTkVw0fPKk9gqxWanmsijjP0yIoCzVICa40gu99juFQSXlsC36K8_k6XroZVfNj496lf4O1gdDzUwx8nPzdhkQhtUn62YGF2dR0-Qa_215_jon0EAfHo7Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC6yG5Rc4jPJGB-DePAysv2Y2Rk8BImzKC4i6MFb069FQXYXZw14y0_wN_pLUtWzMypECOQ2TPcMRVVXdVV31VcAe87bzBZWJEZrnkjWE9TIXSecO2cyzjKtw9HFZf_8Oj8uCSbnsKmFqfEh2gM30oxgr0nBp270SsnRKh9QKCU68FGSG071G-KivULgRR1tyQzjZS6u57BClMbTfvpmM-rcUCpkd6wr_Td38633GrafwdJ_Eb4Mn-deZ3xUL5MV-ODHq7BQ96F8xKcyYFc_rgGl0cZuEtu7W3RlfVzXBccvfQCqONyvx9O7yez591OFIvbN7B_rcDUor36eJPMOC4mVUqBYUB5G6sIhOVZr6YwVnuUjIaxNi560uR_JVKSZyyUr_IgxZ5wXhWHMkK34guyajP03iEWqRZ9rVOjCSid6mmsjjDeEWM9NYSLYbTitpjWOhmriD2SICgzBSSiDdpyQr0-OhoreUQ0ugR3-YhGsk4jUeHZfKU6l8MGvSiPYbGSm5nqI4wz9sSxDoxTB11qO7e8xWMoJrS2C_SCu9-lS5bAMDxv_PnUHFi-OB2p4en72HT4RnXW-zyZ0Z_cPfgs6lXvYDkv2D05755w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+climate+change+experiments+alter+plot%E2%80%90scale+climate%3F&rft.jtitle=Ecology+letters&rft.au=Ettinger%2C+A.+K.&rft.au=Chuine%2C+I.&rft.au=Cook%2C+B.%C2%A0I.&rft.au=Dukes%2C+J.+S.&rft.date=2019-04-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=22&rft.issue=4&rft.spage=748&rft.epage=763&rft_id=info:doi/10.1111%2Fele.13223&rft.externalDBID=10.1111%252Fele.13223&rft.externalDocID=ELE13223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon