Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse
The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during differe...
Saved in:
Published in: | The European journal of neuroscience Vol. 49; no. 8; pp. 978 - 989 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
France
Wiley Subscription Services, Inc
01-04-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral‐to‐dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult‐like biphasic responses seen during week 4. |
---|---|
AbstractList | The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral‐to‐dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult‐like biphasic responses seen during week 4. The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with non-visual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in non-visual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of non-visual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral to dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult-like biphasic responses seen during week 4. The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3-4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. The thalamic reticular nucleus ( TRN ), a shell‐like structure comprised of GABA ergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN . Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. |
Author | Sokhadze, Guela Campbell, Peter W. Guido, William |
Author_xml | – sequence: 1 givenname: Guela surname: Sokhadze fullname: Sokhadze, Guela organization: University of Louisville School of Medicine – sequence: 2 givenname: Peter W. surname: Campbell fullname: Campbell, Peter W. organization: University of Louisville School of Medicine – sequence: 3 givenname: William orcidid: 0000-0002-9028-1015 surname: Guido fullname: Guido, William email: William.Guido@louisville.edu organization: University of Louisville School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29761601$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1LHDEUhoNY6mq98A-Ugd7Yi9F8TTK5KRSxfiC2Fy3Uq5DNnHGzZJJtMqP47826Km3BhBBInvNwDu8u2g4xAEIHBB-Rso5hGY4IU5xuoRnhAteqEe02mmHVsLol4vcO2s15iTFuBW_eox2qpCACkxm6-RHzGMxofNXBHfi4GiCMVewru4jeBUi3zlYurKaxGmM1LqAc481QXhOMzk7epCpM1sOU12VrYohThg_oXW98hv3new_9-nb68-S8vvp-dnHy9aq2nDNaN0rQnhllBJeSKAbcdD3IjhgmjeW2t0Bb6CTm83nbCQ6dsUJKTpVRtpct20NfNt7VNB-gs6X9ZLxeJTeY9KCjcfrfn-AW-jbeacEZazgugsNnQYp_JsijHly24L0JUAbRFDNFVVN2QT_9hy7jlEIZT1PGiFScPwk_byibYs4J-tdmCNbrwHQJTD8FVtiPf3f_Sr4kVIDjDXDvPDy8bdKnl9cb5SOiVKOD |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2023_105332 crossref_primary_10_1111_ejn_14419 crossref_primary_10_1186_s13064_024_00183_5 crossref_primary_10_1523_ENEURO_0386_22_2022 crossref_primary_10_1002_cne_25248 crossref_primary_10_1002_cne_24952 crossref_primary_10_1152_jn_00757_2019 crossref_primary_10_1371_journal_pbio_3002614 crossref_primary_10_1016_j_cortex_2023_02_002 crossref_primary_10_1523_ENEURO_0454_19_2019 crossref_primary_10_7554_eLife_61437 crossref_primary_10_1007_s12035_018_1365_5 crossref_primary_10_1016_j_neuron_2021_06_026 crossref_primary_10_1007_s12021_024_09658_6 crossref_primary_10_1016_j_brainres_2018_10_024 crossref_primary_10_1093_cercor_bhaa045 |
Cites_doi | 10.1523/JNEUROSCI.1903-16.2016 10.1111/j.1460-9568.1991.tb00044.x 10.1523/JNEUROSCI.22-19-08754.2002 10.1016/j.neuron.2016.10.024 10.1016/j.neuron.2005.10.013 10.7554/eLife.10382 10.1016/S0079-6123(03)45013-9 10.1371/journal.pone.0045717 10.1002/cne.902620109 10.1016/0959-4388(94)90054-X 10.1002/cne.903380407 10.1038/nature15398 10.1016/j.brainresrev.2004.04.008 10.1002/cne.10738 10.1002/cne.903100310 10.1016/j.biopsych.2014.12.017 10.1016/0006-8993(89)90115-7 10.1016/0006-8993(87)90408-2 10.1053/smrv.2002.0243 10.1016/0361-9230(86)90134-6 10.1016/0166-2236(95)93935-Q 10.1016/S0166-2236(97)01157-0 10.1016/0006-8993(77)90681-3 10.1016/j.tins.2016.08.001 10.1073/pnas.81.14.4586 10.1111/ejn.12545 10.1016/j.neuroscience.2005.06.089 10.1016/j.cub.2014.02.011 10.1007/BF01217752 10.1002/cne.10219 10.1523/JNEUROSCI.1405-16.2016 10.1002/cne.901620302 10.1016/j.celrep.2017.05.044 10.1111/j.1460-9568.1996.tb01222.x 10.1523/JNEUROSCI.22-03-01002.2002 10.1016/0165-3806(85)90066-5 10.1017/S0952523807070770 10.1017/S0952523805225154 10.1523/JNEUROSCI.2343-14.2015 10.1016/j.tins.2006.05.007 10.1111/j.1460-9568.2006.05258.x 10.1111/j.1460-9568.1992.tb00159.x 10.1113/jphysiol.2010.202499 10.1097/00001756-199212000-00017 10.1111/j.1460-9568.1992.tb00160.x 10.1002/cne.903460106 10.1017/S1472928807000167 10.1038/nn.3078 10.1523/JNEUROSCI.3177-12.2013 10.1523/JNEUROSCI.3358-03.2004 10.1016/0306-4522(89)90026-2 10.1002/dev.420020407 10.1093/cercor/13.6.661 10.1523/JNEUROSCI.5271-12.2013 10.1038/nn.2467 10.1523/JNEUROSCI.2321-14.2014 10.1016/j.neuron.2006.03.033 |
ContentType | Journal Article |
Copyright | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | NPM AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1111/ejn.13942 |
DatabaseName | PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Chemoreception Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 989 |
ExternalDocumentID | 10_1111_ejn_13942 29761601 EJN13942 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: F30 EY026792 – fundername: NEI NIH HHS grantid: R01 EY012716 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT NPM AAMNL AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c4432-5962f3a9a6477193e4adfe7d1a37ac4cfce28ed704bb8d64edac677429a9cf783 |
IEDL.DBID | 33P |
ISSN | 0953-816X |
IngestDate | Tue Sep 17 21:26:55 EDT 2024 Sat Aug 17 02:52:33 EDT 2024 Thu Oct 10 20:17:50 EDT 2024 Thu Nov 21 21:43:40 EST 2024 Sat Sep 28 08:26:59 EDT 2024 Sat Aug 24 01:10:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | muscarinic brainstem acetylcholine nicotinic basal forebrain |
Language | English |
License | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4432-5962f3a9a6477193e4adfe7d1a37ac4cfce28ed704bb8d64edac677429a9cf783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 GS and WG were involved in all aspects of the research and writing of the manuscript. PC participated in anterograde tracing experiments and contributed to the writing of the manuscript. All authors have read and approved the final manuscript. Author contributions |
ORCID | 0000-0002-9028-1015 |
OpenAccessLink | https://europepmc.org/articles/pmc6433540?pdf=render |
PMID | 29761601 |
PQID | 2331794440 |
PQPubID | 34057 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433540 proquest_miscellaneous_2039295959 proquest_journals_2331794440 crossref_primary_10_1111_ejn_13942 pubmed_primary_29761601 wiley_primary_10_1111_ejn_13942_EJN13942 |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 1987; 262 1991; 310 2010; 13 2005; 135 2015; 77 2004; 24 2003; 13 2014; 24 2012; 15 2016; 39 2005; 22 2016; 36 1970; 2 1989; 505 1992b; 4 1993; 338 1989; 31 1994; 346 2017; 37 2003; 7 2006; 29 1977; 138 2007; 1 1996; 8 2007; 24 2007; 25 1992; 3 1985; 14 2004; 145 1991; 3 1992a; 4 1996; 18 1984; 81 2006; 50 2004; 46 1986; 16 1987; 408 2004 2015; 526 2016; 92 1991 2005; 48 2015; 9 1998; 21 2011; 589 2016; 5 2013; 33 2002; 22 1985; 354 2002; 447 1975; 162 2017; 19 2005; 3 2014; 39 2012; 7 2003; 463 2014; 34 1994; 4 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Chen Z. (e_1_2_10_4_1) 2015; 9 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_50_1 Jones E.G. (e_1_2_10_31_1) 2007 Bayer S.A. (e_1_2_10_3_1) 1991 e_1_2_10_60_1 Paxinos G. (e_1_2_10_51_1) 2004 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 92 start-page: 687 year: 2016 end-page: 704 article-title: Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations publication-title: Neuron – volume: 50 start-page: 247 year: 2006 end-page: 259 article-title: Failure to maintain eye‐specific segregation in nob, a mutant with abnormally patterned retinal activity publication-title: Neuron – volume: 77 start-page: 1071 year: 2015 end-page: 1078 article-title: Cortical development, electroencephalogram rhythms, and the sleep/wake cycle publication-title: Biol. Psychiat. – volume: 13 start-page: 661 year: 2003 end-page: 669 article-title: Choreography of early thalamic development publication-title: Cereb. Cortex – volume: 18 start-page: 389 year: 1996 end-page: 397 article-title: How do thalamic axons find their way to the cortex? publication-title: Trends Neurosci. – volume: 162 start-page: 285 year: 1975 end-page: 308 article-title: Some aspects of the organization of the thalamic reticular complex publication-title: J. Comp. Neurol. – volume: 16 start-page: 603 year: 1986 end-page: 637 article-title: Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain publication-title: Brain Res. Bull. – volume: 31 start-page: 1 year: 1989 end-page: 12 article-title: The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves publication-title: Neuroscience – volume: 3 start-page: 157 year: 2005 end-page: 163 article-title: Formation of eye‐specific retinogeniculate projections occurs prior to the innervation of the dorsal lateral geniculate nucleus by cholinergic fibers publication-title: Thalamus Relat. Syst. – volume: 589 start-page: 919 year: 2011 end-page: 937 article-title: Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse publication-title: J. Physiol. – volume: 8 start-page: 388 year: 1996 end-page: 404 article-title: Organization of the visual reticular thalamic nucleus of the rat publication-title: Eur. J. Neurosci. – volume: 447 start-page: 8 year: 2002 end-page: 17 article-title: Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other publication-title: J. Comp. Neurol. – volume: 37 start-page: 1352 year: 2017 end-page: 1366 article-title: Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice publication-title: J. Neurosci. – volume: 346 start-page: 80 year: 1994 end-page: 96 article-title: Early development of the somatotopic map and barrel patterning in rat somatosensory cortex publication-title: J. Comp. Neurol. – volume: 505 start-page: 55 year: 1989 end-page: 65 article-title: Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat publication-title: Brain Res. – volume: 526 start-page: 705 year: 2015 end-page: 709 article-title: Thalamic control of sensory selection in divided attention publication-title: Nature – volume: 22 start-page: 8754 year: 2002 end-page: 8761 article-title: New intrathalamic pathways allowing modality‐related and cross‐modality switching in the dorsal thalamus publication-title: J. Neurosci. – volume: 33 start-page: 2048 year: 2013 end-page: 2059 article-title: Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons publication-title: J. Neurosci. – volume: 4 start-page: 1343 year: 1992b end-page: 1351 article-title: The somatotopic organization within the rabbit's thalamic reticular nucleus publication-title: Eur. J. Neurosci. – volume: 14 start-page: 365 year: 1985 end-page: 411 article-title: The thalamic reticular nucleus of the adult rat: experimental anatomical studies publication-title: J. Neurocytol. – year: 2004 – volume: 463 start-page: 360 year: 2003 end-page: 371 article-title: Structure and connections of the thalamic reticular nucleus: advancing views over half a century publication-title: J. Comp. Neurol. – volume: 7 start-page: 321 year: 2003 end-page: 334 article-title: Development of fetal and neonatal sleep and circadian rhythms publication-title: Sleep Med. Rev. – volume: 4 start-page: 535 year: 1994 end-page: 544 article-title: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems publication-title: Curr. Opin. Neurobiol. – volume: 36 start-page: 12259 year: 2016 end-page: 12275 article-title: Development of activity in the mouse visual Cortex publication-title: J. Neurosci. – volume: 24 start-page: 693 year: 2014 end-page: 698 article-title: Selective activation of cholinergic basal forebrain neurons induces immediate sleep‐wake transitions publication-title: Curr. Biol. – volume: 338 start-page: 575 year: 1993 end-page: 587 article-title: Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons publication-title: J. Comp. Neurol. – volume: 39 start-page: 1405 year: 2014 end-page: 1418 article-title: Diverse subthreshold cross‐modal sensory interactions in the thalamic reticular nucleus: implications for new pathways of cross‐modal attentional gating function publication-title: Eur. J. Neurosci. – volume: 15 start-page: 793 year: 2012 end-page: 802 article-title: A toolbox of cre‐dependent optogenetic transgenic mice for light‐induced activation and silencing publication-title: Nat. Neurosci. – volume: 29 start-page: 414 year: 2006 end-page: 418 article-title: Early patterns of electrical activity in the developing cerebral cortex of humans and rodents publication-title: Trends Neurosci. – volume: 310 start-page: 411 year: 1991 end-page: 427 article-title: Connectional studies of the primate lateral geniculate nucleus: distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus publication-title: J. Comp. Neurol. – volume: 145 start-page: 179 year: 2004 end-page: 196 article-title: Acetylcholine systems and rhythmic activities during the waking–sleep cycle publication-title: Prog. Brain Res. – volume: 24 start-page: 341 year: 2004 end-page: 349 article-title: Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus publication-title: J. Neurosci. – volume: 138 start-page: 407 year: 1977 end-page: 421 article-title: Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique publication-title: Brain Res. – volume: 22 start-page: 1002 year: 2002 end-page: 1009 article-title: Electrical synapses in the thalamic reticular nucleus publication-title: J. Neurosci. – volume: 5 start-page: e10382 year: 2016 article-title: Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep publication-title: eLife – volume: 34 start-page: 14463 year: 2014 end-page: 14474 article-title: Mechanisms underlying desynchronization of cholinergic‐evoked thalamic network activity publication-title: J. Neurosci. – volume: 81 start-page: 4586 year: 1984 end-page: 4590 article-title: Function of the thalamic reticular complex: the searchlight hypothesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 857 year: 2007 end-page: 874 article-title: First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys ( ) publication-title: Visual Neurosci. – volume: 135 start-page: 1325 year: 2005 end-page: 1342 article-title: Topography of projections from the primary and non‐primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat publication-title: Neuroscience – volume: 7 start-page: e45717 year: 2012 article-title: Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus publication-title: PLoS ONE – volume: 262 start-page: 105 year: 1987 end-page: 124 article-title: The origins of cholinergic and other subcortical afferents to the thalamus in the rat publication-title: J. Comp. Neurol. – volume: 46 start-page: 1 year: 2004 end-page: 31 article-title: The thalamic reticular nucleus: structure, function and concept publication-title: Brain Res. Rev. – volume: 2 start-page: 216 year: 1970 end-page: 239 article-title: Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month publication-title: Dev. Psychobiol. – volume: 354 start-page: 39 year: 1985 end-page: 47 article-title: Early postnatal development of EEG and sleep‐waking cycle in two inbred mouse strains publication-title: Brain Res. – volume: 3 start-page: 1089 year: 1991 end-page: 1103 article-title: The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in galago publication-title: Eur. J. Neurosci. – volume: 35 start-page: 3652 year: 2015 end-page: 3662 article-title: Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement publication-title: J. Neurosci. – volume: 39 start-page: 680 year: 2016 end-page: 693 article-title: Thalamic inhibition: diverse sources, diverse scales publication-title: Trends Neurosci. – volume: 21 start-page: 28 year: 1998 end-page: 32 article-title: Paying attention to the thalamic reticular nucleus publication-title: Trends Neurosci. – volume: 19 start-page: 2130 year: 2017 end-page: 2142 article-title: Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms publication-title: Cell Rep. – volume: 48 start-page: 465 year: 2005 end-page: 477 article-title: A comparison of experience‐dependent plasticity in the visual and somatosensory systems publication-title: Neuron – volume: 1 year: 2007 – volume: 13 start-page: 133 year: 2010 end-page: 140 article-title: A robust and high‐throughput cre reporting and characterization system for the whole mouse brain publication-title: Nat. Neurosci. – volume: 22 start-page: 661 year: 2005 end-page: 676 article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse publication-title: Visual Neurosci. – volume: 9 start-page: 83 year: 2015 article-title: Thalamic circuit mechanisms link sensory processing in sleep and attention publication-title: Front. Neural. Circuit. – volume: 3 start-page: 1101 year: 1992 end-page: 1104 article-title: Muscarinic inhibition of reticular thalamic cells by basal forebrain neurones publication-title: NeuroReport – volume: 33 start-page: 10085 year: 2013 end-page: 10097 article-title: Retinal input regulates the timing of corticogeniculate innervation publication-title: J. Neurosci. – year: 1991 – volume: 4 start-page: 1352 year: 1992a end-page: 1361 article-title: The somatotopic organization within the cat's thalamic reticular nucleus publication-title: Eur. J. Neurosci. – volume: 25 start-page: 17 year: 2007 end-page: 30 article-title: Visualization of corticofugal projections during early cortical development in a τ‐GFP‐transgenic mouse publication-title: Eur. J. Neurosci. – volume: 408 start-page: 372 year: 1987 end-page: 376 article-title: Cholinergic and non‐cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei publication-title: Brain Res. – ident: e_1_2_10_57_1 doi: 10.1523/JNEUROSCI.1903-16.2016 – ident: e_1_2_10_8_1 doi: 10.1111/j.1460-9568.1991.tb00044.x – ident: e_1_2_10_11_1 doi: 10.1523/JNEUROSCI.22-19-08754.2002 – ident: e_1_2_10_18_1 doi: 10.1016/j.neuron.2016.10.024 – ident: e_1_2_10_19_1 doi: 10.1016/j.neuron.2005.10.013 – ident: e_1_2_10_48_1 doi: 10.7554/eLife.10382 – ident: e_1_2_10_58_1 doi: 10.1016/S0079-6123(03)45013-9 – ident: e_1_2_10_34_1 doi: 10.1371/journal.pone.0045717 – ident: e_1_2_10_23_1 doi: 10.1002/cne.902620109 – ident: e_1_2_10_50_1 doi: 10.1016/0959-4388(94)90054-X – ident: e_1_2_10_44_1 doi: 10.1002/cne.903380407 – ident: e_1_2_10_61_1 doi: 10.1038/nature15398 – ident: e_1_2_10_52_1 doi: 10.1016/j.brainresrev.2004.04.008 – ident: e_1_2_10_20_1 doi: 10.1002/cne.10738 – ident: e_1_2_10_25_1 doi: 10.1002/cne.903100310 – ident: e_1_2_10_5_1 doi: 10.1016/j.biopsych.2014.12.017 – ident: e_1_2_10_32_1 doi: 10.1016/0006-8993(89)90115-7 – ident: e_1_2_10_59_1 doi: 10.1016/0006-8993(87)90408-2 – ident: e_1_2_10_43_1 doi: 10.1053/smrv.2002.0243 – ident: e_1_2_10_62_1 doi: 10.1016/0361-9230(86)90134-6 – ident: e_1_2_10_45_1 doi: 10.1016/0166-2236(95)93935-Q – ident: e_1_2_10_21_1 doi: 10.1016/S0166-2236(97)01157-0 – ident: e_1_2_10_47_1 doi: 10.1016/0006-8993(77)90681-3 – ident: e_1_2_10_22_1 doi: 10.1016/j.tins.2016.08.001 – ident: e_1_2_10_12_1 doi: 10.1073/pnas.81.14.4586 – ident: e_1_2_10_36_1 doi: 10.1111/ejn.12545 – ident: e_1_2_10_37_1 doi: 10.1016/j.neuroscience.2005.06.089 – ident: e_1_2_10_24_1 doi: 10.1016/j.cub.2014.02.011 – volume-title: The Thalamus year: 2007 ident: e_1_2_10_31_1 contributor: fullname: Jones E.G. – ident: e_1_2_10_49_1 doi: 10.1007/BF01217752 – ident: e_1_2_10_26_1 doi: 10.1002/cne.10219 – ident: e_1_2_10_38_1 doi: 10.1523/JNEUROSCI.1405-16.2016 – ident: e_1_2_10_30_1 doi: 10.1002/cne.901620302 – volume-title: Neocortical Development year: 1991 ident: e_1_2_10_3_1 contributor: fullname: Bayer S.A. – ident: e_1_2_10_6_1 doi: 10.1016/j.celrep.2017.05.044 – ident: e_1_2_10_7_1 doi: 10.1111/j.1460-9568.1996.tb01222.x – ident: e_1_2_10_39_1 doi: 10.1523/JNEUROSCI.22-03-01002.2002 – ident: e_1_2_10_13_1 doi: 10.1016/0165-3806(85)90066-5 – volume-title: The mouse brain in stereotaxic coordinates year: 2004 ident: e_1_2_10_51_1 contributor: fullname: Paxinos G. – ident: e_1_2_10_17_1 doi: 10.1017/S0952523807070770 – ident: e_1_2_10_29_1 doi: 10.1017/S0952523805225154 – ident: e_1_2_10_16_1 doi: 10.1523/JNEUROSCI.2343-14.2015 – ident: e_1_2_10_35_1 doi: 10.1016/j.tins.2006.05.007 – ident: e_1_2_10_28_1 doi: 10.1111/j.1460-9568.2006.05258.x – ident: e_1_2_10_10_1 doi: 10.1111/j.1460-9568.1992.tb00159.x – ident: e_1_2_10_15_1 doi: 10.1113/jphysiol.2010.202499 – ident: e_1_2_10_53_1 doi: 10.1097/00001756-199212000-00017 – ident: e_1_2_10_9_1 doi: 10.1111/j.1460-9568.1992.tb00160.x – volume: 9 start-page: 83 year: 2015 ident: e_1_2_10_4_1 article-title: Thalamic circuit mechanisms link sensory processing in sleep and attention publication-title: Front. Neural. Circuit. contributor: fullname: Chen Z. – ident: e_1_2_10_55_1 doi: 10.1002/cne.903460106 – ident: e_1_2_10_2_1 doi: 10.1017/S1472928807000167 – ident: e_1_2_10_42_1 doi: 10.1038/nn.3078 – ident: e_1_2_10_60_1 doi: 10.1523/JNEUROSCI.3177-12.2013 – ident: e_1_2_10_40_1 doi: 10.1523/JNEUROSCI.3358-03.2004 – ident: e_1_2_10_27_1 doi: 10.1016/0306-4522(89)90026-2 – ident: e_1_2_10_33_1 doi: 10.1002/dev.420020407 – ident: e_1_2_10_46_1 doi: 10.1093/cercor/13.6.661 – ident: e_1_2_10_56_1 doi: 10.1523/JNEUROSCI.5271-12.2013 – ident: e_1_2_10_41_1 doi: 10.1038/nn.2467 – ident: e_1_2_10_54_1 doi: 10.1523/JNEUROSCI.2321-14.2014 – ident: e_1_2_10_14_1 doi: 10.1016/j.neuron.2006.03.033 |
SSID | ssj0008645 |
Score | 2.4303367 |
Snippet | The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN... The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN... The thalamic reticular nucleus ( TRN ), a shell‐like structure comprised of GABA ergic neurons, gates signal transmission between thalamus and cortex. While... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 978 |
SubjectTerms | acetylcholine Acetylcholine receptors (muscarinic) Arousal Axon collaterals Basal forebrain Brain stem brainstem Cerebral cortex Cortex (somatosensory) Forebrain Innervation muscarinic Neural networks Neurons nicotinic Sleep and wakefulness Synaptogenesis Thalamic reticular nucleus Thalamus Visual cortex Visual pathways γ-Aminobutyric acid |
Title | Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13942 https://www.ncbi.nlm.nih.gov/pubmed/29761601 https://www.proquest.com/docview/2331794440 https://search.proquest.com/docview/2039295959 https://pubmed.ncbi.nlm.nih.gov/PMC6433540 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ui158P6qrRBHxUmmb9IUnWVfEgwgq6KmkSYormhV39-C_dybdVhcRBCkthaY0zTSTb6Yz3wAcVglPhZK5L2M8iIArX-ZK-FqUqBl0WeWu8tzlbXr9kJ33iCbntMmFqfkhWocbzQynr2mCy3L4bZKbZ3uC8EWQ_kUrwaVv8JtWC2eJK1BMdGp-FiYPE1YhiuJp75xei34AzJ9xkt_xq1uALpb-1fVlWJzgTnZWfygrMGPsKqydWbS5Xz_YEXORoM7Fvgrz3aYK3Bo8UjVfSz4epr_ii9igYqQ3XeZgX7G-fRuP2GjAEE7iLl-oyj1zCZIU5sossSaPh3QbtSB3g1mH-4veXffSn5Rj8JUQHE3WPIkqLnNJuauI-4yQujKpDiVPpRKqUibKjE4DUZaZToTRUiWILqMcpV-lGd-AOTuwZgtYHsYlGWYhwhHit88qibAFbWWhgzgqYw8OGsEUbzXrRtFYKzh4hRs8DzqNyIrJxBsWEeekYoQIPNhvL-OY0X8QaQ2-XxEFBApj3DzYrCXcPiVCeBZixzxIp2TfNiA67ukrtv_kaLkR25ETzYNjJ_vfO170rq7dyfbfm-7AAkK1vI4Z6sDc6H1sdmF2qMd77rv_BN97Bl0 |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58HPSy63uz66MVES-RJN15gRfRkfE1CCroKXS6O-wsuz2yM3PYf79VnUl0EEGQIcNAOqTT1VX5qqbqK4D9KuGpUDL3ZYxfIuDKl7kSvhYlWgZdVrnrPNe9S3uP2VmHaHKOm1qYmh-iDbiRZjh7TQpOAelXWm5-2SPELwIN8LxIcCNSAQe_be1wlrgWxUSo5mdh8jjhFaI8nvbS6bfRG4j5NlPyNYJ1r6Dzr5-b_BJ8mUBPdlLvlWWYMXYFVk8sut1__rED5pJBXZR9BRZOm0Zwq_BEDX0thXmYfkkxYoOKkel0xYN9xfr2eTxiowFDRImH_E2N7pmrkaRMV2aJOHk8pMtoBEUczBo8nHfuT7v-pCODr4Tg6LXmSVRxmUsqX0XoZ4TUlUl1KHkqlVCVMlFmdBqIssx0IoyWKkGAGeW4Aao04-swZwfWfAOWh3FJvlmIiIQo7rNKInJBd1noII7K2IO9RjLFc028UTQOCy5e4RbPg81GZsVE94ZFxDlZGSECD3bb07hm9FeItAafr4gCwoUxfjzYqEXc3iVChBbixDxIp4TfDiBG7ukztv_TMXMjvKM4mgeHTvjvT7zoXPbcj-8fH7oDC937m-vi-qJ39QMWEbnldQrRJsyN_o7NFswO9XjbKcF_YHsKhQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0BO2L1asf0aprEfElJcluvuhTae-othwHbaE-hc1-4EndO7y7B_97ZzaX9I5DKEhICGRDNjuZ2d9MZn8D8MlmPBdKlqFM8SAirkJZKhFqUaNl0LUtfeW5s8t8dFOcDogm56hdC9PwQ3QBN9IMb69JwWfarim5-ekOEb4ItL-PBMJwIs7nfNyZ4SLzFYqJTy0s4uxmRStEaTzdrZuT0RbC3E6UXAewfgYa7v5X35_B0xXwZMfNl_IcHhjXh71jh073rz_sM_OpoD7G3ocnJ20ZuD34TuV8HQV5mL5LMGJTy8hw-qWDE8UmbrZcsMWUIZ7EXd5SmXvmV0hSnitzRJu8nNNt1ILiDeYFXA8HVydn4aoeQ6iE4OizllliuSwlLV5F4GeE1NbkOpY8l0ooq0xSGJ1Hoq4LnQmjpcoQXiYlit_mBX8JPTd15jWwMk5r8sxixCNEcF9YibgFnWWhozSp0wAOWsFUs4Z2o2rdFRy8yg9eAPutyKqV5s2rhHOyMUJEAXzsLuOY0Y8Q6Qy-X5VEhApT3AJ41Ui4e0qC-CzGjgWQb8i-a0B83JtX3OSH5-VGcEdRtAC-eNn_u-PV4NvIn7y5f9MP8Hh8Oqwuvo7O38IOwrayyR_ah97i99K8g4dzvXzvVeAvIbUJKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postnatal+development+of+cholinergic+input+to+the+thalamic+reticular+nucleus+of+the+mouse&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Sokhadze%2C+Guela&rft.au=Campbell%2C+Peter+W.&rft.au=Guido%2C+William&rft.date=2019-04-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=49&rft.issue=8&rft.spage=978&rft.epage=989&rft_id=info:doi/10.1111%2Fejn.13942&rft.externalDBID=10.1111%252Fejn.13942&rft.externalDocID=EJN13942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |