Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse

The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during differe...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience Vol. 49; no. 8; pp. 978 - 989
Main Authors: Sokhadze, Guela, Campbell, Peter W., Guido, William
Format: Journal Article
Language:English
Published: France Wiley Subscription Services, Inc 01-04-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral‐to‐dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult‐like biphasic responses seen during week 4.
AbstractList The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral‐to‐dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult‐like biphasic responses seen during week 4.
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with non-visual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in non-visual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of non-visual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex. We examined the postnatal development of cholinergic projections to the mouse thalamic reticular nucleus (TRN) and found that both anatomical and functional patterns of connectivity follow a ventral to dorsal gradient, with nonvisual sectors innervated prior to the visual sector of TRN. These results also indicate that modulation of TRN activity by cholinergic input emerges during postnatal week 2, with adult-like biphasic responses seen during week 4.
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3-4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
The thalamic reticular nucleus ( TRN ), a shell‐like structure comprised of GABA ergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep‐wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin‐2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN . Cholinergic innervation of TRN follows a ventral‐to‐dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3–4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long‐lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
Author Sokhadze, Guela
Campbell, Peter W.
Guido, William
Author_xml – sequence: 1
  givenname: Guela
  surname: Sokhadze
  fullname: Sokhadze, Guela
  organization: University of Louisville School of Medicine
– sequence: 2
  givenname: Peter W.
  surname: Campbell
  fullname: Campbell, Peter W.
  organization: University of Louisville School of Medicine
– sequence: 3
  givenname: William
  orcidid: 0000-0002-9028-1015
  surname: Guido
  fullname: Guido, William
  email: William.Guido@louisville.edu
  organization: University of Louisville School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29761601$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1LHDEUhoNY6mq98A-Ugd7Yi9F8TTK5KRSxfiC2Fy3Uq5DNnHGzZJJtMqP47826Km3BhBBInvNwDu8u2g4xAEIHBB-Rso5hGY4IU5xuoRnhAteqEe02mmHVsLol4vcO2s15iTFuBW_eox2qpCACkxm6-RHzGMxofNXBHfi4GiCMVewru4jeBUi3zlYurKaxGmM1LqAc481QXhOMzk7epCpM1sOU12VrYohThg_oXW98hv3new_9-nb68-S8vvp-dnHy9aq2nDNaN0rQnhllBJeSKAbcdD3IjhgmjeW2t0Bb6CTm83nbCQ6dsUJKTpVRtpct20NfNt7VNB-gs6X9ZLxeJTeY9KCjcfrfn-AW-jbeacEZazgugsNnQYp_JsijHly24L0JUAbRFDNFVVN2QT_9hy7jlEIZT1PGiFScPwk_byibYs4J-tdmCNbrwHQJTD8FVtiPf3f_Sr4kVIDjDXDvPDy8bdKnl9cb5SOiVKOD
CitedBy_id crossref_primary_10_1016_j_neubiorev_2023_105332
crossref_primary_10_1111_ejn_14419
crossref_primary_10_1186_s13064_024_00183_5
crossref_primary_10_1523_ENEURO_0386_22_2022
crossref_primary_10_1002_cne_25248
crossref_primary_10_1002_cne_24952
crossref_primary_10_1152_jn_00757_2019
crossref_primary_10_1371_journal_pbio_3002614
crossref_primary_10_1016_j_cortex_2023_02_002
crossref_primary_10_1523_ENEURO_0454_19_2019
crossref_primary_10_7554_eLife_61437
crossref_primary_10_1007_s12035_018_1365_5
crossref_primary_10_1016_j_neuron_2021_06_026
crossref_primary_10_1007_s12021_024_09658_6
crossref_primary_10_1016_j_brainres_2018_10_024
crossref_primary_10_1093_cercor_bhaa045
Cites_doi 10.1523/JNEUROSCI.1903-16.2016
10.1111/j.1460-9568.1991.tb00044.x
10.1523/JNEUROSCI.22-19-08754.2002
10.1016/j.neuron.2016.10.024
10.1016/j.neuron.2005.10.013
10.7554/eLife.10382
10.1016/S0079-6123(03)45013-9
10.1371/journal.pone.0045717
10.1002/cne.902620109
10.1016/0959-4388(94)90054-X
10.1002/cne.903380407
10.1038/nature15398
10.1016/j.brainresrev.2004.04.008
10.1002/cne.10738
10.1002/cne.903100310
10.1016/j.biopsych.2014.12.017
10.1016/0006-8993(89)90115-7
10.1016/0006-8993(87)90408-2
10.1053/smrv.2002.0243
10.1016/0361-9230(86)90134-6
10.1016/0166-2236(95)93935-Q
10.1016/S0166-2236(97)01157-0
10.1016/0006-8993(77)90681-3
10.1016/j.tins.2016.08.001
10.1073/pnas.81.14.4586
10.1111/ejn.12545
10.1016/j.neuroscience.2005.06.089
10.1016/j.cub.2014.02.011
10.1007/BF01217752
10.1002/cne.10219
10.1523/JNEUROSCI.1405-16.2016
10.1002/cne.901620302
10.1016/j.celrep.2017.05.044
10.1111/j.1460-9568.1996.tb01222.x
10.1523/JNEUROSCI.22-03-01002.2002
10.1016/0165-3806(85)90066-5
10.1017/S0952523807070770
10.1017/S0952523805225154
10.1523/JNEUROSCI.2343-14.2015
10.1016/j.tins.2006.05.007
10.1111/j.1460-9568.2006.05258.x
10.1111/j.1460-9568.1992.tb00159.x
10.1113/jphysiol.2010.202499
10.1097/00001756-199212000-00017
10.1111/j.1460-9568.1992.tb00160.x
10.1002/cne.903460106
10.1017/S1472928807000167
10.1038/nn.3078
10.1523/JNEUROSCI.3177-12.2013
10.1523/JNEUROSCI.3358-03.2004
10.1016/0306-4522(89)90026-2
10.1002/dev.420020407
10.1093/cercor/13.6.661
10.1523/JNEUROSCI.5271-12.2013
10.1038/nn.2467
10.1523/JNEUROSCI.2321-14.2014
10.1016/j.neuron.2006.03.033
ContentType Journal Article
Copyright 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1111/ejn.13942
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Chemoreception Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 989
ExternalDocumentID 10_1111_ejn_13942
29761601
EJN13942
Genre article
Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: F30 EY026792
– fundername: NEI NIH HHS
  grantid: R01 EY012716
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
NPM
AAMNL
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4432-5962f3a9a6477193e4adfe7d1a37ac4cfce28ed704bb8d64edac677429a9cf783
IEDL.DBID 33P
ISSN 0953-816X
IngestDate Tue Sep 17 21:26:55 EDT 2024
Sat Aug 17 02:52:33 EDT 2024
Thu Oct 10 20:17:50 EDT 2024
Thu Nov 21 21:43:40 EST 2024
Sat Sep 28 08:26:59 EDT 2024
Sat Aug 24 01:10:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords muscarinic
brainstem
acetylcholine
nicotinic
basal forebrain
Language English
License 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-5962f3a9a6477193e4adfe7d1a37ac4cfce28ed704bb8d64edac677429a9cf783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
GS and WG were involved in all aspects of the research and writing of the manuscript. PC participated in anterograde tracing experiments and contributed to the writing of the manuscript. All authors have read and approved the final manuscript.
Author contributions
ORCID 0000-0002-9028-1015
OpenAccessLink https://europepmc.org/articles/pmc6433540?pdf=render
PMID 29761601
PQID 2331794440
PQPubID 34057
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433540
proquest_miscellaneous_2039295959
proquest_journals_2331794440
crossref_primary_10_1111_ejn_13942
pubmed_primary_29761601
wiley_primary_10_1111_ejn_13942_EJN13942
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
1987; 262
1991; 310
2010; 13
2005; 135
2015; 77
2004; 24
2003; 13
2014; 24
2012; 15
2016; 39
2005; 22
2016; 36
1970; 2
1989; 505
1992b; 4
1993; 338
1989; 31
1994; 346
2017; 37
2003; 7
2006; 29
1977; 138
2007; 1
1996; 8
2007; 24
2007; 25
1992; 3
1985; 14
2004; 145
1991; 3
1992a; 4
1996; 18
1984; 81
2006; 50
2004; 46
1986; 16
1987; 408
2004
2015; 526
2016; 92
1991
2005; 48
2015; 9
1998; 21
2011; 589
2016; 5
2013; 33
2002; 22
1985; 354
2002; 447
1975; 162
2017; 19
2005; 3
2014; 39
2012; 7
2003; 463
2014; 34
1994; 4
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Chen Z. (e_1_2_10_4_1) 2015; 9
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_50_1
Jones E.G. (e_1_2_10_31_1) 2007
Bayer S.A. (e_1_2_10_3_1) 1991
e_1_2_10_60_1
Paxinos G. (e_1_2_10_51_1) 2004
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 92
  start-page: 687
  year: 2016
  end-page: 704
  article-title: Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations
  publication-title: Neuron
– volume: 50
  start-page: 247
  year: 2006
  end-page: 259
  article-title: Failure to maintain eye‐specific segregation in nob, a mutant with abnormally patterned retinal activity
  publication-title: Neuron
– volume: 77
  start-page: 1071
  year: 2015
  end-page: 1078
  article-title: Cortical development, electroencephalogram rhythms, and the sleep/wake cycle
  publication-title: Biol. Psychiat.
– volume: 13
  start-page: 661
  year: 2003
  end-page: 669
  article-title: Choreography of early thalamic development
  publication-title: Cereb. Cortex
– volume: 18
  start-page: 389
  year: 1996
  end-page: 397
  article-title: How do thalamic axons find their way to the cortex?
  publication-title: Trends Neurosci.
– volume: 162
  start-page: 285
  year: 1975
  end-page: 308
  article-title: Some aspects of the organization of the thalamic reticular complex
  publication-title: J. Comp. Neurol.
– volume: 16
  start-page: 603
  year: 1986
  end-page: 637
  article-title: Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain
  publication-title: Brain Res. Bull.
– volume: 31
  start-page: 1
  year: 1989
  end-page: 12
  article-title: The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves
  publication-title: Neuroscience
– volume: 3
  start-page: 157
  year: 2005
  end-page: 163
  article-title: Formation of eye‐specific retinogeniculate projections occurs prior to the innervation of the dorsal lateral geniculate nucleus by cholinergic fibers
  publication-title: Thalamus Relat. Syst.
– volume: 589
  start-page: 919
  year: 2011
  end-page: 937
  article-title: Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse
  publication-title: J. Physiol.
– volume: 8
  start-page: 388
  year: 1996
  end-page: 404
  article-title: Organization of the visual reticular thalamic nucleus of the rat
  publication-title: Eur. J. Neurosci.
– volume: 447
  start-page: 8
  year: 2002
  end-page: 17
  article-title: Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other
  publication-title: J. Comp. Neurol.
– volume: 37
  start-page: 1352
  year: 2017
  end-page: 1366
  article-title: Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice
  publication-title: J. Neurosci.
– volume: 346
  start-page: 80
  year: 1994
  end-page: 96
  article-title: Early development of the somatotopic map and barrel patterning in rat somatosensory cortex
  publication-title: J. Comp. Neurol.
– volume: 505
  start-page: 55
  year: 1989
  end-page: 65
  article-title: Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat
  publication-title: Brain Res.
– volume: 526
  start-page: 705
  year: 2015
  end-page: 709
  article-title: Thalamic control of sensory selection in divided attention
  publication-title: Nature
– volume: 22
  start-page: 8754
  year: 2002
  end-page: 8761
  article-title: New intrathalamic pathways allowing modality‐related and cross‐modality switching in the dorsal thalamus
  publication-title: J. Neurosci.
– volume: 33
  start-page: 2048
  year: 2013
  end-page: 2059
  article-title: Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons
  publication-title: J. Neurosci.
– volume: 4
  start-page: 1343
  year: 1992b
  end-page: 1351
  article-title: The somatotopic organization within the rabbit's thalamic reticular nucleus
  publication-title: Eur. J. Neurosci.
– volume: 14
  start-page: 365
  year: 1985
  end-page: 411
  article-title: The thalamic reticular nucleus of the adult rat: experimental anatomical studies
  publication-title: J. Neurocytol.
– year: 2004
– volume: 463
  start-page: 360
  year: 2003
  end-page: 371
  article-title: Structure and connections of the thalamic reticular nucleus: advancing views over half a century
  publication-title: J. Comp. Neurol.
– volume: 7
  start-page: 321
  year: 2003
  end-page: 334
  article-title: Development of fetal and neonatal sleep and circadian rhythms
  publication-title: Sleep Med. Rev.
– volume: 4
  start-page: 535
  year: 1994
  end-page: 544
  article-title: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems
  publication-title: Curr. Opin. Neurobiol.
– volume: 36
  start-page: 12259
  year: 2016
  end-page: 12275
  article-title: Development of activity in the mouse visual Cortex
  publication-title: J. Neurosci.
– volume: 24
  start-page: 693
  year: 2014
  end-page: 698
  article-title: Selective activation of cholinergic basal forebrain neurons induces immediate sleep‐wake transitions
  publication-title: Curr. Biol.
– volume: 338
  start-page: 575
  year: 1993
  end-page: 587
  article-title: Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons
  publication-title: J. Comp. Neurol.
– volume: 39
  start-page: 1405
  year: 2014
  end-page: 1418
  article-title: Diverse subthreshold cross‐modal sensory interactions in the thalamic reticular nucleus: implications for new pathways of cross‐modal attentional gating function
  publication-title: Eur. J. Neurosci.
– volume: 15
  start-page: 793
  year: 2012
  end-page: 802
  article-title: A toolbox of cre‐dependent optogenetic transgenic mice for light‐induced activation and silencing
  publication-title: Nat. Neurosci.
– volume: 29
  start-page: 414
  year: 2006
  end-page: 418
  article-title: Early patterns of electrical activity in the developing cerebral cortex of humans and rodents
  publication-title: Trends Neurosci.
– volume: 310
  start-page: 411
  year: 1991
  end-page: 427
  article-title: Connectional studies of the primate lateral geniculate nucleus: distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus
  publication-title: J. Comp. Neurol.
– volume: 145
  start-page: 179
  year: 2004
  end-page: 196
  article-title: Acetylcholine systems and rhythmic activities during the waking–sleep cycle
  publication-title: Prog. Brain Res.
– volume: 24
  start-page: 341
  year: 2004
  end-page: 349
  article-title: Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus
  publication-title: J. Neurosci.
– volume: 138
  start-page: 407
  year: 1977
  end-page: 421
  article-title: Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique
  publication-title: Brain Res.
– volume: 22
  start-page: 1002
  year: 2002
  end-page: 1009
  article-title: Electrical synapses in the thalamic reticular nucleus
  publication-title: J. Neurosci.
– volume: 5
  start-page: e10382
  year: 2016
  article-title: Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep
  publication-title: eLife
– volume: 34
  start-page: 14463
  year: 2014
  end-page: 14474
  article-title: Mechanisms underlying desynchronization of cholinergic‐evoked thalamic network activity
  publication-title: J. Neurosci.
– volume: 81
  start-page: 4586
  year: 1984
  end-page: 4590
  article-title: Function of the thalamic reticular complex: the searchlight hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 857
  year: 2007
  end-page: 874
  article-title: First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys ( )
  publication-title: Visual Neurosci.
– volume: 135
  start-page: 1325
  year: 2005
  end-page: 1342
  article-title: Topography of projections from the primary and non‐primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat
  publication-title: Neuroscience
– volume: 7
  start-page: e45717
  year: 2012
  article-title: Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus
  publication-title: PLoS ONE
– volume: 262
  start-page: 105
  year: 1987
  end-page: 124
  article-title: The origins of cholinergic and other subcortical afferents to the thalamus in the rat
  publication-title: J. Comp. Neurol.
– volume: 46
  start-page: 1
  year: 2004
  end-page: 31
  article-title: The thalamic reticular nucleus: structure, function and concept
  publication-title: Brain Res. Rev.
– volume: 2
  start-page: 216
  year: 1970
  end-page: 239
  article-title: Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month
  publication-title: Dev. Psychobiol.
– volume: 354
  start-page: 39
  year: 1985
  end-page: 47
  article-title: Early postnatal development of EEG and sleep‐waking cycle in two inbred mouse strains
  publication-title: Brain Res.
– volume: 3
  start-page: 1089
  year: 1991
  end-page: 1103
  article-title: The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in galago
  publication-title: Eur. J. Neurosci.
– volume: 35
  start-page: 3652
  year: 2015
  end-page: 3662
  article-title: Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement
  publication-title: J. Neurosci.
– volume: 39
  start-page: 680
  year: 2016
  end-page: 693
  article-title: Thalamic inhibition: diverse sources, diverse scales
  publication-title: Trends Neurosci.
– volume: 21
  start-page: 28
  year: 1998
  end-page: 32
  article-title: Paying attention to the thalamic reticular nucleus
  publication-title: Trends Neurosci.
– volume: 19
  start-page: 2130
  year: 2017
  end-page: 2142
  article-title: Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms
  publication-title: Cell Rep.
– volume: 48
  start-page: 465
  year: 2005
  end-page: 477
  article-title: A comparison of experience‐dependent plasticity in the visual and somatosensory systems
  publication-title: Neuron
– volume: 1
  year: 2007
– volume: 13
  start-page: 133
  year: 2010
  end-page: 140
  article-title: A robust and high‐throughput cre reporting and characterization system for the whole mouse brain
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 661
  year: 2005
  end-page: 676
  article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse
  publication-title: Visual Neurosci.
– volume: 9
  start-page: 83
  year: 2015
  article-title: Thalamic circuit mechanisms link sensory processing in sleep and attention
  publication-title: Front. Neural. Circuit.
– volume: 3
  start-page: 1101
  year: 1992
  end-page: 1104
  article-title: Muscarinic inhibition of reticular thalamic cells by basal forebrain neurones
  publication-title: NeuroReport
– volume: 33
  start-page: 10085
  year: 2013
  end-page: 10097
  article-title: Retinal input regulates the timing of corticogeniculate innervation
  publication-title: J. Neurosci.
– year: 1991
– volume: 4
  start-page: 1352
  year: 1992a
  end-page: 1361
  article-title: The somatotopic organization within the cat's thalamic reticular nucleus
  publication-title: Eur. J. Neurosci.
– volume: 25
  start-page: 17
  year: 2007
  end-page: 30
  article-title: Visualization of corticofugal projections during early cortical development in a τ‐GFP‐transgenic mouse
  publication-title: Eur. J. Neurosci.
– volume: 408
  start-page: 372
  year: 1987
  end-page: 376
  article-title: Cholinergic and non‐cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei
  publication-title: Brain Res.
– ident: e_1_2_10_57_1
  doi: 10.1523/JNEUROSCI.1903-16.2016
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1460-9568.1991.tb00044.x
– ident: e_1_2_10_11_1
  doi: 10.1523/JNEUROSCI.22-19-08754.2002
– ident: e_1_2_10_18_1
  doi: 10.1016/j.neuron.2016.10.024
– ident: e_1_2_10_19_1
  doi: 10.1016/j.neuron.2005.10.013
– ident: e_1_2_10_48_1
  doi: 10.7554/eLife.10382
– ident: e_1_2_10_58_1
  doi: 10.1016/S0079-6123(03)45013-9
– ident: e_1_2_10_34_1
  doi: 10.1371/journal.pone.0045717
– ident: e_1_2_10_23_1
  doi: 10.1002/cne.902620109
– ident: e_1_2_10_50_1
  doi: 10.1016/0959-4388(94)90054-X
– ident: e_1_2_10_44_1
  doi: 10.1002/cne.903380407
– ident: e_1_2_10_61_1
  doi: 10.1038/nature15398
– ident: e_1_2_10_52_1
  doi: 10.1016/j.brainresrev.2004.04.008
– ident: e_1_2_10_20_1
  doi: 10.1002/cne.10738
– ident: e_1_2_10_25_1
  doi: 10.1002/cne.903100310
– ident: e_1_2_10_5_1
  doi: 10.1016/j.biopsych.2014.12.017
– ident: e_1_2_10_32_1
  doi: 10.1016/0006-8993(89)90115-7
– ident: e_1_2_10_59_1
  doi: 10.1016/0006-8993(87)90408-2
– ident: e_1_2_10_43_1
  doi: 10.1053/smrv.2002.0243
– ident: e_1_2_10_62_1
  doi: 10.1016/0361-9230(86)90134-6
– ident: e_1_2_10_45_1
  doi: 10.1016/0166-2236(95)93935-Q
– ident: e_1_2_10_21_1
  doi: 10.1016/S0166-2236(97)01157-0
– ident: e_1_2_10_47_1
  doi: 10.1016/0006-8993(77)90681-3
– ident: e_1_2_10_22_1
  doi: 10.1016/j.tins.2016.08.001
– ident: e_1_2_10_12_1
  doi: 10.1073/pnas.81.14.4586
– ident: e_1_2_10_36_1
  doi: 10.1111/ejn.12545
– ident: e_1_2_10_37_1
  doi: 10.1016/j.neuroscience.2005.06.089
– ident: e_1_2_10_24_1
  doi: 10.1016/j.cub.2014.02.011
– volume-title: The Thalamus
  year: 2007
  ident: e_1_2_10_31_1
  contributor:
    fullname: Jones E.G.
– ident: e_1_2_10_49_1
  doi: 10.1007/BF01217752
– ident: e_1_2_10_26_1
  doi: 10.1002/cne.10219
– ident: e_1_2_10_38_1
  doi: 10.1523/JNEUROSCI.1405-16.2016
– ident: e_1_2_10_30_1
  doi: 10.1002/cne.901620302
– volume-title: Neocortical Development
  year: 1991
  ident: e_1_2_10_3_1
  contributor:
    fullname: Bayer S.A.
– ident: e_1_2_10_6_1
  doi: 10.1016/j.celrep.2017.05.044
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1460-9568.1996.tb01222.x
– ident: e_1_2_10_39_1
  doi: 10.1523/JNEUROSCI.22-03-01002.2002
– ident: e_1_2_10_13_1
  doi: 10.1016/0165-3806(85)90066-5
– volume-title: The mouse brain in stereotaxic coordinates
  year: 2004
  ident: e_1_2_10_51_1
  contributor:
    fullname: Paxinos G.
– ident: e_1_2_10_17_1
  doi: 10.1017/S0952523807070770
– ident: e_1_2_10_29_1
  doi: 10.1017/S0952523805225154
– ident: e_1_2_10_16_1
  doi: 10.1523/JNEUROSCI.2343-14.2015
– ident: e_1_2_10_35_1
  doi: 10.1016/j.tins.2006.05.007
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1460-9568.2006.05258.x
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1460-9568.1992.tb00159.x
– ident: e_1_2_10_15_1
  doi: 10.1113/jphysiol.2010.202499
– ident: e_1_2_10_53_1
  doi: 10.1097/00001756-199212000-00017
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1460-9568.1992.tb00160.x
– volume: 9
  start-page: 83
  year: 2015
  ident: e_1_2_10_4_1
  article-title: Thalamic circuit mechanisms link sensory processing in sleep and attention
  publication-title: Front. Neural. Circuit.
  contributor:
    fullname: Chen Z.
– ident: e_1_2_10_55_1
  doi: 10.1002/cne.903460106
– ident: e_1_2_10_2_1
  doi: 10.1017/S1472928807000167
– ident: e_1_2_10_42_1
  doi: 10.1038/nn.3078
– ident: e_1_2_10_60_1
  doi: 10.1523/JNEUROSCI.3177-12.2013
– ident: e_1_2_10_40_1
  doi: 10.1523/JNEUROSCI.3358-03.2004
– ident: e_1_2_10_27_1
  doi: 10.1016/0306-4522(89)90026-2
– ident: e_1_2_10_33_1
  doi: 10.1002/dev.420020407
– ident: e_1_2_10_46_1
  doi: 10.1093/cercor/13.6.661
– ident: e_1_2_10_56_1
  doi: 10.1523/JNEUROSCI.5271-12.2013
– ident: e_1_2_10_41_1
  doi: 10.1038/nn.2467
– ident: e_1_2_10_54_1
  doi: 10.1523/JNEUROSCI.2321-14.2014
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neuron.2006.03.033
SSID ssj0008645
Score 2.4303367
Snippet The thalamic reticular nucleus (TRN), a shell‐like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN...
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN...
The thalamic reticular nucleus ( TRN ), a shell‐like structure comprised of GABA ergic neurons, gates signal transmission between thalamus and cortex. While...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 978
SubjectTerms acetylcholine
Acetylcholine receptors (muscarinic)
Arousal
Axon collaterals
Basal forebrain
Brain stem
brainstem
Cerebral cortex
Cortex (somatosensory)
Forebrain
Innervation
muscarinic
Neural networks
Neurons
nicotinic
Sleep and wakefulness
Synaptogenesis
Thalamic reticular nucleus
Thalamus
Visual cortex
Visual pathways
γ-Aminobutyric acid
Title Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13942
https://www.ncbi.nlm.nih.gov/pubmed/29761601
https://www.proquest.com/docview/2331794440
https://search.proquest.com/docview/2039295959
https://pubmed.ncbi.nlm.nih.gov/PMC6433540
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ui158P6qrRBHxUmmb9IUnWVfEgwgq6KmkSYormhV39-C_dybdVhcRBCkthaY0zTSTb6Yz3wAcVglPhZK5L2M8iIArX-ZK-FqUqBl0WeWu8tzlbXr9kJ33iCbntMmFqfkhWocbzQynr2mCy3L4bZKbZ3uC8EWQ_kUrwaVv8JtWC2eJK1BMdGp-FiYPE1YhiuJp75xei34AzJ9xkt_xq1uALpb-1fVlWJzgTnZWfygrMGPsKqydWbS5Xz_YEXORoM7Fvgrz3aYK3Bo8UjVfSz4epr_ii9igYqQ3XeZgX7G-fRuP2GjAEE7iLl-oyj1zCZIU5sossSaPh3QbtSB3g1mH-4veXffSn5Rj8JUQHE3WPIkqLnNJuauI-4yQujKpDiVPpRKqUibKjE4DUZaZToTRUiWILqMcpV-lGd-AOTuwZgtYHsYlGWYhwhHit88qibAFbWWhgzgqYw8OGsEUbzXrRtFYKzh4hRs8DzqNyIrJxBsWEeekYoQIPNhvL-OY0X8QaQ2-XxEFBApj3DzYrCXcPiVCeBZixzxIp2TfNiA67ukrtv_kaLkR25ETzYNjJ_vfO170rq7dyfbfm-7AAkK1vI4Z6sDc6H1sdmF2qMd77rv_BN97Bl0
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58HPSy63uz66MVES-RJN15gRfRkfE1CCroKXS6O-wsuz2yM3PYf79VnUl0EEGQIcNAOqTT1VX5qqbqK4D9KuGpUDL3ZYxfIuDKl7kSvhYlWgZdVrnrPNe9S3uP2VmHaHKOm1qYmh-iDbiRZjh7TQpOAelXWm5-2SPELwIN8LxIcCNSAQe_be1wlrgWxUSo5mdh8jjhFaI8nvbS6bfRG4j5NlPyNYJ1r6Dzr5-b_BJ8mUBPdlLvlWWYMXYFVk8sut1__rED5pJBXZR9BRZOm0Zwq_BEDX0thXmYfkkxYoOKkel0xYN9xfr2eTxiowFDRImH_E2N7pmrkaRMV2aJOHk8pMtoBEUczBo8nHfuT7v-pCODr4Tg6LXmSVRxmUsqX0XoZ4TUlUl1KHkqlVCVMlFmdBqIssx0IoyWKkGAGeW4Aao04-swZwfWfAOWh3FJvlmIiIQo7rNKInJBd1noII7K2IO9RjLFc028UTQOCy5e4RbPg81GZsVE94ZFxDlZGSECD3bb07hm9FeItAafr4gCwoUxfjzYqEXc3iVChBbixDxIp4TfDiBG7ukztv_TMXMjvKM4mgeHTvjvT7zoXPbcj-8fH7oDC937m-vi-qJ39QMWEbnldQrRJsyN_o7NFswO9XjbKcF_YHsKhQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0BO2L1asf0aprEfElJcluvuhTae-othwHbaE-hc1-4EndO7y7B_97ZzaX9I5DKEhICGRDNjuZ2d9MZn8D8MlmPBdKlqFM8SAirkJZKhFqUaNl0LUtfeW5s8t8dFOcDogm56hdC9PwQ3QBN9IMb69JwWfarim5-ekOEb4ItL-PBMJwIs7nfNyZ4SLzFYqJTy0s4uxmRStEaTzdrZuT0RbC3E6UXAewfgYa7v5X35_B0xXwZMfNl_IcHhjXh71jh073rz_sM_OpoD7G3ocnJ20ZuD34TuV8HQV5mL5LMGJTy8hw-qWDE8UmbrZcsMWUIZ7EXd5SmXvmV0hSnitzRJu8nNNt1ILiDeYFXA8HVydn4aoeQ6iE4OizllliuSwlLV5F4GeE1NbkOpY8l0ooq0xSGJ1Hoq4LnQmjpcoQXiYlit_mBX8JPTd15jWwMk5r8sxixCNEcF9YibgFnWWhozSp0wAOWsFUs4Z2o2rdFRy8yg9eAPutyKqV5s2rhHOyMUJEAXzsLuOY0Y8Q6Qy-X5VEhApT3AJ41Ui4e0qC-CzGjgWQb8i-a0B83JtX3OSH5-VGcEdRtAC-eNn_u-PV4NvIn7y5f9MP8Hh8Oqwuvo7O38IOwrayyR_ah97i99K8g4dzvXzvVeAvIbUJKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postnatal+development+of+cholinergic+input+to+the+thalamic+reticular+nucleus+of+the+mouse&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Sokhadze%2C+Guela&rft.au=Campbell%2C+Peter+W.&rft.au=Guido%2C+William&rft.date=2019-04-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=49&rft.issue=8&rft.spage=978&rft.epage=989&rft_id=info:doi/10.1111%2Fejn.13942&rft.externalDBID=10.1111%252Fejn.13942&rft.externalDocID=EJN13942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon