Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands

Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories....

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 28; no. 12; pp. 3795 - 3811
Main Authors: Freeman, Benjamin W. J., Evans, Chris D., Musarika, Samuel, Morrison, Ross, Newman, Thomas R., Page, Susan E., Wiggs, Giles F. S., Bell, Nicholle G. A., Styles, David, Wen, Yuan, Chadwick, David R., Jones, Davey L.
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01-06-2022
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts.
AbstractList Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr −1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts.
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr −1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio-economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co-creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts.
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
Author Freeman, Benjamin W. J.
Styles, David
Evans, Chris D.
Jones, Davey L.
Bell, Nicholle G. A.
Wen, Yuan
Chadwick, David R.
Morrison, Ross
Page, Susan E.
Musarika, Samuel
Newman, Thomas R.
Wiggs, Giles F. S.
AuthorAffiliation 3 UK Centre for Ecology and Hydrology Wallingford Oxfordshire UK
5 6396 School of Geography and the Environment University of Oxford Oxford Oxfordshire UK
4 4488 School of Geography, Geology and the Environment University of Leicester Leicester Leicestershire UK
6 School of Chemistry University of Edinburgh Edinburgh Midlothian UK
2 UK Centre for Ecology and Hydrology Bangor Gwynedd UK
7 Ryan Institute National University of Ireland Galway Galway Ireland
9 SoilsWest Centre for Sustainable Farming Systems Food Futures Institute Murdoch University Murdoch Western Australia Australia
1 1506 School of Natural Sciences Bangor University Bangor Gwynedd UK
8 34752 College of Agronomy and Biotechnology China Agricultural University Beijing China
AuthorAffiliation_xml – name: 5 6396 School of Geography and the Environment University of Oxford Oxford Oxfordshire UK
– name: 9 SoilsWest Centre for Sustainable Farming Systems Food Futures Institute Murdoch University Murdoch Western Australia Australia
– name: 3 UK Centre for Ecology and Hydrology Wallingford Oxfordshire UK
– name: 8 34752 College of Agronomy and Biotechnology China Agricultural University Beijing China
– name: 6 School of Chemistry University of Edinburgh Edinburgh Midlothian UK
– name: 1 1506 School of Natural Sciences Bangor University Bangor Gwynedd UK
– name: 2 UK Centre for Ecology and Hydrology Bangor Gwynedd UK
– name: 4 4488 School of Geography, Geology and the Environment University of Leicester Leicester Leicestershire UK
– name: 7 Ryan Institute National University of Ireland Galway Galway Ireland
Author_xml – sequence: 1
  givenname: Benjamin W. J.
  orcidid: 0000-0001-5625-506X
  surname: Freeman
  fullname: Freeman, Benjamin W. J.
  email: b.freeman@bangor.ac.uk
  organization: Bangor University
– sequence: 2
  givenname: Chris D.
  orcidid: 0000-0002-7052-354X
  surname: Evans
  fullname: Evans, Chris D.
– sequence: 3
  givenname: Samuel
  orcidid: 0000-0003-0939-8927
  surname: Musarika
  fullname: Musarika, Samuel
– sequence: 4
  givenname: Ross
  orcidid: 0000-0002-1847-3127
  surname: Morrison
  fullname: Morrison, Ross
– sequence: 5
  givenname: Thomas R.
  orcidid: 0000-0002-0361-0774
  surname: Newman
  fullname: Newman, Thomas R.
  organization: University of Leicester
– sequence: 6
  givenname: Susan E.
  orcidid: 0000-0002-3392-9241
  surname: Page
  fullname: Page, Susan E.
  organization: University of Leicester
– sequence: 7
  givenname: Giles F. S.
  orcidid: 0000-0002-2131-0724
  surname: Wiggs
  fullname: Wiggs, Giles F. S.
  organization: University of Oxford
– sequence: 8
  givenname: Nicholle G. A.
  orcidid: 0000-0001-7887-2659
  surname: Bell
  fullname: Bell, Nicholle G. A.
  organization: University of Edinburgh
– sequence: 9
  givenname: David
  orcidid: 0000-0003-4185-4478
  surname: Styles
  fullname: Styles, David
  organization: National University of Ireland Galway
– sequence: 10
  givenname: Yuan
  orcidid: 0000-0002-9612-7975
  surname: Wen
  fullname: Wen, Yuan
  organization: China Agricultural University
– sequence: 11
  givenname: David R.
  orcidid: 0000-0002-8479-8157
  surname: Chadwick
  fullname: Chadwick, David R.
  organization: Bangor University
– sequence: 12
  givenname: Davey L.
  orcidid: 0000-0002-1482-4209
  surname: Jones
  fullname: Jones, Davey L.
  organization: Murdoch University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35243734$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFqFTEUhoNUbHvrwheQgBtdTJvkJJl7N0K9aBUKgrR0GZJMcm_KzGRMMpbufASf0Scx7a1FBbNJIB8f5z__Idob4-gQekHJMa3nZGPNMZVUsCfogIIUDeNLuXf3FryhhMI-Osz5mhACjMhnaB8E49ACP0BXX1ye4piD6R3WmxTs3Jc5OTzMuWDd6angEnHZOnzjSq_HDtutTtoWl3D0eAjdz-8_el1CmTuHJ6fvoXyEnnrdZ_f84V6gyw_vL9Yfm_PPZ5_Wp-eN5RxYA8bITtQMwKSnBKz0zBrLDJGt56ZddivGpOG6RmGi096ufCuIB-4JUGlggd7uvNNsBtdZN5akezWlMOh0q6IO6u-fMWzVJn5TK6BcSqiC1w-CFL_OLhc1hGxdX1O4OGfFJEjKmahbXKBX_6DXcU5jjVcpCcsVF62s1JsdZVPMOTn_OAwl6q4uVetS93VV9uWf0z-Sv_upwMkOuAm9u_2_SZ2t3-2UvwCaj6ID
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116694
crossref_primary_10_3389_fsoil_2023_1285964
crossref_primary_10_1016_j_landusepol_2023_106628
crossref_primary_10_1016_j_agee_2023_108641
crossref_primary_10_1111_gcbb_13169
crossref_primary_10_1007_s13157_022_01634_7
crossref_primary_10_1080_17583004_2023_2275578
crossref_primary_10_3390_foods11193053
crossref_primary_10_1038_s41598_024_64616_1
crossref_primary_10_1088_1755_1315_1118_1_012059
crossref_primary_10_3389_fsoil_2023_1305105
crossref_primary_10_1007_s10533_023_01113_z
crossref_primary_10_1016_j_ecohyd_2024_02_005
crossref_primary_10_1126_science_abo2364
crossref_primary_10_1007_s10533_023_01095_y
crossref_primary_10_1007_s10533_023_01097_w
crossref_primary_10_3390_horticulturae9010089
crossref_primary_10_1016_j_landusepol_2023_106886
crossref_primary_10_1007_s10533_024_01123_5
crossref_primary_10_1016_j_foreco_2024_121784
crossref_primary_10_3390_foods12020352
crossref_primary_10_3390_molecules28155796
Cites_doi 10.1016/j.agee.2016.11.015
10.1111/gcb.13120
10.1111/j.1365‐2389.2009.01222.x
10.2307/2259253
10.1007/s10750‐011‐0729‐x
10.1007/s10750‐011‐0736‐y
10.5194/bg‐10‐1067‐2013
10.5194/bg‐11‐749‐2014
10.1016/j.clet.2021.100305
10.1111/j.1475‐2743.2011.00327.x
10.1126/science.aal179
10.1038/nclimate3158
10.1139/a11‐014
10.1016/j.resconrec.2021.105764
10.1038/s41893‐021‐00803‐6
10.1111/gcbb.12214
10.1007/s13157‐020‐01310‐8
10.1111/gcb.12745
10.5194/bg‐18‐3881‐2021
10.1029/2010GL043584
10.5194/bg‐11‐6595‐2014
10.1016/j.landusepol.2019.05.038
10.1016/j.ecoleng.2020.106044
10.1016/j.ecoleng.2016.03.018
10.5194/bg‐13‐5221‐2016
10.1007/s10113‐012‐0355‐9
10.1038/s41586‐018‐0594‐0
10.1016/j.ecoser.2014.06.013
10.1088/1748‐9326/ab56e6
10.1016/j.jhydrol.2012.04.029
10.1038/s41467‐018‐03406‐6
10.1111/j.1757‐1707.2010.01048.x
10.1016/j.soilbio.2018.08.020
10.1038/s41586‐021‐03523‐1
10.1007/s11368‐016‐1648‐2
10.1016/j.ecolind.2019.105838
10.1111/gcb.15802
10.1016/j.landusepol.2019.104181
10.1111/j.1654‐109X.2009.01028.x
10.1088/1748‐9326/abeb36
10.5194/bg‐16‐4555‐2019
10.1038/s41612‐019‐0086‐4
10.1007/s00027‐015‐0447‐y
10.1007/s10705‐019‐10012‐5
10.1088/2515‐7620/ab7b92
10.1038/s41467‐020‐15499‐z
10.1016/j.agee.2014.12.019
10.1111/gcb.13303
10.1016/j.scitotenv.2019.02.360
10.1007/s10021‐015‐9879‐4
10.1038/ncomms1523
10.1007/s11027‐014‐9559‐2
10.1016/j.ecoser.2014.06.011
10.1007/s11104‐014‐2164‐z
10.1016/j.geoderma.2018.12.028
10.1080/14693062.2015.1022854
10.1016/j.catena.2017.09.010
10.1130/REG6-p107
10.1111/gcbb.12424
10.1016/j.scitotenv.2017.01.094
10.1016/j.geoderma.2009.02.022
10.1016/j.ecoser.2014.06.008
10.1017/CBO9781139177788.017
10.19189/MaP.2015.OMB.210
10.1016/j.jclepro.2020.121179
10.1080/17583004.2018.1557990
10.5194/bg‐12‐2101‐2015
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
5PM
DOI 10.1111/gcb.16152
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Economics
Agriculture
DocumentTitleAlternate FREEMAN et al
EISSN 1365-2486
EndPage 3811
ExternalDocumentID 10_1111_gcb_16152
35243734
GCB16152
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/M009106/1; NE/P0140971/1; NE/R010218/1
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: NE/M009106/1
– fundername: Natural Environment Research Council
  grantid: NE/P0140971/1
– fundername: Natural Environment Research Council
  grantid: NE/R010218/1
– fundername: Natural Environment Research Council
  grantid: NE/M009106/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: NE/M009106/1
– fundername: ;
  grantid: NE/M009106/1; NE/P0140971/1; NE/R010218/1
– fundername: ;
  grantid: NE/M009106/1
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
NPM
AAMNL
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
5PM
ID FETCH-LOGICAL-c4432-3bb6d5111326f103c6f2cbc2b067f4b78d9226b4a13525dafc9f750f34f0316b3
IEDL.DBID 33P
ISSN 1354-1013
IngestDate Tue Sep 17 21:27:58 EDT 2024
Sat Aug 17 01:39:56 EDT 2024
Thu Nov 21 07:25:55 EST 2024
Thu Nov 21 20:49:21 EST 2024
Wed Oct 16 00:40:38 EDT 2024
Sat Aug 24 00:59:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords greenhouse gases
paludiculture
hydrology
peatlands
carbon
climate change mitigation
wetland agriculture
soil loss
Language English
License Attribution
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-3bb6d5111326f103c6f2cbc2b067f4b78d9226b4a13525dafc9f750f34f0316b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-1482-4209
0000-0002-3392-9241
0000-0002-0361-0774
0000-0002-9612-7975
0000-0002-1847-3127
0000-0002-8479-8157
0000-0002-2131-0724
0000-0003-0939-8927
0000-0002-7052-354X
0000-0003-4185-4478
0000-0001-5625-506X
0000-0001-7887-2659
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16152
PMID 35243734
PQID 2663894576
PQPubID 30327
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314663
proquest_miscellaneous_2636142501
proquest_journals_2663894576
crossref_primary_10_1111_gcb_16152
pubmed_primary_35243734
wiley_primary_10_1111_gcb_16152_GCB16152
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2022
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2021; 27
2017; 7
2018; 562
2011; 674
2018; 160
2017; 2
2016b
2018; 127
2019; 10
2019; 14
2019; 16
2020; 11
2011; 19
2017; 9
2017; 237
2010; 61
2009; 12
2018; 9
1957; 85
2020; 2
2013; 10
2013; 13
2017; 584–585
2020; 90
2019; 115
2010; 154
2016; 354
1984
2021; 593
1982
2014; 9
2011; 27
2010; 2
2014; 11
2015; 12
2017; 20
2021; 5
2010; 37
2011; 2
2015; 18
2012
2020; 262
2019; 2
2015; 202
2010
2020; 40
1980; 68
2008
2019; 667
2002
2016; 16
2015; 7
2016; 13
2020; 109
1999
2021; 16
2012; 446–447
2021
2017; 17
2020
2019; 87
2015; 20
2021; 18
2015; 21
2019
2018
2009; 8
2017
2016
2015
2021; 174
2014
2019; 338
2013
2020; 158
2014; 383
2016a; 78
2017; 103
2016; 22
Wichtmann W. (e_1_2_8_98_1) 2016
e_1_2_8_49_1
e_1_2_8_68_1
Joosten H. (e_1_2_8_44_1) 2002
Evans C. (e_1_2_8_21_1) 2017
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
UNFCCC (e_1_2_8_90_1) 2015
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
Mulholland B. (e_1_2_8_55_1) 2020
e_1_2_8_38_1
Thompson K. (e_1_2_8_85_1) 1957; 85
e_1_2_8_95_1
e_1_2_8_99_1
Clarke D. (e_1_2_8_14_1) 2019
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
De Jong M. (e_1_2_8_18_1) 2020
e_1_2_8_6_1
e_1_2_8_67_1
e_1_2_8_86_1
Hoving I. E. (e_1_2_8_35_1) 2008
e_1_2_8_63_1
Cumming A. (e_1_2_8_17_1) 2018
e_1_2_8_82_1
e_1_2_8_79_1
Myhre G. (e_1_2_8_57_1) 2013
Drösler M. (e_1_2_8_19_1) 2014
e_1_2_8_94_1
Joosten H. (e_1_2_8_43_1) 2010
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
Evans C. (e_1_2_8_26_1) 2020
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
Smith P. (e_1_2_8_76_1) 2014
Jansen I. E. (e_1_2_8_40_1) 2017; 2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_81_1
e_1_2_8_7_1
Sly R. (e_1_2_8_75_1) 2010
Evans C. (e_1_2_8_23_1) 2016
e_1_2_8_20_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_59_1
Stark C. (e_1_2_8_78_1) 2020
Taft H. E. (e_1_2_8_80_1) 2014
Couwenberg J. (e_1_2_8_15_1) 2018
e_1_2_8_70_1
Hoving I. E. (e_1_2_8_37_1) 2013
USDA Soil Survey Staff (e_1_2_8_91_1) 1999
e_1_2_8_97_1
Abel S. (e_1_2_8_2_1) 2016
e_1_2_8_32_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Schothorst C. J. (e_1_2_8_72_1) 1982
Page S. (e_1_2_8_61_1) 2020
e_1_2_8_4_1
e_1_2_8_8_1
Alexandratos N. (e_1_2_8_3_1) 2012
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
Reed M. S. (e_1_2_8_66_1) 2020
e_1_2_8_84_1
e_1_2_8_39_1
Graves A. R. (e_1_2_8_31_1) 2013
e_1_2_8_16_1
e_1_2_8_58_1
Chubarova N. Y. (e_1_2_8_13_1) 2009
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
Hoving I. E. (e_1_2_8_36_1) 2015
e_1_2_8_50_1
References_xml – volume: 90
  start-page: 104181
  year: 2020
  article-title: Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions
  publication-title: Land Use Policy
– year: 2016b
– volume: 21
  start-page: 750
  year: 2015
  end-page: 765
  article-title: Agricultural peatland restoration: effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta
  publication-title: Global Change Biology
– volume: 160
  start-page: 134
  year: 2018
  end-page: 140
  article-title: PEATMAP: Refining estimates of global peatland distribution based on a meta‐analysis
  publication-title: Catena
– volume: 22
  start-page: 763
  year: 2016
  end-page: 781
  article-title: Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050
  publication-title: Global Change Biology
– volume: 9
  start-page: 54
  year: 2014
  end-page: 65
  article-title: Investing in nature: Developing ecosystem service markets for peatland restoration
  publication-title: Ecosystem Services
– volume: 10
  start-page: 115
  year: 2019
  end-page: 126
  article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation
  publication-title: Carbon Management
– volume: 202
  start-page: 68
  year: 2015
  end-page: 78
  article-title: Variations in CO2 exchange for dairy farms with year‐round rotational grazing on drained peatlands
  publication-title: Agriculture, Ecosystems and Environment
– year: 2021
– volume: 667
  start-page: 179
  year: 2019
  end-page: 190
  article-title: Impact of fertiliser, water table, and warming on celery yield and CO and CH emissions from fenland agricultural peat
  publication-title: Science of the Total Environment
– volume: 61
  start-page: 186
  year: 2010
  end-page: 196
  article-title: N O emissions from an irrigated and non‐irrigated organic soil in eastern Canada as influenced by N fertilizer addition
  publication-title: European Journal of Soil Science
– volume: 16
  start-page: 4555
  year: 2019
  end-page: 4575
  article-title: Regulation of N O emissions from acid organic soil drained for agriculture
  publication-title: Biogeosciences
– volume: 174
  start-page: 105764
  year: 2021
  article-title: Livestock‐induced N O emissions may limit the benefits of converting cropland to grazed grassland as a greenhouse gas mitigation strategy for agricultural peatlands
  publication-title: Resources, Conservation and Recycling
– volume: 674
  start-page: 67
  year: 2011
  end-page: 89
  article-title: Assessing greenhouse gas emissions from peatlands using vegetation as a proxy
  publication-title: Hydrobiologia
– volume: 9
  start-page: 44
  year: 2014
  end-page: 53
  article-title: Improving the link between payments and the provision of ecosystem services in agri‐environment schemes
  publication-title: Ecosystem Services
– start-page: 436
  year: 1999
– year: 2018
– year: 2014
– volume: 20
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany
  publication-title: Mires and Peat
– volume: 9
  start-page: 1071
  year: 2018
  article-title: The underappreciated potential of peatlands in global climate change mitigation strategies
  publication-title: Nature Communications
– volume: 37
  start-page: 1
  year: 2010
  end-page: 5
  article-title: Global peatland dynamics since the Last Glacial Maximum
  publication-title: Geophysical Research Letters
– volume: 16
  start-page: 44010
  year: 2021
  article-title: Global importance of methane emissions from drainage ditches and canals
  publication-title: Environmental Research Letters
– start-page: 9
  year: 2018
  end-page: 21
  article-title: Some facts on submerged drains in Dutch peat pastures
  publication-title: IMCG Bulletin
– volume: 87
  start-page: 104019
  year: 2019
  article-title: Sustainable management of cultivated peatlands in Switzerland: Insights, challenges, and opportunities
  publication-title: Land Use Policy
– volume: 584–585
  start-page: 665
  year: 2017
  end-page: 672
  article-title: Effect of water table management and elevated CO2 on radish productivity and on CH and CO fluxes from peatlands converted to agriculture
  publication-title: Science of the Total Environment
– volume: 127
  start-page: 10
  year: 2018
  end-page: 21
  article-title: Efficacy of mitigation measures for reducing greenhouse gases emissions from horticultural peat soils
  publication-title: Soil Biology & Biochemistry
– year: 1982
– volume: 12
  start-page: 2101
  year: 2015
  end-page: 2117
  article-title: Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany
  publication-title: Biogeosciences
– volume: 7
  start-page: 63
  year: 2017
  end-page: 68
  article-title: Greenhouse gas emissions intensity of global croplands
  publication-title: Nature Climate Change
– volume: 85
  start-page: 68
  year: 1957
  end-page: 76
  article-title: Origin and use of the English peat fens
  publication-title: The Scientific Monthly
– volume: 2
  start-page: 514
  year: 2011
  article-title: Experimental drying intensifies burning and carbon losses in a northern peatland
  publication-title: Nature Communications
– volume: 17
  start-page: 1874
  year: 2017
  end-page: 1882
  article-title: Methane cycling in a drained wetland soil profile
  publication-title: Journal of Soils and Sediments
– volume: 2
  start-page: 26
  year: 2017
  end-page: 29
  article-title: Sturen met water levert veel op
  publication-title: Meer Dan Bodemdaling. Bodemdaling
– year: 2008
– volume: 27
  start-page: 170
  year: 2011
  end-page: 176
  article-title: Peatland subsidence and carbon loss from drained temperate fens
  publication-title: Soil Use and Management
– volume: 262
  start-page: 121179
  year: 2020
  article-title: Raising the groundwater table in the non‐growing season can reduce greenhouse gas emissions and maintain crop productivity in cultivated fen peats
  publication-title: Journal of Cleaner Production
– volume: 12
  start-page: 283
  year: 2009
  end-page: 294
  article-title: Effects of raised water levels on wet grassland plant communities
  publication-title: Applied Vegetation Science
– volume: 11
  start-page: 1644
  year: 2020
  article-title: Prompt rewetting of drained peatlands reduces climate warming despite methane emissions
  publication-title: Nature Communications
– volume: 20
  start-page: 1529
  year: 2015
  end-page: 1544
  article-title: Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table
  publication-title: Mitigation and Adaptation Strategies for Global Change
– volume: 13
  start-page: 781
  year: 2013
  end-page: 795
  article-title: Mitigation of greenhouse gas emissions from an abandoned Baltic peat extraction area by growing reed canary grass: Life‐cycle assessment
  publication-title: Regional Environmental Change
– volume: 103
  start-page: 497
  year: 2017
  end-page: 505
  article-title: Commercial viability of paludiculture: A comparison of harvesting reeds for biogas production, direct combustion, and thatching
  publication-title: Ecological Engineering
– year: 2019
– year: 2015
– volume: 68
  start-page: 229
  year: 1980
  end-page: 249
  article-title: The record of peat wastage in the East Anglian Fenlands at Holme Post, 1848–1978 A.D
  publication-title: Journal of Ecology
– volume: 78
  start-page: 573
  year: 2016a
  end-page: 590
  article-title: The role of waterborne carbon in the greenhouse gas balance of drained and re‐wetted peatlands
  publication-title: Aquatic Sciences
– volume: 674
  start-page: 91
  year: 2011
  end-page: 104
  article-title: Cultivating the climate: Socio‐economic prospects and consequences of climate‐friendly peat land management in Germany
  publication-title: Hydrobiologia
– volume: 338
  start-page: 410
  year: 2019
  end-page: 421
  article-title: Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia
  publication-title: Geoderma
– volume: 18
  start-page: 1000
  year: 2015
  end-page: 1013
  article-title: Moving beyond global warming potentials to quantify the climatic role of ecosystems
  publication-title: Ecosystems
– volume: 27
  start-page: 5141
  year: 2021
  end-page: 5153
  article-title: Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands
  publication-title: Global Change Biology
– volume: 40
  start-page: 2309
  year: 2020
  end-page: 2320
  article-title: Climate change mitigation through land use on rewetted peatlands—Cross‐sectoral spatial planning for paludiculture in Northeast Germany
  publication-title: Wetlands
– volume: 2
  start-page: 130
  year: 2010
  end-page: 138
  article-title: Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) Cultivation on a drained boreal organic soil
  publication-title: GCB Bioenergy
– volume: 11
  start-page: 749
  year: 2014
  end-page: 761
  article-title: High CO fluxes from grassland on histic Gleysol along soil carbon and drainage gradients
  publication-title: Biogeosciences
– volume: 14
  start-page: 124030
  year: 2019
  article-title: Prompt active restoration of peatlands substantially reduces climate impact
  publication-title: Environmental Research Letters
– volume: 383
  start-page: 217
  year: 2014
  end-page: 230
  article-title: Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level
  publication-title: Plant and Soil
– volume: 16
  start-page: 522
  year: 2016
  end-page: 541
  article-title: GHG mitigation of agricultural peatlands requires coherent policies
  publication-title: Climate Policy
– volume: 22
  start-page: 4134
  year: 2016
  end-page: 4149
  article-title: High emissions of greenhouse gases from grasslands on peat and other organic soils
  publication-title: Global Change Biology
– start-page: 436
  year: 2017
  end-page: 439
– start-page: 88
  year: 2017
– year: 2016
– volume: 8
  start-page: 247
  year: 2009
  end-page: 264
– volume: 19
  start-page: 371
  year: 2011
  end-page: 396
  article-title: Peatlands in the Earth’s 21st century climate system
  publication-title: Environmental Reviews
– volume: 593
  start-page: 548
  year: 2021
  end-page: 552
  article-title: Overriding water table control on managed peatland greenhouse gas emissions
  publication-title: Nature
– year: 2010
– volume: 158
  start-page: 106044
  year: 2020
  article-title: Multispectral satellite based monitoring of land cover change and associated fire reduction after large‐scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia)
  publication-title: Ecological Engineering
– year: 2012
– volume: 446–447
  start-page: 59
  year: 2012
  end-page: 69
  article-title: Analysing water level strategies to reduce soil subsidence in Dutch peat meadows
  publication-title: Journal of Hydrology
– volume: 154
  start-page: 242
  year: 2010
  end-page: 251
  article-title: Social and economic aspects of peatland management in Northern Europe, with particular reference to the English case
  publication-title: Geoderma
– start-page: 53
  year: 2020
– year: 1984
– volume: 237
  start-page: 162
  year: 2017
  end-page: 172
  article-title: Greenhouse gas emissions from intensively managed peat soils in an arable production system
  publication-title: Agriculture, Ecosystems and Environment
– volume: 11
  start-page: 6595
  year: 2014
  end-page: 6612
  article-title: Nitrous oxide emission budgets and land‐use‐driven hotspots for organic soils in Europe
  publication-title: Biogeosciences
– year: 2002
– volume: 2
  start-page: 31001
  year: 2020
  article-title: Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England
  publication-title: Environmental Research Communications
– volume: 5
  start-page: 37
  issue: 1
  year: 2021
  end-page: 46
  article-title: Mapping the irrecoverable carbon in Earth’s ecosystems
  publication-title: Nature Sustainability
– volume: 13
  start-page: 5221
  year: 2016
  end-page: 5244
  article-title: Greenhouse gas emissions from fen soils used for forage production in northern Germany
  publication-title: Biogeosciences
– volume: 109
  start-page: 105838
  year: 2020
  article-title: A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application
  publication-title: Ecological Indicators
– volume: 5
  start-page: 100305
  year: 2021
  article-title: Wet peatland utilisation for climate protection—An international survey of paludiculture innovation
  publication-title: Cleaner Engineering and Technology
– volume: 2
  start-page: 29
  year: 2019
  article-title: Improved calculation of warming‐equivalent emissions for short‐lived climate pollutants
  publication-title: npj Climate and Atmospheric Science
– year: 2020
– volume: 115
  start-page: 57
  year: 2019
  end-page: 67
  article-title: Fertilizer‐induced fluxes dominate annual N2O emissions from a nitrogen‐rich temperate fen rewetted for paludiculture
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 18
  start-page: 3881
  year: 2021
  end-page: 3902
  article-title: Conventional subsoil irrigation techniques do not lower greenhouse gas emissions from drained peat meadows
  publication-title: Biogeosciences
– volume: 562
  start-page: 519
  year: 2018
  end-page: 525
  article-title: Options for keeping the food system within environmental limits
  publication-title: Nature
– volume: 10
  start-page: 1067
  year: 2013
  end-page: 1082
  article-title: Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog
  publication-title: Biogeosciences
– volume: 9
  start-page: 5
  year: 2014
  end-page: 19
  article-title: Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: Linking process understanding to ecosystem service valuation
  publication-title: Ecosystem Services
– volume: 7
  start-page: 1092
  year: 2015
  end-page: 1106
  article-title: The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen
  publication-title: GCB Bioenergy
– start-page: 98
  year: 2020
– volume: 354
  start-page: 562
  year: 2016
  article-title: Time for responsible peatland management
  publication-title: Science
– year: 2013
– volume: 9
  start-page: 1690
  year: 2017
  end-page: 1706
  article-title: Annual balances and extended seasonal modelling of carbon fluxes from a temperate fen cropped to festulolium and tall fescue under two‐cut and three‐cut harvesting regimes
  publication-title: GCB Bioenergy
– ident: e_1_2_8_81_1
  doi: 10.1016/j.agee.2016.11.015
– volume-title: The Global Peatland CO2 Picture. Peatland status and drainage related emissions in all countries of the world
  year: 2010
  ident: e_1_2_8_43_1
  contributor:
    fullname: Joosten H.
– ident: e_1_2_8_6_1
  doi: 10.1111/gcb.13120
– ident: e_1_2_8_70_1
  doi: 10.1111/j.1365‐2389.2009.01222.x
– ident: e_1_2_8_38_1
  doi: 10.2307/2259253
– volume-title: Quantifying and mitigating greenhouse gas emissions from horticultural peat soils
  year: 2014
  ident: e_1_2_8_80_1
  contributor:
    fullname: Taft H. E.
– ident: e_1_2_8_16_1
  doi: 10.1007/s10750‐011‐0729‐x
– volume: 2
  start-page: 26
  year: 2017
  ident: e_1_2_8_40_1
  article-title: Sturen met water levert veel op
  publication-title: Meer Dan Bodemdaling. Bodemdaling
  contributor:
    fullname: Jansen I. E.
– ident: e_1_2_8_71_1
  doi: 10.1007/s10750‐011‐0736‐y
– volume-title: 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands
  year: 2014
  ident: e_1_2_8_19_1
  contributor:
    fullname: Drösler M.
– volume-title: Strategy for responsible peatland management
  year: 2019
  ident: e_1_2_8_14_1
  contributor:
    fullname: Clarke D.
– ident: e_1_2_8_5_1
  doi: 10.5194/bg‐10‐1067‐2013
– ident: e_1_2_8_50_1
  doi: 10.5194/bg‐11‐749‐2014
– ident: e_1_2_8_102_1
  doi: 10.1016/j.clet.2021.100305
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1475‐2743.2011.00327.x
– ident: e_1_2_8_99_1
  doi: 10.1126/science.aal179
– volume-title: Paludiculture—productive use of wet peatlands: Climate protection—biodiversity—regional economic benefits
  year: 2016
  ident: e_1_2_8_2_1
  contributor:
    fullname: Abel S.
– ident: e_1_2_8_12_1
  doi: 10.1038/nclimate3158
– ident: e_1_2_8_29_1
  doi: 10.1139/a11‐014
– ident: e_1_2_8_94_1
  doi: 10.1016/j.resconrec.2021.105764
– ident: e_1_2_8_59_1
  doi: 10.1038/s41893‐021‐00803‐6
– ident: e_1_2_8_33_1
  doi: 10.1111/gcbb.12214
– ident: e_1_2_8_84_1
  doi: 10.1007/s13157‐020‐01310‐8
– volume: 85
  start-page: 68
  year: 1957
  ident: e_1_2_8_85_1
  article-title: Origin and use of the English peat fens
  publication-title: The Scientific Monthly
  contributor:
    fullname: Thompson K.
– ident: e_1_2_8_49_1
  doi: 10.1111/gcb.12745
– ident: e_1_2_8_93_1
  doi: 10.5194/bg‐18‐3881‐2021
– ident: e_1_2_8_101_1
  doi: 10.1029/2010GL043584
– ident: e_1_2_8_53_1
  doi: 10.5194/bg‐11‐6595‐2014
– ident: e_1_2_8_28_1
  doi: 10.1016/j.landusepol.2019.05.038
– ident: e_1_2_8_74_1
  doi: 10.1016/j.ecoleng.2020.106044
– ident: e_1_2_8_96_1
  doi: 10.1016/j.ecoleng.2016.03.018
– volume-title: Hydrologische en landbouwkundige effecten toepassing onderwaterdrains in polder Zeevang: vervolgonderzoek gericht op de toepassing van een zomer‐ en winterpeil. Livestock research report 875
  year: 2015
  ident: e_1_2_8_36_1
  contributor:
    fullname: Hoving I. E.
– ident: e_1_2_8_63_1
  doi: 10.5194/bg‐13‐5221‐2016
– volume-title: Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_8_76_1
  contributor:
    fullname: Smith P.
– ident: e_1_2_8_41_1
  doi: 10.1007/s10113‐012‐0355‐9
– ident: e_1_2_8_77_1
  doi: 10.1038/s41586‐018‐0594‐0
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ecoser.2014.06.013
– volume-title: Social barriers and opportunities to the implementation of the England Peat Strategy. Final Report to Natural England and Defra
  year: 2020
  ident: e_1_2_8_66_1
  contributor:
    fullname: Reed M. S.
– volume-title: Wise use of mires and peatlands—Background and principles including a framework for decision‐making
  year: 2002
  ident: e_1_2_8_44_1
  contributor:
    fullname: Joosten H.
– ident: e_1_2_8_60_1
  doi: 10.1088/1748‐9326/ab56e6
– volume-title: Multi‐annual carbon flux at an intensively cultivated lowland peatland in East Anglia, UK
  year: 2018
  ident: e_1_2_8_17_1
  contributor:
    fullname: Cumming A.
– ident: e_1_2_8_64_1
  doi: 10.1016/j.jhydrol.2012.04.029
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467‐018‐03406‐6
– ident: e_1_2_8_73_1
  doi: 10.1111/j.1757‐1707.2010.01048.x
– ident: e_1_2_8_82_1
  doi: 10.1016/j.soilbio.2018.08.020
– start-page: 436
  volume-title: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys
  year: 1999
  ident: e_1_2_8_91_1
  contributor:
    fullname: USDA Soil Survey Staff
– start-page: 88
  volume-title: Implementation of an emissions inventory for UK peatlands. Report to the department for business, energy and industrial strategy
  year: 2017
  ident: e_1_2_8_21_1
  contributor:
    fullname: Evans C.
– ident: e_1_2_8_24_1
  doi: 10.1038/s41586‐021‐03523‐1
– ident: e_1_2_8_42_1
  doi: 10.1007/s11368‐016‐1648‐2
– volume-title: The sixth carbon budget. The UK’s path to net zero
  year: 2020
  ident: e_1_2_8_78_1
  contributor:
    fullname: Stark C.
– ident: e_1_2_8_87_1
  doi: 10.1016/j.ecolind.2019.105838
– ident: e_1_2_8_4_1
  doi: 10.1111/gcb.15802
– ident: e_1_2_8_9_1
  doi: 10.1016/j.landusepol.2019.104181
– ident: e_1_2_8_88_1
  doi: 10.1111/j.1654‐109X.2009.01028.x
– ident: e_1_2_8_62_1
  doi: 10.1088/1748‐9326/abeb36
– ident: e_1_2_8_83_1
  doi: 10.5194/bg‐16‐4555‐2019
– ident: e_1_2_8_10_1
  doi: 10.1038/s41612‐019‐0086‐4
– ident: e_1_2_8_25_1
  doi: 10.1007/s00027‐015‐0447‐y
– ident: e_1_2_8_92_1
– start-page: 9
  year: 2018
  ident: e_1_2_8_15_1
  article-title: Some facts on submerged drains in Dutch peat pastures
  publication-title: IMCG Bulletin
  contributor:
    fullname: Couwenberg J.
– start-page: 53
  volume-title: An assessment of the societal impacts of water level management on lowland peatlands in England and Wales. Report to Defra for Project SP1218
  year: 2020
  ident: e_1_2_8_61_1
  contributor:
    fullname: Page S.
– ident: e_1_2_8_46_1
  doi: 10.1007/s10705‐019‐10012‐5
– ident: e_1_2_8_30_1
  doi: 10.1088/2515‐7620/ab7b92
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467‐020‐15499‐z
– ident: e_1_2_8_11_1
  doi: 10.1016/j.agee.2014.12.019
– ident: e_1_2_8_86_1
  doi: 10.1111/gcb.13303
– volume-title: ). Hydrologische en landbouwkundige effecten van gebruik ‘onderwaterdrains’ op veengrond. Rapport 102, Animal Sciences Group van Wageningen UR
  year: 2008
  ident: e_1_2_8_35_1
  contributor:
    fullname: Hoving I. E.
– ident: e_1_2_8_54_1
  doi: 10.1016/j.scitotenv.2019.02.360
– start-page: 247
  volume-title: Wildland fires and air pollution. Developments in environmental science
  year: 2009
  ident: e_1_2_8_13_1
  contributor:
    fullname: Chubarova N. Y.
– ident: e_1_2_8_58_1
  doi: 10.1007/s10021‐015‐9879‐4
– volume-title: Paludiculture or paludifuture?—Environmental and economic analysis of cattail‐based insulation material from paludiculture in The Netherlands
  year: 2020
  ident: e_1_2_8_18_1
  contributor:
    fullname: De Jong M.
– ident: e_1_2_8_89_1
  doi: 10.1038/ncomms1523
– ident: e_1_2_8_69_1
  doi: 10.1007/s11027‐014‐9559‐2
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ecoser.2014.06.011
– volume-title: Adoption of the Paris agreement
  year: 2015
  ident: e_1_2_8_90_1
  contributor:
    fullname: UNFCCC
– ident: e_1_2_8_20_1
– volume-title: Soil in their souls. A history of fenland farming
  year: 2010
  ident: e_1_2_8_75_1
  contributor:
    fullname: Sly R.
– ident: e_1_2_8_47_1
  doi: 10.1007/s11104‐014‐2164‐z
– volume-title: A scoping study for potential community‐based carbon offsetting schemes in the Falkland Islands. Report to Falklands Conservation, Stanley
  year: 2020
  ident: e_1_2_8_26_1
  contributor:
    fullname: Evans C.
– start-page: 98
  volume-title: An assessment of the potential for paludiculture in England and Wales. Report to Defra for Project SP1218
  year: 2020
  ident: e_1_2_8_55_1
  contributor:
    fullname: Mulholland B.
– ident: e_1_2_8_39_1
– ident: e_1_2_8_27_1
  doi: 10.1016/j.geoderma.2018.12.028
– volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_8_57_1
  contributor:
    fullname: Myhre G.
– ident: e_1_2_8_68_1
  doi: 10.1080/14693062.2015.1022854
– ident: e_1_2_8_100_1
  doi: 10.1016/j.catena.2017.09.010
– ident: e_1_2_8_79_1
  doi: 10.1130/REG6-p107
– volume-title: Drainage and behaviour of peat soils. Report No. 3
  year: 1982
  ident: e_1_2_8_72_1
  contributor:
    fullname: Schothorst C. J.
– ident: e_1_2_8_45_1
  doi: 10.1111/gcbb.12424
– ident: e_1_2_8_56_1
  doi: 10.1016/j.scitotenv.2017.01.094
– ident: e_1_2_8_65_1
  doi: 10.1016/j.geoderma.2009.02.022
– volume-title: Paludiculture—productive use of wet peatlands: Climate protection—biodiversity—regional economic benefits
  year: 2016
  ident: e_1_2_8_98_1
  contributor:
    fullname: Wichtmann W.
– volume-title: Hydrologische en landbouwkundige effecten toepassing onderwaterdrains bij dynamisch slootpeilbeheer op veengrond. Rapport 719, Wageningen UR Livestock Research
  year: 2013
  ident: e_1_2_8_37_1
  contributor:
    fullname: Hoving I. E.
– ident: e_1_2_8_67_1
  doi: 10.1016/j.ecoser.2014.06.008
– volume-title: Lowland peatland systems in England and Wales—Evaluating greenhouse gas fluxes and carbon balances. Final report to Defra on Project SP1210
  year: 2016
  ident: e_1_2_8_23_1
  contributor:
    fullname: Evans C.
– ident: e_1_2_8_97_1
  doi: 10.1017/CBO9781139177788.017
– ident: e_1_2_8_34_1
  doi: 10.19189/MaP.2015.OMB.210
– ident: e_1_2_8_95_1
  doi: 10.1016/j.jclepro.2020.121179
– volume-title: World agriculture towards 2030/2050: The 2012 revision. ESA working paper no. 12‐03
  year: 2012
  ident: e_1_2_8_3_1
  contributor:
    fullname: Alexandratos N.
– volume-title: Restoration of Fenland peatland under climate change. Report to the Adaptation Sub‐Committee of the Committee on Climate Change
  year: 2013
  ident: e_1_2_8_31_1
  contributor:
    fullname: Graves A. R.
– ident: e_1_2_8_48_1
  doi: 10.1080/17583004.2018.1557990
– ident: e_1_2_8_7_1
  doi: 10.5194/bg‐12‐2101‐2015
SSID ssj0003206
Score 2.5625126
SecondaryResourceType review_article
Snippet Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3795
SubjectTerms Agricultural land
Agriculture
carbon
Carbon dioxide
Carbon dioxide emissions
Climate change
Climate change mitigation
Drainage
Drainage systems
Economics
Emissions
Emissions control
Farm buildings
Food security
Global climate
Greenhouse effect
Greenhouse gases
Groundwater table
hydrology
Land management
Livelihoods
Mitigation
paludiculture
Peatlands
Private sector
Restoration
Review
Reviews
Soil erosion
soil loss
Water depth
Water management
Water table
Water table depth
Wetland agriculture
Wetlands
Title Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16152
https://www.ncbi.nlm.nih.gov/pubmed/35243734
https://www.proquest.com/docview/2663894576
https://search.proquest.com/docview/2636142501
https://pubmed.ncbi.nlm.nih.gov/PMC9314663
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RJKReCiylpAVkEKp6SbWJvbuJOMGywAWEeIjeIj-XlSBZbRJVvfET-I38EsbOo6wQUqXeEmUiO7Zn5htn5jPAHoJeZv2-r7UxPpNc-LFU1B8wYSIZmR7Xdk_39Gpw_is6GlmanP2mFqbih2g33KxmOHttFZyL_JWSj6X4aeGKtb8YJbjyDXrRWmEaunM1A9pjaGoCWrMK2Sye9s15X_QGYL7Nk3yNX50DOl7-r66vwKcad5KDaqGswoJOO7BUnUT5pwPro78FbyhWa3zeAe8MUXU2c2LkOxneTxDiurs1uL1sEmzvNeHjWU3joclDmReEKz4tSJERhJjkty5sCiWRDT80yQx5mKjnxydXS1MqTaboFlzl8We4OR5dD0_9-qAGXzJGQ58K0Vc9d2h93wRdKvsmlEKGAl2hYWIQqRhRnmA8sOSrihsZG0QqhjKDNqUv6DosplmqN4D0Yi66goku44pFuLwMjynG0TZQ4iHTHuw2U5ZMKz6OpIljcFgTN6webDaTmdQqmSeIRBCcMYyvPNhpH6My2T8kPNVZaWUowhVEhYEHX6q5b1vBrlsaKObBYG5VtAKWqHv-STq5c4Td-AUMW_fgh1sV73c8ORkeuouv_y76DT6GtiTD7QxtwmIxK_UWfMhVue004gX6OxAE
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oRfTF6mo1WnUUEV8im8zZbAJ90XXrim0Rrdi3MNe60CbLboL45k_wN_aX9MzkYpciCL4l5ISZzJzLNydzvgF4QaAXXdwPjbE2RCVkmCnNwzFKm6rUjoRxOd3Zl_HBUfpu6mhydrpamIYfok-4Ocvw_toZuEtIX7DyYyVfO7xCDvgaJqSIroCDf-r9MI_9yZoRHyE5m4i3vEJuH0__6no0ugQxL--UvIhgfQja3fy_zt-GWy30ZG8aXbkDV0wxgOvNYZQ_B7A1_VPzRmKt0a8GEOwTsC6XXoy9ZJOTOaFcf3cXvn3u9tieGCaOly2Th2Gn9apiQotFxaqSEcpkP0zldlEy1VFEs9Ky07k--_Xbl9PU2rAFRQZffHwPvu5ODyezsD2rIVSIPA65lIke-XPrExsNuUpsrKSKJUVDi3Kc6oyAnkQROf5VLazKLIEVy9GSW0kk34KNoizMA2CjTMihRDlEoTElDbMi47SUdmslEaMJ4Hk3Z_mioeTIu6UMDWvuhzWA7W4289YqVzmBEcJnSEusAJ71j8me3E8SUZiydjKcEAsBwyiA-83k961Q1x0TFAYwXlOLXsBxda8_KebfPWc3fQFS6wG88mrx947n7ydv_cXDfxd9Cjdmh_t7-d6Hg4-P4GbsKjR8omgbNqplbR7D1ZWun3jzOAcPWBQs
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VViAuUAKlhhYWhBAXo9g7SWxxgjShCKgqHoKbtc82UmtHiS3ErT-hv5Ff0tn1o40qJCRutjzWrnfn8e165xuAFwR60cX90BhrQ1RChqnSPByhtIlK7EAYt6e7_3V08DPZmzianDdtLkzND9FtuDnL8P7aGfhc2ytGfqTkawdXyP9uIMFwR5zP-WHnhnnsC2tGfIDkayLe0Aq5Yzzdq6vB6BrCvH5Q8iqA9RFoeve_-r4Jdxrgyd7WmnIP1kzeg5t1KcrfPdiaXGa8kVhj8sseBJ8JVhcLL8ZesvHJjDCuv7sPP760J2xPDBNHi4bHw7DTalkyocW8ZGXBCGOyX6Z0ZyiZagmiWWHZ6Uz_OTv3yTSVNmxOccGnHj-A79PJt_F-2FRqCBUij0Mu5VAPfNX6oY36XA1trKSKJcVCi3KU6JRgnkQROfZVLaxKLUEVy9GSUxlKvgXreZGbbWCDVMi-RNlHoTEh_bIi5bSQdislEaMJ4Hk7Zdm8JuTI2oUMDWvmhzWAnXYys8YmlxlBEUJnSAusAJ51j8ma3C8SkZuicjKc8ArBwiiAh_Xcd61Q1x0PFAYwWtGKTsAxda8-yWfHnrGbvgCp9QBeea34e8ez9-N3_uLRv4s-hVuHe9Ps04eDj4_hduzSM_wu0Q6sl4vK7MKNpa6eeOO4AK1OEtI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsible+agriculture+must+adapt+to+the+wetland+character+of+mid%E2%80%90latitude+peatlands&rft.jtitle=Global+change+biology&rft.au=Freeman%2C+Benjamin+W.+J.&rft.au=Evans%2C+Chris+D.&rft.au=Musarika%2C+Samuel&rft.au=Morrison%2C+Ross&rft.date=2022-06-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=28&rft.issue=12&rft.spage=3795&rft.epage=3811&rft_id=info:doi/10.1111%2Fgcb.16152&rft.externalDBID=10.1111%252Fgcb.16152&rft.externalDocID=GCB16152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon