Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories....
Saved in:
Published in: | Global change biology Vol. 28; no. 12; pp. 3795 - 3811 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-06-2022
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts. |
---|---|
AbstractList | Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr
−1
and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts. Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr −1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio-economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co-creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. Peatlands are a globally important but diminishing and irrecoverable carbon store. Hydrology is a dominant driver of peatland ecosystem function, and water table depth is a strong predictor of peatland greenhouse gas emissions. Responsible management requires agriculture to adapt to the wetland character of peatlands. Wetland agriculture strategies could increase the resilience of production systems, deliver a wider range of environmental benefits and protect these valuable ecosystems for everyone's future benefit, whilst making a vital contribution to global climate change mitigation efforts. Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio‐economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co‐creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation. |
Author | Freeman, Benjamin W. J. Styles, David Evans, Chris D. Jones, Davey L. Bell, Nicholle G. A. Wen, Yuan Chadwick, David R. Morrison, Ross Page, Susan E. Musarika, Samuel Newman, Thomas R. Wiggs, Giles F. S. |
AuthorAffiliation | 3 UK Centre for Ecology and Hydrology Wallingford Oxfordshire UK 5 6396 School of Geography and the Environment University of Oxford Oxford Oxfordshire UK 4 4488 School of Geography, Geology and the Environment University of Leicester Leicester Leicestershire UK 6 School of Chemistry University of Edinburgh Edinburgh Midlothian UK 2 UK Centre for Ecology and Hydrology Bangor Gwynedd UK 7 Ryan Institute National University of Ireland Galway Galway Ireland 9 SoilsWest Centre for Sustainable Farming Systems Food Futures Institute Murdoch University Murdoch Western Australia Australia 1 1506 School of Natural Sciences Bangor University Bangor Gwynedd UK 8 34752 College of Agronomy and Biotechnology China Agricultural University Beijing China |
AuthorAffiliation_xml | – name: 5 6396 School of Geography and the Environment University of Oxford Oxford Oxfordshire UK – name: 9 SoilsWest Centre for Sustainable Farming Systems Food Futures Institute Murdoch University Murdoch Western Australia Australia – name: 3 UK Centre for Ecology and Hydrology Wallingford Oxfordshire UK – name: 8 34752 College of Agronomy and Biotechnology China Agricultural University Beijing China – name: 6 School of Chemistry University of Edinburgh Edinburgh Midlothian UK – name: 1 1506 School of Natural Sciences Bangor University Bangor Gwynedd UK – name: 2 UK Centre for Ecology and Hydrology Bangor Gwynedd UK – name: 4 4488 School of Geography, Geology and the Environment University of Leicester Leicester Leicestershire UK – name: 7 Ryan Institute National University of Ireland Galway Galway Ireland |
Author_xml | – sequence: 1 givenname: Benjamin W. J. orcidid: 0000-0001-5625-506X surname: Freeman fullname: Freeman, Benjamin W. J. email: b.freeman@bangor.ac.uk organization: Bangor University – sequence: 2 givenname: Chris D. orcidid: 0000-0002-7052-354X surname: Evans fullname: Evans, Chris D. – sequence: 3 givenname: Samuel orcidid: 0000-0003-0939-8927 surname: Musarika fullname: Musarika, Samuel – sequence: 4 givenname: Ross orcidid: 0000-0002-1847-3127 surname: Morrison fullname: Morrison, Ross – sequence: 5 givenname: Thomas R. orcidid: 0000-0002-0361-0774 surname: Newman fullname: Newman, Thomas R. organization: University of Leicester – sequence: 6 givenname: Susan E. orcidid: 0000-0002-3392-9241 surname: Page fullname: Page, Susan E. organization: University of Leicester – sequence: 7 givenname: Giles F. S. orcidid: 0000-0002-2131-0724 surname: Wiggs fullname: Wiggs, Giles F. S. organization: University of Oxford – sequence: 8 givenname: Nicholle G. A. orcidid: 0000-0001-7887-2659 surname: Bell fullname: Bell, Nicholle G. A. organization: University of Edinburgh – sequence: 9 givenname: David orcidid: 0000-0003-4185-4478 surname: Styles fullname: Styles, David organization: National University of Ireland Galway – sequence: 10 givenname: Yuan orcidid: 0000-0002-9612-7975 surname: Wen fullname: Wen, Yuan organization: China Agricultural University – sequence: 11 givenname: David R. orcidid: 0000-0002-8479-8157 surname: Chadwick fullname: Chadwick, David R. organization: Bangor University – sequence: 12 givenname: Davey L. orcidid: 0000-0002-1482-4209 surname: Jones fullname: Jones, Davey L. organization: Murdoch University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35243734$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFqFTEUhoNUbHvrwheQgBtdTJvkJJl7N0K9aBUKgrR0GZJMcm_KzGRMMpbufASf0Scx7a1FBbNJIB8f5z__Idob4-gQekHJMa3nZGPNMZVUsCfogIIUDeNLuXf3FryhhMI-Osz5mhACjMhnaB8E49ACP0BXX1ye4piD6R3WmxTs3Jc5OTzMuWDd6angEnHZOnzjSq_HDtutTtoWl3D0eAjdz-8_el1CmTuHJ6fvoXyEnnrdZ_f84V6gyw_vL9Yfm_PPZ5_Wp-eN5RxYA8bITtQMwKSnBKz0zBrLDJGt56ZddivGpOG6RmGi096ufCuIB-4JUGlggd7uvNNsBtdZN5akezWlMOh0q6IO6u-fMWzVJn5TK6BcSqiC1w-CFL_OLhc1hGxdX1O4OGfFJEjKmahbXKBX_6DXcU5jjVcpCcsVF62s1JsdZVPMOTn_OAwl6q4uVetS93VV9uWf0z-Sv_upwMkOuAm9u_2_SZ2t3-2UvwCaj6ID |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116694 crossref_primary_10_3389_fsoil_2023_1285964 crossref_primary_10_1016_j_landusepol_2023_106628 crossref_primary_10_1016_j_agee_2023_108641 crossref_primary_10_1111_gcbb_13169 crossref_primary_10_1007_s13157_022_01634_7 crossref_primary_10_1080_17583004_2023_2275578 crossref_primary_10_3390_foods11193053 crossref_primary_10_1038_s41598_024_64616_1 crossref_primary_10_1088_1755_1315_1118_1_012059 crossref_primary_10_3389_fsoil_2023_1305105 crossref_primary_10_1007_s10533_023_01113_z crossref_primary_10_1016_j_ecohyd_2024_02_005 crossref_primary_10_1126_science_abo2364 crossref_primary_10_1007_s10533_023_01095_y crossref_primary_10_1007_s10533_023_01097_w crossref_primary_10_3390_horticulturae9010089 crossref_primary_10_1016_j_landusepol_2023_106886 crossref_primary_10_1007_s10533_024_01123_5 crossref_primary_10_1016_j_foreco_2024_121784 crossref_primary_10_3390_foods12020352 crossref_primary_10_3390_molecules28155796 |
Cites_doi | 10.1016/j.agee.2016.11.015 10.1111/gcb.13120 10.1111/j.1365‐2389.2009.01222.x 10.2307/2259253 10.1007/s10750‐011‐0729‐x 10.1007/s10750‐011‐0736‐y 10.5194/bg‐10‐1067‐2013 10.5194/bg‐11‐749‐2014 10.1016/j.clet.2021.100305 10.1111/j.1475‐2743.2011.00327.x 10.1126/science.aal179 10.1038/nclimate3158 10.1139/a11‐014 10.1016/j.resconrec.2021.105764 10.1038/s41893‐021‐00803‐6 10.1111/gcbb.12214 10.1007/s13157‐020‐01310‐8 10.1111/gcb.12745 10.5194/bg‐18‐3881‐2021 10.1029/2010GL043584 10.5194/bg‐11‐6595‐2014 10.1016/j.landusepol.2019.05.038 10.1016/j.ecoleng.2020.106044 10.1016/j.ecoleng.2016.03.018 10.5194/bg‐13‐5221‐2016 10.1007/s10113‐012‐0355‐9 10.1038/s41586‐018‐0594‐0 10.1016/j.ecoser.2014.06.013 10.1088/1748‐9326/ab56e6 10.1016/j.jhydrol.2012.04.029 10.1038/s41467‐018‐03406‐6 10.1111/j.1757‐1707.2010.01048.x 10.1016/j.soilbio.2018.08.020 10.1038/s41586‐021‐03523‐1 10.1007/s11368‐016‐1648‐2 10.1016/j.ecolind.2019.105838 10.1111/gcb.15802 10.1016/j.landusepol.2019.104181 10.1111/j.1654‐109X.2009.01028.x 10.1088/1748‐9326/abeb36 10.5194/bg‐16‐4555‐2019 10.1038/s41612‐019‐0086‐4 10.1007/s00027‐015‐0447‐y 10.1007/s10705‐019‐10012‐5 10.1088/2515‐7620/ab7b92 10.1038/s41467‐020‐15499‐z 10.1016/j.agee.2014.12.019 10.1111/gcb.13303 10.1016/j.scitotenv.2019.02.360 10.1007/s10021‐015‐9879‐4 10.1038/ncomms1523 10.1007/s11027‐014‐9559‐2 10.1016/j.ecoser.2014.06.011 10.1007/s11104‐014‐2164‐z 10.1016/j.geoderma.2018.12.028 10.1080/14693062.2015.1022854 10.1016/j.catena.2017.09.010 10.1130/REG6-p107 10.1111/gcbb.12424 10.1016/j.scitotenv.2017.01.094 10.1016/j.geoderma.2009.02.022 10.1016/j.ecoser.2014.06.008 10.1017/CBO9781139177788.017 10.19189/MaP.2015.OMB.210 10.1016/j.jclepro.2020.121179 10.1080/17583004.2018.1557990 10.5194/bg‐12‐2101‐2015 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 5PM |
DOI | 10.1111/gcb.16152 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access PubMed CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Economics Agriculture |
DocumentTitleAlternate | FREEMAN et al |
EISSN | 1365-2486 |
EndPage | 3811 |
ExternalDocumentID | 10_1111_gcb_16152 35243734 GCB16152 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/M009106/1; NE/P0140971/1; NE/R010218/1 – fundername: Biotechnology and Biological Sciences Research Council funderid: NE/M009106/1 – fundername: Natural Environment Research Council grantid: NE/P0140971/1 – fundername: Natural Environment Research Council grantid: NE/R010218/1 – fundername: Natural Environment Research Council grantid: NE/M009106/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: NE/M009106/1 – fundername: ; grantid: NE/M009106/1; NE/P0140971/1; NE/R010218/1 – fundername: ; grantid: NE/M009106/1 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT NPM AAMNL AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 5PM |
ID | FETCH-LOGICAL-c4432-3bb6d5111326f103c6f2cbc2b067f4b78d9226b4a13525dafc9f750f34f0316b3 |
IEDL.DBID | 33P |
ISSN | 1354-1013 |
IngestDate | Tue Sep 17 21:27:58 EDT 2024 Sat Aug 17 01:39:56 EDT 2024 Thu Nov 21 07:25:55 EST 2024 Thu Nov 21 20:49:21 EST 2024 Wed Oct 16 00:40:38 EDT 2024 Sat Aug 24 00:59:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | greenhouse gases paludiculture hydrology peatlands carbon climate change mitigation wetland agriculture soil loss |
Language | English |
License | Attribution 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4432-3bb6d5111326f103c6f2cbc2b067f4b78d9226b4a13525dafc9f750f34f0316b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-1482-4209 0000-0002-3392-9241 0000-0002-0361-0774 0000-0002-9612-7975 0000-0002-1847-3127 0000-0002-8479-8157 0000-0002-2131-0724 0000-0003-0939-8927 0000-0002-7052-354X 0000-0003-4185-4478 0000-0001-5625-506X 0000-0001-7887-2659 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16152 |
PMID | 35243734 |
PQID | 2663894576 |
PQPubID | 30327 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314663 proquest_miscellaneous_2636142501 proquest_journals_2663894576 crossref_primary_10_1111_gcb_16152 pubmed_primary_35243734 wiley_primary_10_1111_gcb_16152_GCB16152 |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2021; 27 2017; 7 2018; 562 2011; 674 2018; 160 2017; 2 2016b 2018; 127 2019; 10 2019; 14 2019; 16 2020; 11 2011; 19 2017; 9 2017; 237 2010; 61 2009; 12 2018; 9 1957; 85 2020; 2 2013; 10 2013; 13 2017; 584–585 2020; 90 2019; 115 2010; 154 2016; 354 1984 2021; 593 1982 2014; 9 2011; 27 2010; 2 2014; 11 2015; 12 2017; 20 2021; 5 2010; 37 2011; 2 2015; 18 2012 2020; 262 2019; 2 2015; 202 2010 2020; 40 1980; 68 2008 2019; 667 2002 2016; 16 2015; 7 2016; 13 2020; 109 1999 2021; 16 2012; 446–447 2021 2017; 17 2020 2019; 87 2015; 20 2021; 18 2015; 21 2019 2018 2009; 8 2017 2016 2015 2021; 174 2014 2019; 338 2013 2020; 158 2014; 383 2016a; 78 2017; 103 2016; 22 Wichtmann W. (e_1_2_8_98_1) 2016 e_1_2_8_49_1 e_1_2_8_68_1 Joosten H. (e_1_2_8_44_1) 2002 Evans C. (e_1_2_8_21_1) 2017 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 UNFCCC (e_1_2_8_90_1) 2015 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Mulholland B. (e_1_2_8_55_1) 2020 e_1_2_8_38_1 Thompson K. (e_1_2_8_85_1) 1957; 85 e_1_2_8_95_1 e_1_2_8_99_1 Clarke D. (e_1_2_8_14_1) 2019 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 De Jong M. (e_1_2_8_18_1) 2020 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_86_1 Hoving I. E. (e_1_2_8_35_1) 2008 e_1_2_8_63_1 Cumming A. (e_1_2_8_17_1) 2018 e_1_2_8_82_1 e_1_2_8_79_1 Myhre G. (e_1_2_8_57_1) 2013 Drösler M. (e_1_2_8_19_1) 2014 e_1_2_8_94_1 Joosten H. (e_1_2_8_43_1) 2010 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 Evans C. (e_1_2_8_26_1) 2020 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 Smith P. (e_1_2_8_76_1) 2014 Jansen I. E. (e_1_2_8_40_1) 2017; 2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_81_1 e_1_2_8_7_1 Sly R. (e_1_2_8_75_1) 2010 Evans C. (e_1_2_8_23_1) 2016 e_1_2_8_20_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_59_1 Stark C. (e_1_2_8_78_1) 2020 Taft H. E. (e_1_2_8_80_1) 2014 Couwenberg J. (e_1_2_8_15_1) 2018 e_1_2_8_70_1 Hoving I. E. (e_1_2_8_37_1) 2013 USDA Soil Survey Staff (e_1_2_8_91_1) 1999 e_1_2_8_97_1 Abel S. (e_1_2_8_2_1) 2016 e_1_2_8_32_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Schothorst C. J. (e_1_2_8_72_1) 1982 Page S. (e_1_2_8_61_1) 2020 e_1_2_8_4_1 e_1_2_8_8_1 Alexandratos N. (e_1_2_8_3_1) 2012 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 Reed M. S. (e_1_2_8_66_1) 2020 e_1_2_8_84_1 e_1_2_8_39_1 Graves A. R. (e_1_2_8_31_1) 2013 e_1_2_8_16_1 e_1_2_8_58_1 Chubarova N. Y. (e_1_2_8_13_1) 2009 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 Hoving I. E. (e_1_2_8_36_1) 2015 e_1_2_8_50_1 |
References_xml | – volume: 90 start-page: 104181 year: 2020 article-title: Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions publication-title: Land Use Policy – year: 2016b – volume: 21 start-page: 750 year: 2015 end-page: 765 article-title: Agricultural peatland restoration: effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta publication-title: Global Change Biology – volume: 160 start-page: 134 year: 2018 end-page: 140 article-title: PEATMAP: Refining estimates of global peatland distribution based on a meta‐analysis publication-title: Catena – volume: 22 start-page: 763 year: 2016 end-page: 781 article-title: Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050 publication-title: Global Change Biology – volume: 9 start-page: 54 year: 2014 end-page: 65 article-title: Investing in nature: Developing ecosystem service markets for peatland restoration publication-title: Ecosystem Services – volume: 10 start-page: 115 year: 2019 end-page: 126 article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation publication-title: Carbon Management – volume: 202 start-page: 68 year: 2015 end-page: 78 article-title: Variations in CO2 exchange for dairy farms with year‐round rotational grazing on drained peatlands publication-title: Agriculture, Ecosystems and Environment – year: 2021 – volume: 667 start-page: 179 year: 2019 end-page: 190 article-title: Impact of fertiliser, water table, and warming on celery yield and CO and CH emissions from fenland agricultural peat publication-title: Science of the Total Environment – volume: 61 start-page: 186 year: 2010 end-page: 196 article-title: N O emissions from an irrigated and non‐irrigated organic soil in eastern Canada as influenced by N fertilizer addition publication-title: European Journal of Soil Science – volume: 16 start-page: 4555 year: 2019 end-page: 4575 article-title: Regulation of N O emissions from acid organic soil drained for agriculture publication-title: Biogeosciences – volume: 174 start-page: 105764 year: 2021 article-title: Livestock‐induced N O emissions may limit the benefits of converting cropland to grazed grassland as a greenhouse gas mitigation strategy for agricultural peatlands publication-title: Resources, Conservation and Recycling – volume: 674 start-page: 67 year: 2011 end-page: 89 article-title: Assessing greenhouse gas emissions from peatlands using vegetation as a proxy publication-title: Hydrobiologia – volume: 9 start-page: 44 year: 2014 end-page: 53 article-title: Improving the link between payments and the provision of ecosystem services in agri‐environment schemes publication-title: Ecosystem Services – start-page: 436 year: 1999 – year: 2018 – year: 2014 – volume: 20 start-page: 1 year: 2017 end-page: 16 article-title: Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany publication-title: Mires and Peat – volume: 9 start-page: 1071 year: 2018 article-title: The underappreciated potential of peatlands in global climate change mitigation strategies publication-title: Nature Communications – volume: 37 start-page: 1 year: 2010 end-page: 5 article-title: Global peatland dynamics since the Last Glacial Maximum publication-title: Geophysical Research Letters – volume: 16 start-page: 44010 year: 2021 article-title: Global importance of methane emissions from drainage ditches and canals publication-title: Environmental Research Letters – start-page: 9 year: 2018 end-page: 21 article-title: Some facts on submerged drains in Dutch peat pastures publication-title: IMCG Bulletin – volume: 87 start-page: 104019 year: 2019 article-title: Sustainable management of cultivated peatlands in Switzerland: Insights, challenges, and opportunities publication-title: Land Use Policy – volume: 584–585 start-page: 665 year: 2017 end-page: 672 article-title: Effect of water table management and elevated CO2 on radish productivity and on CH and CO fluxes from peatlands converted to agriculture publication-title: Science of the Total Environment – volume: 127 start-page: 10 year: 2018 end-page: 21 article-title: Efficacy of mitigation measures for reducing greenhouse gases emissions from horticultural peat soils publication-title: Soil Biology & Biochemistry – year: 1982 – volume: 12 start-page: 2101 year: 2015 end-page: 2117 article-title: Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany publication-title: Biogeosciences – volume: 7 start-page: 63 year: 2017 end-page: 68 article-title: Greenhouse gas emissions intensity of global croplands publication-title: Nature Climate Change – volume: 85 start-page: 68 year: 1957 end-page: 76 article-title: Origin and use of the English peat fens publication-title: The Scientific Monthly – volume: 2 start-page: 514 year: 2011 article-title: Experimental drying intensifies burning and carbon losses in a northern peatland publication-title: Nature Communications – volume: 17 start-page: 1874 year: 2017 end-page: 1882 article-title: Methane cycling in a drained wetland soil profile publication-title: Journal of Soils and Sediments – volume: 2 start-page: 26 year: 2017 end-page: 29 article-title: Sturen met water levert veel op publication-title: Meer Dan Bodemdaling. Bodemdaling – year: 2008 – volume: 27 start-page: 170 year: 2011 end-page: 176 article-title: Peatland subsidence and carbon loss from drained temperate fens publication-title: Soil Use and Management – volume: 262 start-page: 121179 year: 2020 article-title: Raising the groundwater table in the non‐growing season can reduce greenhouse gas emissions and maintain crop productivity in cultivated fen peats publication-title: Journal of Cleaner Production – volume: 12 start-page: 283 year: 2009 end-page: 294 article-title: Effects of raised water levels on wet grassland plant communities publication-title: Applied Vegetation Science – volume: 11 start-page: 1644 year: 2020 article-title: Prompt rewetting of drained peatlands reduces climate warming despite methane emissions publication-title: Nature Communications – volume: 20 start-page: 1529 year: 2015 end-page: 1544 article-title: Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table publication-title: Mitigation and Adaptation Strategies for Global Change – volume: 13 start-page: 781 year: 2013 end-page: 795 article-title: Mitigation of greenhouse gas emissions from an abandoned Baltic peat extraction area by growing reed canary grass: Life‐cycle assessment publication-title: Regional Environmental Change – volume: 103 start-page: 497 year: 2017 end-page: 505 article-title: Commercial viability of paludiculture: A comparison of harvesting reeds for biogas production, direct combustion, and thatching publication-title: Ecological Engineering – year: 2019 – year: 2015 – volume: 68 start-page: 229 year: 1980 end-page: 249 article-title: The record of peat wastage in the East Anglian Fenlands at Holme Post, 1848–1978 A.D publication-title: Journal of Ecology – volume: 78 start-page: 573 year: 2016a end-page: 590 article-title: The role of waterborne carbon in the greenhouse gas balance of drained and re‐wetted peatlands publication-title: Aquatic Sciences – volume: 674 start-page: 91 year: 2011 end-page: 104 article-title: Cultivating the climate: Socio‐economic prospects and consequences of climate‐friendly peat land management in Germany publication-title: Hydrobiologia – volume: 338 start-page: 410 year: 2019 end-page: 421 article-title: Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia publication-title: Geoderma – volume: 18 start-page: 1000 year: 2015 end-page: 1013 article-title: Moving beyond global warming potentials to quantify the climatic role of ecosystems publication-title: Ecosystems – volume: 27 start-page: 5141 year: 2021 end-page: 5153 article-title: Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands publication-title: Global Change Biology – volume: 40 start-page: 2309 year: 2020 end-page: 2320 article-title: Climate change mitigation through land use on rewetted peatlands—Cross‐sectoral spatial planning for paludiculture in Northeast Germany publication-title: Wetlands – volume: 2 start-page: 130 year: 2010 end-page: 138 article-title: Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) Cultivation on a drained boreal organic soil publication-title: GCB Bioenergy – volume: 11 start-page: 749 year: 2014 end-page: 761 article-title: High CO fluxes from grassland on histic Gleysol along soil carbon and drainage gradients publication-title: Biogeosciences – volume: 14 start-page: 124030 year: 2019 article-title: Prompt active restoration of peatlands substantially reduces climate impact publication-title: Environmental Research Letters – volume: 383 start-page: 217 year: 2014 end-page: 230 article-title: Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level publication-title: Plant and Soil – volume: 16 start-page: 522 year: 2016 end-page: 541 article-title: GHG mitigation of agricultural peatlands requires coherent policies publication-title: Climate Policy – volume: 22 start-page: 4134 year: 2016 end-page: 4149 article-title: High emissions of greenhouse gases from grasslands on peat and other organic soils publication-title: Global Change Biology – start-page: 436 year: 2017 end-page: 439 – start-page: 88 year: 2017 – year: 2016 – volume: 8 start-page: 247 year: 2009 end-page: 264 – volume: 19 start-page: 371 year: 2011 end-page: 396 article-title: Peatlands in the Earth’s 21st century climate system publication-title: Environmental Reviews – volume: 593 start-page: 548 year: 2021 end-page: 552 article-title: Overriding water table control on managed peatland greenhouse gas emissions publication-title: Nature – year: 2010 – volume: 158 start-page: 106044 year: 2020 article-title: Multispectral satellite based monitoring of land cover change and associated fire reduction after large‐scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia) publication-title: Ecological Engineering – year: 2012 – volume: 446–447 start-page: 59 year: 2012 end-page: 69 article-title: Analysing water level strategies to reduce soil subsidence in Dutch peat meadows publication-title: Journal of Hydrology – volume: 154 start-page: 242 year: 2010 end-page: 251 article-title: Social and economic aspects of peatland management in Northern Europe, with particular reference to the English case publication-title: Geoderma – start-page: 53 year: 2020 – year: 1984 – volume: 237 start-page: 162 year: 2017 end-page: 172 article-title: Greenhouse gas emissions from intensively managed peat soils in an arable production system publication-title: Agriculture, Ecosystems and Environment – volume: 11 start-page: 6595 year: 2014 end-page: 6612 article-title: Nitrous oxide emission budgets and land‐use‐driven hotspots for organic soils in Europe publication-title: Biogeosciences – year: 2002 – volume: 2 start-page: 31001 year: 2020 article-title: Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England publication-title: Environmental Research Communications – volume: 5 start-page: 37 issue: 1 year: 2021 end-page: 46 article-title: Mapping the irrecoverable carbon in Earth’s ecosystems publication-title: Nature Sustainability – volume: 13 start-page: 5221 year: 2016 end-page: 5244 article-title: Greenhouse gas emissions from fen soils used for forage production in northern Germany publication-title: Biogeosciences – volume: 109 start-page: 105838 year: 2020 article-title: A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application publication-title: Ecological Indicators – volume: 5 start-page: 100305 year: 2021 article-title: Wet peatland utilisation for climate protection—An international survey of paludiculture innovation publication-title: Cleaner Engineering and Technology – volume: 2 start-page: 29 year: 2019 article-title: Improved calculation of warming‐equivalent emissions for short‐lived climate pollutants publication-title: npj Climate and Atmospheric Science – year: 2020 – volume: 115 start-page: 57 year: 2019 end-page: 67 article-title: Fertilizer‐induced fluxes dominate annual N2O emissions from a nitrogen‐rich temperate fen rewetted for paludiculture publication-title: Nutrient Cycling in Agroecosystems – volume: 18 start-page: 3881 year: 2021 end-page: 3902 article-title: Conventional subsoil irrigation techniques do not lower greenhouse gas emissions from drained peat meadows publication-title: Biogeosciences – volume: 562 start-page: 519 year: 2018 end-page: 525 article-title: Options for keeping the food system within environmental limits publication-title: Nature – volume: 10 start-page: 1067 year: 2013 end-page: 1082 article-title: Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog publication-title: Biogeosciences – volume: 9 start-page: 5 year: 2014 end-page: 19 article-title: Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: Linking process understanding to ecosystem service valuation publication-title: Ecosystem Services – volume: 7 start-page: 1092 year: 2015 end-page: 1106 article-title: The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen publication-title: GCB Bioenergy – start-page: 98 year: 2020 – volume: 354 start-page: 562 year: 2016 article-title: Time for responsible peatland management publication-title: Science – year: 2013 – volume: 9 start-page: 1690 year: 2017 end-page: 1706 article-title: Annual balances and extended seasonal modelling of carbon fluxes from a temperate fen cropped to festulolium and tall fescue under two‐cut and three‐cut harvesting regimes publication-title: GCB Bioenergy – ident: e_1_2_8_81_1 doi: 10.1016/j.agee.2016.11.015 – volume-title: The Global Peatland CO2 Picture. Peatland status and drainage related emissions in all countries of the world year: 2010 ident: e_1_2_8_43_1 contributor: fullname: Joosten H. – ident: e_1_2_8_6_1 doi: 10.1111/gcb.13120 – ident: e_1_2_8_70_1 doi: 10.1111/j.1365‐2389.2009.01222.x – ident: e_1_2_8_38_1 doi: 10.2307/2259253 – volume-title: Quantifying and mitigating greenhouse gas emissions from horticultural peat soils year: 2014 ident: e_1_2_8_80_1 contributor: fullname: Taft H. E. – ident: e_1_2_8_16_1 doi: 10.1007/s10750‐011‐0729‐x – volume: 2 start-page: 26 year: 2017 ident: e_1_2_8_40_1 article-title: Sturen met water levert veel op publication-title: Meer Dan Bodemdaling. Bodemdaling contributor: fullname: Jansen I. E. – ident: e_1_2_8_71_1 doi: 10.1007/s10750‐011‐0736‐y – volume-title: 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands year: 2014 ident: e_1_2_8_19_1 contributor: fullname: Drösler M. – volume-title: Strategy for responsible peatland management year: 2019 ident: e_1_2_8_14_1 contributor: fullname: Clarke D. – ident: e_1_2_8_5_1 doi: 10.5194/bg‐10‐1067‐2013 – ident: e_1_2_8_50_1 doi: 10.5194/bg‐11‐749‐2014 – ident: e_1_2_8_102_1 doi: 10.1016/j.clet.2021.100305 – ident: e_1_2_8_52_1 doi: 10.1111/j.1475‐2743.2011.00327.x – ident: e_1_2_8_99_1 doi: 10.1126/science.aal179 – volume-title: Paludiculture—productive use of wet peatlands: Climate protection—biodiversity—regional economic benefits year: 2016 ident: e_1_2_8_2_1 contributor: fullname: Abel S. – ident: e_1_2_8_12_1 doi: 10.1038/nclimate3158 – ident: e_1_2_8_29_1 doi: 10.1139/a11‐014 – ident: e_1_2_8_94_1 doi: 10.1016/j.resconrec.2021.105764 – ident: e_1_2_8_59_1 doi: 10.1038/s41893‐021‐00803‐6 – ident: e_1_2_8_33_1 doi: 10.1111/gcbb.12214 – ident: e_1_2_8_84_1 doi: 10.1007/s13157‐020‐01310‐8 – volume: 85 start-page: 68 year: 1957 ident: e_1_2_8_85_1 article-title: Origin and use of the English peat fens publication-title: The Scientific Monthly contributor: fullname: Thompson K. – ident: e_1_2_8_49_1 doi: 10.1111/gcb.12745 – ident: e_1_2_8_93_1 doi: 10.5194/bg‐18‐3881‐2021 – ident: e_1_2_8_101_1 doi: 10.1029/2010GL043584 – ident: e_1_2_8_53_1 doi: 10.5194/bg‐11‐6595‐2014 – ident: e_1_2_8_28_1 doi: 10.1016/j.landusepol.2019.05.038 – ident: e_1_2_8_74_1 doi: 10.1016/j.ecoleng.2020.106044 – ident: e_1_2_8_96_1 doi: 10.1016/j.ecoleng.2016.03.018 – volume-title: Hydrologische en landbouwkundige effecten toepassing onderwaterdrains in polder Zeevang: vervolgonderzoek gericht op de toepassing van een zomer‐ en winterpeil. Livestock research report 875 year: 2015 ident: e_1_2_8_36_1 contributor: fullname: Hoving I. E. – ident: e_1_2_8_63_1 doi: 10.5194/bg‐13‐5221‐2016 – volume-title: Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: e_1_2_8_76_1 contributor: fullname: Smith P. – ident: e_1_2_8_41_1 doi: 10.1007/s10113‐012‐0355‐9 – ident: e_1_2_8_77_1 doi: 10.1038/s41586‐018‐0594‐0 – ident: e_1_2_8_22_1 doi: 10.1016/j.ecoser.2014.06.013 – volume-title: Social barriers and opportunities to the implementation of the England Peat Strategy. Final Report to Natural England and Defra year: 2020 ident: e_1_2_8_66_1 contributor: fullname: Reed M. S. – volume-title: Wise use of mires and peatlands—Background and principles including a framework for decision‐making year: 2002 ident: e_1_2_8_44_1 contributor: fullname: Joosten H. – ident: e_1_2_8_60_1 doi: 10.1088/1748‐9326/ab56e6 – volume-title: Multi‐annual carbon flux at an intensively cultivated lowland peatland in East Anglia, UK year: 2018 ident: e_1_2_8_17_1 contributor: fullname: Cumming A. – ident: e_1_2_8_64_1 doi: 10.1016/j.jhydrol.2012.04.029 – ident: e_1_2_8_51_1 doi: 10.1038/s41467‐018‐03406‐6 – ident: e_1_2_8_73_1 doi: 10.1111/j.1757‐1707.2010.01048.x – ident: e_1_2_8_82_1 doi: 10.1016/j.soilbio.2018.08.020 – start-page: 436 volume-title: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys year: 1999 ident: e_1_2_8_91_1 contributor: fullname: USDA Soil Survey Staff – start-page: 88 volume-title: Implementation of an emissions inventory for UK peatlands. Report to the department for business, energy and industrial strategy year: 2017 ident: e_1_2_8_21_1 contributor: fullname: Evans C. – ident: e_1_2_8_24_1 doi: 10.1038/s41586‐021‐03523‐1 – ident: e_1_2_8_42_1 doi: 10.1007/s11368‐016‐1648‐2 – volume-title: The sixth carbon budget. The UK’s path to net zero year: 2020 ident: e_1_2_8_78_1 contributor: fullname: Stark C. – ident: e_1_2_8_87_1 doi: 10.1016/j.ecolind.2019.105838 – ident: e_1_2_8_4_1 doi: 10.1111/gcb.15802 – ident: e_1_2_8_9_1 doi: 10.1016/j.landusepol.2019.104181 – ident: e_1_2_8_88_1 doi: 10.1111/j.1654‐109X.2009.01028.x – ident: e_1_2_8_62_1 doi: 10.1088/1748‐9326/abeb36 – ident: e_1_2_8_83_1 doi: 10.5194/bg‐16‐4555‐2019 – ident: e_1_2_8_10_1 doi: 10.1038/s41612‐019‐0086‐4 – ident: e_1_2_8_25_1 doi: 10.1007/s00027‐015‐0447‐y – ident: e_1_2_8_92_1 – start-page: 9 year: 2018 ident: e_1_2_8_15_1 article-title: Some facts on submerged drains in Dutch peat pastures publication-title: IMCG Bulletin contributor: fullname: Couwenberg J. – start-page: 53 volume-title: An assessment of the societal impacts of water level management on lowland peatlands in England and Wales. Report to Defra for Project SP1218 year: 2020 ident: e_1_2_8_61_1 contributor: fullname: Page S. – ident: e_1_2_8_46_1 doi: 10.1007/s10705‐019‐10012‐5 – ident: e_1_2_8_30_1 doi: 10.1088/2515‐7620/ab7b92 – ident: e_1_2_8_32_1 doi: 10.1038/s41467‐020‐15499‐z – ident: e_1_2_8_11_1 doi: 10.1016/j.agee.2014.12.019 – ident: e_1_2_8_86_1 doi: 10.1111/gcb.13303 – volume-title: ). Hydrologische en landbouwkundige effecten van gebruik ‘onderwaterdrains’ op veengrond. Rapport 102, Animal Sciences Group van Wageningen UR year: 2008 ident: e_1_2_8_35_1 contributor: fullname: Hoving I. E. – ident: e_1_2_8_54_1 doi: 10.1016/j.scitotenv.2019.02.360 – start-page: 247 volume-title: Wildland fires and air pollution. Developments in environmental science year: 2009 ident: e_1_2_8_13_1 contributor: fullname: Chubarova N. Y. – ident: e_1_2_8_58_1 doi: 10.1007/s10021‐015‐9879‐4 – volume-title: Paludiculture or paludifuture?—Environmental and economic analysis of cattail‐based insulation material from paludiculture in The Netherlands year: 2020 ident: e_1_2_8_18_1 contributor: fullname: De Jong M. – ident: e_1_2_8_89_1 doi: 10.1038/ncomms1523 – ident: e_1_2_8_69_1 doi: 10.1007/s11027‐014‐9559‐2 – ident: e_1_2_8_8_1 doi: 10.1016/j.ecoser.2014.06.011 – volume-title: Adoption of the Paris agreement year: 2015 ident: e_1_2_8_90_1 contributor: fullname: UNFCCC – ident: e_1_2_8_20_1 – volume-title: Soil in their souls. A history of fenland farming year: 2010 ident: e_1_2_8_75_1 contributor: fullname: Sly R. – ident: e_1_2_8_47_1 doi: 10.1007/s11104‐014‐2164‐z – volume-title: A scoping study for potential community‐based carbon offsetting schemes in the Falkland Islands. Report to Falklands Conservation, Stanley year: 2020 ident: e_1_2_8_26_1 contributor: fullname: Evans C. – start-page: 98 volume-title: An assessment of the potential for paludiculture in England and Wales. Report to Defra for Project SP1218 year: 2020 ident: e_1_2_8_55_1 contributor: fullname: Mulholland B. – ident: e_1_2_8_39_1 – ident: e_1_2_8_27_1 doi: 10.1016/j.geoderma.2018.12.028 – volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change year: 2013 ident: e_1_2_8_57_1 contributor: fullname: Myhre G. – ident: e_1_2_8_68_1 doi: 10.1080/14693062.2015.1022854 – ident: e_1_2_8_100_1 doi: 10.1016/j.catena.2017.09.010 – ident: e_1_2_8_79_1 doi: 10.1130/REG6-p107 – volume-title: Drainage and behaviour of peat soils. Report No. 3 year: 1982 ident: e_1_2_8_72_1 contributor: fullname: Schothorst C. J. – ident: e_1_2_8_45_1 doi: 10.1111/gcbb.12424 – ident: e_1_2_8_56_1 doi: 10.1016/j.scitotenv.2017.01.094 – ident: e_1_2_8_65_1 doi: 10.1016/j.geoderma.2009.02.022 – volume-title: Paludiculture—productive use of wet peatlands: Climate protection—biodiversity—regional economic benefits year: 2016 ident: e_1_2_8_98_1 contributor: fullname: Wichtmann W. – volume-title: Hydrologische en landbouwkundige effecten toepassing onderwaterdrains bij dynamisch slootpeilbeheer op veengrond. Rapport 719, Wageningen UR Livestock Research year: 2013 ident: e_1_2_8_37_1 contributor: fullname: Hoving I. E. – ident: e_1_2_8_67_1 doi: 10.1016/j.ecoser.2014.06.008 – volume-title: Lowland peatland systems in England and Wales—Evaluating greenhouse gas fluxes and carbon balances. Final report to Defra on Project SP1210 year: 2016 ident: e_1_2_8_23_1 contributor: fullname: Evans C. – ident: e_1_2_8_97_1 doi: 10.1017/CBO9781139177788.017 – ident: e_1_2_8_34_1 doi: 10.19189/MaP.2015.OMB.210 – ident: e_1_2_8_95_1 doi: 10.1016/j.jclepro.2020.121179 – volume-title: World agriculture towards 2030/2050: The 2012 revision. ESA working paper no. 12‐03 year: 2012 ident: e_1_2_8_3_1 contributor: fullname: Alexandratos N. – volume-title: Restoration of Fenland peatland under climate change. Report to the Adaptation Sub‐Committee of the Committee on Climate Change year: 2013 ident: e_1_2_8_31_1 contributor: fullname: Graves A. R. – ident: e_1_2_8_48_1 doi: 10.1080/17583004.2018.1557990 – ident: e_1_2_8_7_1 doi: 10.5194/bg‐12‐2101‐2015 |
SSID | ssj0003206 |
Score | 2.5625126 |
SecondaryResourceType | review_article |
Snippet | Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3795 |
SubjectTerms | Agricultural land Agriculture carbon Carbon dioxide Carbon dioxide emissions Climate change Climate change mitigation Drainage Drainage systems Economics Emissions Emissions control Farm buildings Food security Global climate Greenhouse effect Greenhouse gases Groundwater table hydrology Land management Livelihoods Mitigation paludiculture Peatlands Private sector Restoration Review Reviews Soil erosion soil loss Water depth Water management Water table Water table depth Wetland agriculture Wetlands |
Title | Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16152 https://www.ncbi.nlm.nih.gov/pubmed/35243734 https://www.proquest.com/docview/2663894576 https://search.proquest.com/docview/2636142501 https://pubmed.ncbi.nlm.nih.gov/PMC9314663 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RJKReCiylpAVkEKp6SbWJvbuJOMGywAWEeIjeIj-XlSBZbRJVvfET-I38EsbOo6wQUqXeEmUiO7Zn5htn5jPAHoJeZv2-r7UxPpNc-LFU1B8wYSIZmR7Xdk_39Gpw_is6GlmanP2mFqbih2g33KxmOHttFZyL_JWSj6X4aeGKtb8YJbjyDXrRWmEaunM1A9pjaGoCWrMK2Sye9s15X_QGYL7Nk3yNX50DOl7-r66vwKcad5KDaqGswoJOO7BUnUT5pwPro78FbyhWa3zeAe8MUXU2c2LkOxneTxDiurs1uL1sEmzvNeHjWU3joclDmReEKz4tSJERhJjkty5sCiWRDT80yQx5mKjnxydXS1MqTaboFlzl8We4OR5dD0_9-qAGXzJGQ58K0Vc9d2h93wRdKvsmlEKGAl2hYWIQqRhRnmA8sOSrihsZG0QqhjKDNqUv6DosplmqN4D0Yi66goku44pFuLwMjynG0TZQ4iHTHuw2U5ZMKz6OpIljcFgTN6webDaTmdQqmSeIRBCcMYyvPNhpH6My2T8kPNVZaWUowhVEhYEHX6q5b1vBrlsaKObBYG5VtAKWqHv-STq5c4Td-AUMW_fgh1sV73c8ORkeuouv_y76DT6GtiTD7QxtwmIxK_UWfMhVue004gX6OxAE |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oRfTF6mo1WnUUEV8im8zZbAJ90XXrim0Rrdi3MNe60CbLboL45k_wN_aX9MzkYpciCL4l5ISZzJzLNydzvgF4QaAXXdwPjbE2RCVkmCnNwzFKm6rUjoRxOd3Zl_HBUfpu6mhydrpamIYfok-4Ocvw_toZuEtIX7DyYyVfO7xCDvgaJqSIroCDf-r9MI_9yZoRHyE5m4i3vEJuH0__6no0ugQxL--UvIhgfQja3fy_zt-GWy30ZG8aXbkDV0wxgOvNYZQ_B7A1_VPzRmKt0a8GEOwTsC6XXoy9ZJOTOaFcf3cXvn3u9tieGCaOly2Th2Gn9apiQotFxaqSEcpkP0zldlEy1VFEs9Ky07k--_Xbl9PU2rAFRQZffHwPvu5ODyezsD2rIVSIPA65lIke-XPrExsNuUpsrKSKJUVDi3Kc6oyAnkQROf5VLazKLIEVy9GSW0kk34KNoizMA2CjTMihRDlEoTElDbMi47SUdmslEaMJ4Hk3Z_mioeTIu6UMDWvuhzWA7W4289YqVzmBEcJnSEusAJ71j8me3E8SUZiydjKcEAsBwyiA-83k961Q1x0TFAYwXlOLXsBxda8_KebfPWc3fQFS6wG88mrx947n7ydv_cXDfxd9Cjdmh_t7-d6Hg4-P4GbsKjR8omgbNqplbR7D1ZWun3jzOAcPWBQs |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VViAuUAKlhhYWhBAXo9g7SWxxgjShCKgqHoKbtc82UmtHiS3ErT-hv5Ff0tn1o40qJCRutjzWrnfn8e165xuAFwR60cX90BhrQ1RChqnSPByhtIlK7EAYt6e7_3V08DPZmzianDdtLkzND9FtuDnL8P7aGfhc2ytGfqTkawdXyP9uIMFwR5zP-WHnhnnsC2tGfIDkayLe0Aq5Yzzdq6vB6BrCvH5Q8iqA9RFoeve_-r4Jdxrgyd7WmnIP1kzeg5t1KcrfPdiaXGa8kVhj8sseBJ8JVhcLL8ZesvHJjDCuv7sPP760J2xPDBNHi4bHw7DTalkyocW8ZGXBCGOyX6Z0ZyiZagmiWWHZ6Uz_OTv3yTSVNmxOccGnHj-A79PJt_F-2FRqCBUij0Mu5VAPfNX6oY36XA1trKSKJcVCi3KU6JRgnkQROfZVLaxKLUEVy9GSUxlKvgXreZGbbWCDVMi-RNlHoTEh_bIi5bSQdislEaMJ4Hk7Zdm8JuTI2oUMDWvmhzWAnXYys8YmlxlBEUJnSAusAJ51j8ma3C8SkZuicjKc8ArBwiiAh_Xcd61Q1x0PFAYwWtGKTsAxda8-yWfHnrGbvgCp9QBeea34e8ez9-N3_uLRv4s-hVuHe9Ps04eDj4_hduzSM_wu0Q6sl4vK7MKNpa6eeOO4AK1OEtI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsible+agriculture+must+adapt+to+the+wetland+character+of+mid%E2%80%90latitude+peatlands&rft.jtitle=Global+change+biology&rft.au=Freeman%2C+Benjamin+W.+J.&rft.au=Evans%2C+Chris+D.&rft.au=Musarika%2C+Samuel&rft.au=Morrison%2C+Ross&rft.date=2022-06-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=28&rft.issue=12&rft.spage=3795&rft.epage=3811&rft_id=info:doi/10.1111%2Fgcb.16152&rft.externalDBID=10.1111%252Fgcb.16152&rft.externalDocID=GCB16152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |