Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest

Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate fore...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist Vol. 239; no. 1; pp. 325 - 339
Main Authors: Mayer, Mathias, Matthews, Bradley, Sandén, Hans, Katzensteiner, Klaus, Hagedorn, Frank, Gorfer, Markus, Berger, Harald, Berger, Torsten W., Godbold, Douglas L., Rewald, Boris
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
AbstractList Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO 2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited.Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil.Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect.We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
Author Hagedorn, Frank
Godbold, Douglas L.
Matthews, Bradley
Gorfer, Markus
Sandén, Hans
Katzensteiner, Klaus
Mayer, Mathias
Berger, Torsten W.
Berger, Harald
Rewald, Boris
AuthorAffiliation 1 Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf 8903, Switzerland
6 Symbiocyte, Konrad-Lorenz-Straße 24, Tulln 3430, Austria
5 Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria
2 Forest Ecology, Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitätsstrasse 16, Zürich 8092, Switzerland
3 Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
4 Environment Agency Austria, Spittelauer Lände 5, Vienna 1090, Austria
7 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
AuthorAffiliation_xml – name: 1 Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf 8903, Switzerland
– name: 2 Forest Ecology, Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitätsstrasse 16, Zürich 8092, Switzerland
– name: 6 Symbiocyte, Konrad-Lorenz-Straße 24, Tulln 3430, Austria
– name: 5 Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria
– name: 7 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
– name: 3 Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
– name: 4 Environment Agency Austria, Spittelauer Lände 5, Vienna 1090, Austria
Author_xml – sequence: 1
  givenname: Mathias
  orcidid: 0000-0003-4366-9188
  surname: Mayer
  fullname: Mayer, Mathias
  email: mathias.mayer@wsl.ch, mathias_mayer@gmx.at
  organization: University of Natural Resources and Life Sciences (BOKU)
– sequence: 2
  givenname: Bradley
  orcidid: 0000-0001-9710-7688
  surname: Matthews
  fullname: Matthews, Bradley
  organization: Environment Agency Austria
– sequence: 3
  givenname: Hans
  orcidid: 0000-0002-2496-6307
  surname: Sandén
  fullname: Sandén, Hans
  organization: University of Natural Resources and Life Sciences (BOKU)
– sequence: 4
  givenname: Klaus
  orcidid: 0000-0003-0534-8391
  surname: Katzensteiner
  fullname: Katzensteiner, Klaus
  organization: University of Natural Resources and Life Sciences (BOKU)
– sequence: 5
  givenname: Frank
  orcidid: 0000-0001-5218-7776
  surname: Hagedorn
  fullname: Hagedorn, Frank
  organization: Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)
– sequence: 6
  givenname: Markus
  orcidid: 0000-0003-3010-6044
  surname: Gorfer
  fullname: Gorfer, Markus
  organization: Austrian Institute of Technology GmbH (AIT)
– sequence: 7
  givenname: Harald
  orcidid: 0000-0001-7974-3058
  surname: Berger
  fullname: Berger, Harald
  organization: Symbiocyte
– sequence: 8
  givenname: Torsten W.
  orcidid: 0000-0002-5614-5888
  surname: Berger
  fullname: Berger, Torsten W.
  organization: University of Natural Resources and Life Sciences (BOKU)
– sequence: 9
  givenname: Douglas L.
  orcidid: 0000-0001-5607-5800
  surname: Godbold
  fullname: Godbold, Douglas L.
  organization: Mendel University in Brno
– sequence: 10
  givenname: Boris
  orcidid: 0000-0001-8098-0616
  surname: Rewald
  fullname: Rewald, Boris
  organization: University of Natural Resources and Life Sciences (BOKU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37084070$$D View this record in MEDLINE/PubMed
BookMark eNp1kVFr1jAUhoNM3LfphX9ACt7oRbeTpE3TG0GGOmGooIJ3IU1P14w2qUnq-Pz1Rjs_VDA354Tz5OU9eU_IkfMOCXlM4Yzmc-6W8YzKlsM9sqOVaEtJeXNEdgBMlqISX47JSYw3ANDWgj0gx7wBWUEDO5I-ejsVA4ZkJ5v2RY8Jw2wdxuJ2xDRiKNAkP--ND2G033WGV3dtC20MThh0wsKH_Oxwy62fFx9tst4V1hW6SDgv23DwAWN6SO4Peor46K6eks-vX326uCyv3r95e_HyqjRVxaHUsoeOGqyp7gdopITeAKem06JqB6gFMBywFnXNmBSyk32Vmw5Z2-s-F35KXmy6y9rN2Bt0KehJLcHOOuyV11b9PXF2VNf-m2pE_kZKs8CzO4Hgv67ZuZptzJtO2qFfo2ISauDAGc_o03_QG78Gl9fLFKOcMlE3mXq-USb4GAMOBzMU1M8sVc5S_coys0_-dH8gf4eXgfMNuLUT7v-vpN59uNwkfwAJD637
CitedBy_id crossref_primary_10_1016_j_apsoil_2023_105198
crossref_primary_10_1016_j_catena_2024_107840
crossref_primary_10_1007_s11104_024_06563_4
crossref_primary_10_1111_gcbb_13110
crossref_primary_10_1016_j_funeco_2024_101359
crossref_primary_10_1007_s11104_024_06483_3
crossref_primary_10_1111_nph_19690
Cites_doi 10.1046/j.1469-8137.2003.00681.x
10.1111/nph.16269
10.1007/978-0-387-87458-6
10.1111/1758-2229.12612
10.1111/nph.13648
10.3389/fmicb.2016.02067
10.1111/nph.15884
10.1111/nph.17421
10.1038/s41396-018-0181-2
10.1007/978-3-540-38364-2_4
10.1038/s41396-021-01159-7
10.1002/jpln.201500541
10.1111/gcb.12996
10.1111/nph.12791
10.1006/niox.2000.0319
10.1038/ng.3223
10.1038/35081058
10.1111/nph.13201
10.1007/s00248-021-01736-5
10.1111/nph.17155
10.1016/S0038-0717(00)00002-X
10.1890/05-0755
10.1111/nph.13288
10.1186/1471-2180-12-255
10.1016/j.scitotenv.2018.01.012
10.1046/j.0028-646x.2001.00199.x
10.1371/journal.pone.0047500
10.1039/C8EM00253C
10.2136/sssaj1998.03615995006200020026x
10.1016/j.soilbio.2017.09.010
10.1111/j.1461-0248.2011.01611.x
10.1111/j.1469-8137.2005.01401.x
10.1111/1365-2435.12805
10.1093/bioinformatics/btu170
10.7717/peerj.2584
10.1038/233133a0
10.1007/s00442-003-1477-z
10.1155/2020/6085180
10.5194/bg-9-79-2012
10.1146/annurev-ecolsys-110617-062331
10.1111/2041-210X.12097
10.1126/science.1231923
10.1111/ele.13746
10.3897/mycokeys.10.4852
10.1111/nph.15679
10.1007/s00442-009-1433-7
10.1016/j.soilbio.2020.107730
10.1093/bioinformatics/btq461
10.1038/s41467-019-11472-7
10.1007/s11104-009-9925-0
10.1111/ele.12631
10.1111/nph.18566
10.1111/ele.13923
10.1007/s11557-006-0505-x
10.1890/10-1011.1
10.1111/ele.12862
10.1111/j.1365-2486.2006.01117.x
10.1016/j.scitotenv.2021.146819
10.1111/nph.13303
10.1111/nph.14598
10.1046/j.1469-8137.2003.00704.x
10.1111/nph.12221
10.1007/s10342-015-0882-2
10.1111/gcb.14069
10.1007/s13225-020-00466-2
10.1016/j.soilbio.2017.04.003
ContentType Journal Article
Copyright 2023 The Authors. © 2023 New Phytologist Foundation
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. © 2023 New Phytologist Foundation
– notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
5PM
DOI 10.1111/nph.18930
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Backfiles (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 339
ExternalDocumentID 10_1111_nph_18930
37084070
NPH18930
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: J‐4369
– fundername: Austrian Science Fund
  funderid: P29087‐B25
– fundername: Austrian Science Fund FWF
  grantid: J 4369
– fundername: Austrian Science Fund FWF
  grantid: P 29087
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AGUYK
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AHXOZ
AILXY
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4430-a8d0b1ce51adf07880dc031cba649f05602efe565522868b8d4228be29dadbe23
IEDL.DBID 33P
ISSN 0028-646X
IngestDate Tue Sep 17 21:29:57 EDT 2024
Fri Aug 16 01:22:35 EDT 2024
Thu Oct 10 17:00:25 EDT 2024
Fri Nov 22 01:13:25 EST 2024
Wed Oct 16 00:38:02 EDT 2024
Sat Aug 24 00:58:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords priming
soil fungal communities
nitrogen mining
Gadgil effect
carbon cycle
Fagus sylvatica (beech) forest
plant-soil feedback
tree girdling
Language English
License Attribution
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-a8d0b1ce51adf07880dc031cba649f05602efe565522868b8d4228be29dadbe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5218-7776
0000-0001-8098-0616
0000-0002-2496-6307
0000-0002-5614-5888
0000-0001-5607-5800
0000-0003-0534-8391
0000-0003-4366-9188
0000-0001-9710-7688
0000-0003-3010-6044
0000-0001-7974-3058
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18930
PMID 37084070
PQID 2821312657
PQPubID 2026848
PageCount 339
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614611
proquest_miscellaneous_2805030323
proquest_journals_2821312657
crossref_primary_10_1111_nph_18930
pubmed_primary_37084070
wiley_primary_10_1111_nph_18930_NPH18930
PublicationCentury 2000
PublicationDate July 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2013; 4
2019; 50
2019; 10
2022; 25
2011; 14
2017; 111
2003; 157
2012; 12
1978; 8
2015; 47
2010; 26
2018; 217
2015; 134
2013; 199
2009; 321
2009; 161
2021; 230
2021; 231
2021; 82
2004; 139
2014; 203
2001; 411
1975; 5
2017a; 115
2017; 20
2016; 19
2016; 209
2006; 12
2020; 143
2015; 10
2020; 226
2009
2020; 105
2006; 5
2019; 223
2015; 206
2021; 782
2015; 205
2002
1998; 62
2018; 20
2022; 237
2018; 24
1999
2016; 4
2017b; 31
2016; 7
2001; 151
2020; 2020
2013; 339
2018; 628–629
2005; 167
2006; 87
2001; 5
2021
2000; 32
2011; 92
2015; 21
2016; 179
1971; 233
2016
2014
2014; 30
2018; 12
2012; 7
2018; 10
2022; 16
2012; 9
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Gadgil RL (e_1_2_9_22_1) 1978; 8
Gadgil RL (e_1_2_9_24_1) 1975; 5
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
R Core Team (e_1_2_9_56_1) 2021
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
ÖNORM L 1084 (e_1_2_9_50_1) 1999
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 230
  start-page: 316
  year: 2021
  end-page: 326
  article-title: Fine roots and mycorrhizal fungi accelerate leaf litter decomposition in a northern hardwood forest regardless of dominant tree mycorrhizal associations
  publication-title: New Phytologist
– volume: 782
  year: 2021
  article-title: Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale
  publication-title: Science of the Total Environment
– volume: 237
  start-page: 576
  year: 2022
  end-page: 584
  article-title: Do ectomycorrhizal exploration types reflect mycelial foraging strategies?
  publication-title: New Phytologist
– volume: 231
  start-page: 777
  year: 2021
  end-page: 790
  article-title: Soil fertility relates to fungal‐mediated decomposition and organic matter turnover in a temperate mountain forest
  publication-title: New Phytologist
– start-page: 93
  year: 2002
  end-page: 115
– volume: 10
  start-page: 1
  year: 2015
  end-page: 43
  article-title: Shotgun metagenomes and multiple primer pair‐barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi
  publication-title: MycoKeys
– volume: 628–629
  start-page: 1369
  year: 2018
  end-page: 1394
  article-title: Early stage litter decomposition across biomes
  publication-title: Science of the Total Environment
– volume: 157
  start-page: 475
  year: 2003
  end-page: 492
  article-title: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?
  publication-title: New Phytologist
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Global ecological predictors of the soil priming effect
  publication-title: Nature Communications
– volume: 5
  start-page: 33
  year: 1975
  end-page: 41
  article-title: Suppression of litter decomposition by mycorrhizal roots of
  publication-title: New Zealand Journal of Forest Science
– volume: 10
  start-page: 155
  year: 2018
  end-page: 166
  article-title: The genome and microbiome of a dikaryotic fungus ( , ) revealed by metagenomics
  publication-title: Environmental Microbiology Reports
– volume: 19
  start-page: 937
  year: 2016
  end-page: 947
  article-title: Ectomycorrhizal fungi slow soil carbon cycling
  publication-title: Ecology Letters
– volume: 20
  start-page: 1546
  year: 2017
  end-page: 1555
  article-title: Below‐ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities
  publication-title: Ecology Letters
– year: 2021
– volume: 226
  start-page: 569
  year: 2020
  end-page: 582
  article-title: Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition
  publication-title: New Phytologist
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest
  publication-title: Science
– volume: 223
  start-page: 1595
  year: 2019
  end-page: 1606
  article-title: Resource‐ratio theory predicts mycorrhizal control of litter decomposition
  publication-title: New Phytologist
– volume: 139
  start-page: 89
  year: 2004
  end-page: 97
  article-title: Production, standing biomass and natural abundance of N and C in ectomycorrhizal mycelia collected at different soil depths in two forest types
  publication-title: Oecologia
– year: 2014
– volume: 82
  start-page: 243
  year: 2021
  end-page: 256
  article-title: High fungal diversity but low seasonal dynamics and ectomycorrhizal abundance in a mountain beech forest
  publication-title: Microbial Ecology
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface
  publication-title: Plant and Soil
– volume: 4
  start-page: 1070
  year: 2013
  end-page: 1075
  article-title: Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems
  publication-title: Methods in Ecology and Evolution
– volume: 167
  start-page: 309
  year: 2005
  end-page: 319
  article-title: Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests
  publication-title: New Phytologist
– volume: 5
  start-page: 62
  year: 2001
  end-page: 71
  article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite
  publication-title: Nitric Oxide
– volume: 12
  start-page: 921
  year: 2006
  end-page: 943
  article-title: Trends and methodological impacts in soil CO efflux partitioning: a metaanalytical review
  publication-title: Global Change Biology
– volume: 9
  start-page: 79
  year: 2012
  end-page: 95
  article-title: Exploring the “overflow tap” theory: linking forest soil CO fluxes and individual mycorrhizosphere components to photosynthesis
  publication-title: Biogeosciences
– volume: 47
  start-page: 410
  year: 2015
  end-page: 415
  article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
  publication-title: Nature Genetics
– volume: 25
  start-page: 391
  year: 2022
  end-page: 404
  article-title: Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability
  publication-title: Ecology Letters
– volume: 206
  start-page: 1274
  year: 2015
  end-page: 1282
  article-title: Mycorrhizal type determines the magnitude and direction of root‐induced changes in decomposition in a temperate forest
  publication-title: New Phytologist
– volume: 161
  start-page: 657
  year: 2009
  end-page: 660
  article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?
  publication-title: Oecologia
– volume: 7
  year: 2012
  article-title: Differences in soil fungal communities between European beech ( L.) dominated forests are related to soil and understory vegetation
  publication-title: PLoS ONE
– volume: 217
  start-page: 68
  year: 2018
  end-page: 73
  article-title: Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters
  publication-title: New Phytologist
– volume: 92
  start-page: 1036
  year: 2011
  end-page: 1051
  article-title: Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation
  publication-title: Ecology
– volume: 7
  year: 2016
  article-title: Fine spatial scale variation of soil microbial communities under European beech and Norway spruce
  publication-title: Frontiers in Microbiology
– volume: 4
  year: 2016
  article-title: V : a versatile open source tool for metagenomics
  publication-title: PeerJ
– volume: 157
  start-page: 605
  year: 2003
  end-page: 615
  article-title: Distribution of above‐ground and below‐ground carbohydrate reserves in adult trees of two contrasting broad‐leaved species ( and )
  publication-title: New Phytologist
– volume: 12
  start-page: 255
  year: 2012
  article-title: FungiQuant: a broad‐coverage fungal quantitative real‐time PCR assay
  publication-title: BMC Microbiology
– volume: 411
  start-page: 789
  year: 2001
  end-page: 792
  article-title: Large‐scale forest girdling shows that current photosynthesis drives soil respiration
  publication-title: Nature
– volume: 14
  start-page: 493
  year: 2011
  end-page: 502
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment
  publication-title: Ecology Letters
– volume: 32
  start-page: 947
  year: 2000
  end-page: 958
  article-title: Temperature dependence of carbon mineralisation: conclusions from a long‐term incubation of subalpine soil samples
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 213
  year: 1978
  end-page: 224
  article-title: Influence of clearfelling on decomposition of litter
  publication-title: New Zealand Journal of Forest Science
– volume: 24
  start-page: 1341
  year: 2021
  end-page: 1351
  article-title: A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest
  publication-title: Ecology Letters
– year: 2016
– volume: 12
  start-page: 2187
  year: 2018
  end-page: 2197
  article-title: Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest
  publication-title: The ISME Journal
– volume: 16
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Forest tree growth is linked to mycorrhizal fungal composition and function across Europe
  publication-title: The ISME Journal
– volume: 20
  start-page: 1454
  year: 2018
  end-page: 1468
  article-title: Validation of a quantitative PCR based detection system for indoor mold exposure assessment in bioaerosols
  publication-title: Environmental Science: Processes & Impacts
– volume: 24
  start-page: 1873
  year: 2018
  end-page: 1883
  article-title: Impact of priming on global soil carbon stocks
  publication-title: Global Change Biology
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 115
  start-page: 490
  year: 2017a
  end-page: 498
  article-title: Tree regeneration retards decomposition in a temperate mountain soil after forest gap disturbance
  publication-title: Soil Biology and Biochemistry
– volume: 31
  start-page: 1163
  year: 2017b
  end-page: 1172
  article-title: Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem
  publication-title: Functional Ecology
– volume: 21
  start-page: 4265
  year: 2015
  end-page: 4277
  article-title: Microbial physiology and soil CO efflux after 9 years of soil warming in a temperate forest – no indications for thermal adaptations
  publication-title: Global Change Biology
– volume: 134
  start-page: 683
  year: 2015
  end-page: 692
  article-title: Effects of stand patchiness due to windthrow and bark beetle abatement measures on soil CO efflux and net ecosystem productivity of a managed temperate mountain forest
  publication-title: European Journal of Forest Research
– volume: 179
  start-page: 129
  year: 2016
  end-page: 135
  article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 209
  start-page: 1382
  year: 2016
  end-page: 1394
  article-title: Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?
  publication-title: New Phytologist
– volume: 2020
  start-page: 6085180
  year: 2020
  article-title: Chemical underpinning of the tea bag index: an examination of the decomposition of tea leaves
  publication-title: Applied and Environmental Soil Science
– volume: 87
  start-page: 563
  year: 2006
  end-page: 569
  article-title: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies
  publication-title: Ecology
– volume: 223
  start-page: 33
  year: 2019
  end-page: 39
  article-title: Exploring the role of ectomycorrhizal fungi in soil carbon dynamics
  publication-title: New Phytologist
– volume: 62
  start-page: 473
  year: 1998
  end-page: 480
  article-title: Improving the Berthelot reaction for determining ammonium in soil extracts and water
  publication-title: Soil Science Society of America Journal
– volume: 203
  start-page: 245
  year: 2014
  end-page: 256
  article-title: Ectomycorrhizal species participate in enzymatic oxidation of humus in northern forest ecosystems
  publication-title: New Phytologist
– volume: 105
  start-page: 1
  year: 2020
  end-page: 16
  article-title: F T : a user‐friendly traits database of fungi and fungus‐like stramenopiles
  publication-title: Fungal Diversity
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytologist
– volume: 111
  start-page: 78
  year: 2017
  end-page: 84
  article-title: Rhizosphere priming effect: a meta‐analysis
  publication-title: Soil Biology and Biochemistry
– volume: 233
  year: 1971
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
– volume: 143
  year: 2020
  article-title: How do earthworms affect organic matter decomposition in the presence of clay‐sized minerals?
  publication-title: Soil Biology and Biochemistry
– volume: 199
  start-page: 41
  year: 2013
  end-page: 51
  article-title: The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests
  publication-title: New Phytologist
– volume: 205
  start-page: 1443
  year: 2015
  end-page: 1447
  article-title: Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytologist
– volume: 151
  start-page: 753
  year: 2001
  end-page: 760
  article-title: Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field
  publication-title: New Phytologist
– volume: 5
  start-page: 67
  year: 2006
  end-page: 107
  article-title: Fungal relationships and structural identity of their ectomycorrhizae
  publication-title: Mycological Progress
– volume: 50
  start-page: 237
  year: 2019
  end-page: 259
  article-title: Mycorrhizal fungi as mediators of soil organic matter dynamics
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than B
  publication-title: Bioinformatics
– year: 1999
– ident: e_1_2_9_8_1
  doi: 10.1046/j.1469-8137.2003.00681.x
– ident: e_1_2_9_20_1
  doi: 10.1111/nph.16269
– ident: e_1_2_9_48_1
– ident: e_1_2_9_73_1
  doi: 10.1007/978-0-387-87458-6
– ident: e_1_2_9_6_1
  doi: 10.1111/1758-2229.12612
– ident: e_1_2_9_19_1
  doi: 10.1111/nph.13648
– ident: e_1_2_9_47_1
  doi: 10.3389/fmicb.2016.02067
– ident: e_1_2_9_62_1
  doi: 10.1111/nph.15884
– ident: e_1_2_9_44_1
  doi: 10.1111/nph.17421
– ident: e_1_2_9_63_1
  doi: 10.1038/s41396-018-0181-2
– volume: 8
  start-page: 213
  year: 1978
  ident: e_1_2_9_22_1
  article-title: Influence of clearfelling on decomposition of Pinus radiata litter
  publication-title: New Zealand Journal of Forest Science
  contributor:
    fullname: Gadgil RL
– ident: e_1_2_9_49_1
  doi: 10.1007/978-3-540-38364-2_4
– ident: e_1_2_9_3_1
  doi: 10.1038/s41396-021-01159-7
– ident: e_1_2_9_39_1
  doi: 10.1002/jpln.201500541
– ident: e_1_2_9_61_1
  doi: 10.1111/gcb.12996
– ident: e_1_2_9_11_1
  doi: 10.1111/nph.12791
– ident: e_1_2_9_46_1
  doi: 10.1006/niox.2000.0319
– ident: e_1_2_9_36_1
  doi: 10.1038/ng.3223
– volume-title: R: a language and environment for statistical computing
  year: 2021
  ident: e_1_2_9_56_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_9_29_1
  doi: 10.1038/35081058
– ident: e_1_2_9_41_1
  doi: 10.1111/nph.13201
– ident: e_1_2_9_25_1
  doi: 10.1007/s00248-021-01736-5
– ident: e_1_2_9_38_1
  doi: 10.1111/nph.17155
– ident: e_1_2_9_58_1
  doi: 10.1016/S0038-0717(00)00002-X
– ident: e_1_2_9_28_1
  doi: 10.1890/05-0755
– ident: e_1_2_9_68_1
  doi: 10.1111/nph.13288
– ident: e_1_2_9_42_1
  doi: 10.1186/1471-2180-12-255
– ident: e_1_2_9_16_1
  doi: 10.1016/j.scitotenv.2018.01.012
– ident: e_1_2_9_70_1
  doi: 10.1046/j.0028-646x.2001.00199.x
– ident: e_1_2_9_71_1
  doi: 10.1371/journal.pone.0047500
– ident: e_1_2_9_67_1
  doi: 10.1039/C8EM00253C
– ident: e_1_2_9_59_1
  doi: 10.2136/sssaj1998.03615995006200020026x
– ident: e_1_2_9_43_1
  doi: 10.1016/j.soilbio.2017.09.010
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1461-0248.2011.01611.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1469-8137.2005.01401.x
– ident: e_1_2_9_45_1
  doi: 10.1111/1365-2435.12805
– ident: e_1_2_9_12_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_9_60_1
  doi: 10.7717/peerj.2584
– ident: e_1_2_9_23_1
  doi: 10.1038/233133a0
– volume: 5
  start-page: 33
  year: 1975
  ident: e_1_2_9_24_1
  article-title: Suppression of litter decomposition by mycorrhizal roots of Pinus radiata
  publication-title: New Zealand Journal of Forest Science
  contributor:
    fullname: Gadgil RL
– ident: e_1_2_9_69_1
  doi: 10.1007/s00442-003-1477-z
– ident: e_1_2_9_17_1
  doi: 10.1155/2020/6085180
– ident: e_1_2_9_27_1
  doi: 10.5194/bg-9-79-2012
– ident: e_1_2_9_21_1
  doi: 10.1146/annurev-ecolsys-110617-062331
– ident: e_1_2_9_34_1
  doi: 10.1111/2041-210X.12097
– ident: e_1_2_9_54_1
– ident: e_1_2_9_14_1
  doi: 10.1126/science.1231923
– ident: e_1_2_9_40_1
  doi: 10.1111/ele.13746
– ident: e_1_2_9_65_1
  doi: 10.3897/mycokeys.10.4852
– ident: e_1_2_9_72_1
  doi: 10.1111/nph.15679
– ident: e_1_2_9_7_1
  doi: 10.1007/s00442-009-1433-7
– ident: e_1_2_9_9_1
  doi: 10.1016/j.soilbio.2020.107730
– ident: e_1_2_9_18_1
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-019-11472-7
– ident: e_1_2_9_31_1
  doi: 10.1007/s11104-009-9925-0
– ident: e_1_2_9_5_1
  doi: 10.1111/ele.12631
– ident: e_1_2_9_32_1
  doi: 10.1111/nph.18566
– ident: e_1_2_9_4_1
  doi: 10.1111/ele.13923
– ident: e_1_2_9_2_1
  doi: 10.1007/s11557-006-0505-x
– ident: e_1_2_9_33_1
  doi: 10.1890/10-1011.1
– ident: e_1_2_9_37_1
  doi: 10.1111/ele.12862
– ident: e_1_2_9_64_1
  doi: 10.1111/j.1365-2486.2006.01117.x
– ident: e_1_2_9_66_1
  doi: 10.1016/j.scitotenv.2021.146819
– ident: e_1_2_9_13_1
  doi: 10.1111/nph.13303
– ident: e_1_2_9_52_1
  doi: 10.1111/nph.14598
– ident: e_1_2_9_57_1
  doi: 10.1046/j.1469-8137.2003.00704.x
– ident: e_1_2_9_53_1
  doi: 10.1111/nph.12221
– volume-title: Chemical analyses of soils – determination of carbonate taking into account air pressure and temperature
  year: 1999
  ident: e_1_2_9_50_1
  contributor:
    fullname: ÖNORM L 1084
– ident: e_1_2_9_35_1
  doi: 10.1007/s10342-015-0882-2
– ident: e_1_2_9_26_1
  doi: 10.1111/gcb.14069
– ident: e_1_2_9_55_1
  doi: 10.1007/s13225-020-00466-2
– ident: e_1_2_9_30_1
  doi: 10.1016/j.soilbio.2017.04.003
SSID ssj0009562
Score 2.530591
Snippet Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this...
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 325
SubjectTerms Acceleration
Carbon
carbon cycle
Carbon dioxide
Community composition
Deceleration
Decomposition
Ectomycorrhizas
Efflux
Fagus sylvatica (beech) forest
Fertility
Forest soils
Forests
Fungi
Gadgil effect
Girdling
Mycorrhizae
Nitrogen
nitrogen mining
Organic matter
Organic soils
plant–soil feedback
Positive feedback
priming
Soil
Soil dynamics
Soil fertility
soil fungal communities
Soil Microbiology
Temperate forests
tree girdling
Trees - microbiology
Title Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18930
https://www.ncbi.nlm.nih.gov/pubmed/37084070
https://www.proquest.com/docview/2821312657
https://search.proquest.com/docview/2805030323
https://pubmed.ncbi.nlm.nih.gov/PMC7614611
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4qHrz4flRXieLBS6Xpu3jyseJJBBW8lTQPW9B22e4i-uudSR_sIoLgqWmTpiGTyXyTTr4QcipiFijFtK2TDByURGQ22BluB3GWuFwlgglziO1jdP8S3wyRJuei2wvT8EP0C26oGWa-RgXnWT2j5OUoP2dgbdFfBy_BbN_wHmYId0O3Y2AO_fClZRXCKJ7-zXlb9ANg_oyTnMWvxgDdrv2r6etktcWd9LIZKBtkQZWbZPmqAmz4uUUmj1XxRjXGWCMsp7INklE1_cjNlmCKq_vvn-CrjvPiC2oCg_haUC4E2C2km6DVGF7r7yAJM00bEUaLknKKLFhNJgBl6IFt8nw7fLq-s9vzGGzh-55j81g6GRMqYFxqgBaxIwXMCSLjoZ9oQFKOq7QChAiYLg7jLJbIL5YpN5FcwsXbIUtlVao9QjXUAk8iKRLt-0rDmHATGB0BE44rnMgiJ51k0lFDu5F27gr0Xmp6zyKDTmZpq3l1Ci4k85gbBlDHcZ8NOoM_QnipqimWQRYcx3M9i-w2Iu6_4kUO-LwRVB7NCb8vgHzc8zllkRte7ijEQ9KZRc6M8H9veHr_cGcS-38vekBW8KT7JlJ4QJYm46k6JIu1nB6Zgf8NQOsJzg
link.rule.ids 230,315,782,786,887,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VbSW49EWhS2lxEYdeguI8HYlLy0OLSldIgMQtcvxgI9EE7bKq4Ncz4zy0K1SpUk9xYsexPB7PN874M8CeEjw2hlvPZgU6KJkqPLQz0otFkQXSZIord4jtRTq-FkfHRJNz0O2Fafgh-gU30gw3X5OC04L0gpZXd5N9juYWHfaXURIJGtNheL5AuZsEHQdzEiXXLa8QxfH0ry5bo2cQ83mk5CKCdSbo5M3_Nf4tvG6hJ_vejJV38MJU7-HVjxrh4cM63F_U5S2zFGZNyJzpNk7GzNifidsVzGiB__cDuqvTSfmINaFNvCmZVApNFzFOsHqKr_V3mMTJpg0KY2XFJCMirCYTsTJ2wQe4Ojm-PBx57ZEMnoqi0Pek0H7BlYm51BbRhfC1wmlBFTKJMotgyg-MNQgSEdaJRBRCE8VYYYJMS42XcAMGVV2Zj8As1oJPUq0yG0XG4rAIMhwgMVd-oPx0CLudaPK7hnkj7zwW7L3c9d4Qtjuh5a3yzXL0InnIgyTGOr722ag29C9EVqaeUxkiwvHDIBzCZiPj_ith6qPbm2Ll6ZL0-wJEyb2cU5UTR82dJnROOh_CNyf9vzc8H5-PXGLr34vuwOro8tdZfnY6_vkJ1ujg-yZweBsG99O5-QwrMz3_4rTgCe-3Dfc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5ylJCXJD2SbK6qpQ99cbB8mzzlWhJaloW0kDcj68gaEnvZzRKSX58Z-WCXUCjkybIly0Kj0Xwjjz4B_JAJD7XmxjFpjg5KKnMH7YxwwiRPPaFTyaU9xPYmHtwmF5dEk3PS7oWp-SG6BTfSDDtfk4KPlZlT8nI8OuZobdFfXw0QhlM8n-8P5xh3I6-lYI6C6LahFaIwnu7VRWP0BmG-DZScB7DWAvU339X2LdhogCc7rUfKR1jS5Sf4cFYhOHz-DI83VXHPDAVZEy5nqomS0VP2NLJ7ghkt7z88o7M6GRUvWBNaxLuCCSnRcBHfBKsm-Fp3h0mcapqQMFaUTDCiwaozESljD3yBv_3LP-dXTnMggyODwHcdkSg351KHXCiD2CJxlcRJQeYiClKDUMr1tNEIERHUJVGSJ4oIxnLtpUoovPjbsFJWpd4FZrAWfBIrmZog0AYHhZfi8Ai5dD3pxj343komG9e8G1nrr2DvZbb3enDQyixrVG-aoQ_Jfe5FIdbxrctGpaE_IaLU1YzKEA2O63t-D3ZqEXdf8WMXnd4YK48XhN8VIELuxZyyGFli7jiiU9J5D35a4f-74dlgeGUTe_9f9CusDS_62e_rwa99WKdT7-uo4QNYeZzM9CEsT9XsyOrAK6xjDJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+fertility+determines+whether+ectomycorrhizal+fungi+accelerate+or+decelerate+decomposition+in+a+temperate+forest&rft.jtitle=The+New+phytologist&rft.au=Mayer%2C+Mathias&rft.au=Matthews%2C+Bradley&rft.au=Sand%C3%A9n%2C+Hans&rft.au=Katzensteiner%2C+Klaus&rft.date=2023-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=239&rft.issue=1&rft.spage=325&rft.epage=339&rft_id=info:doi/10.1111%2Fnph.18930&rft.externalDBID=10.1111%252Fnph.18930&rft.externalDocID=NPH18930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon