Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest
Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate fore...
Saved in:
Published in: | The New phytologist Vol. 239; no. 1; pp. 325 - 339 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited.
Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil.
Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect.
We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi. |
---|---|
AbstractList | Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited.
Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil.
Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO
2
efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect.
We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi. Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi. Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited.Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil.Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect.We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi. Summary Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi. |
Author | Hagedorn, Frank Godbold, Douglas L. Matthews, Bradley Gorfer, Markus Sandén, Hans Katzensteiner, Klaus Mayer, Mathias Berger, Torsten W. Berger, Harald Rewald, Boris |
AuthorAffiliation | 1 Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf 8903, Switzerland 6 Symbiocyte, Konrad-Lorenz-Straße 24, Tulln 3430, Austria 5 Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria 2 Forest Ecology, Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitätsstrasse 16, Zürich 8092, Switzerland 3 Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria 4 Environment Agency Austria, Spittelauer Lände 5, Vienna 1090, Austria 7 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic |
AuthorAffiliation_xml | – name: 1 Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf 8903, Switzerland – name: 2 Forest Ecology, Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitätsstrasse 16, Zürich 8092, Switzerland – name: 6 Symbiocyte, Konrad-Lorenz-Straße 24, Tulln 3430, Austria – name: 5 Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria – name: 7 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic – name: 3 Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria – name: 4 Environment Agency Austria, Spittelauer Lände 5, Vienna 1090, Austria |
Author_xml | – sequence: 1 givenname: Mathias orcidid: 0000-0003-4366-9188 surname: Mayer fullname: Mayer, Mathias email: mathias.mayer@wsl.ch, mathias_mayer@gmx.at organization: University of Natural Resources and Life Sciences (BOKU) – sequence: 2 givenname: Bradley orcidid: 0000-0001-9710-7688 surname: Matthews fullname: Matthews, Bradley organization: Environment Agency Austria – sequence: 3 givenname: Hans orcidid: 0000-0002-2496-6307 surname: Sandén fullname: Sandén, Hans organization: University of Natural Resources and Life Sciences (BOKU) – sequence: 4 givenname: Klaus orcidid: 0000-0003-0534-8391 surname: Katzensteiner fullname: Katzensteiner, Klaus organization: University of Natural Resources and Life Sciences (BOKU) – sequence: 5 givenname: Frank orcidid: 0000-0001-5218-7776 surname: Hagedorn fullname: Hagedorn, Frank organization: Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) – sequence: 6 givenname: Markus orcidid: 0000-0003-3010-6044 surname: Gorfer fullname: Gorfer, Markus organization: Austrian Institute of Technology GmbH (AIT) – sequence: 7 givenname: Harald orcidid: 0000-0001-7974-3058 surname: Berger fullname: Berger, Harald organization: Symbiocyte – sequence: 8 givenname: Torsten W. orcidid: 0000-0002-5614-5888 surname: Berger fullname: Berger, Torsten W. organization: University of Natural Resources and Life Sciences (BOKU) – sequence: 9 givenname: Douglas L. orcidid: 0000-0001-5607-5800 surname: Godbold fullname: Godbold, Douglas L. organization: Mendel University in Brno – sequence: 10 givenname: Boris orcidid: 0000-0001-8098-0616 surname: Rewald fullname: Rewald, Boris organization: University of Natural Resources and Life Sciences (BOKU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37084070$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVFr1jAUhoNM3LfphX9ACt7oRbeTpE3TG0GGOmGooIJ3IU1P14w2qUnq-Pz1Rjs_VDA354Tz5OU9eU_IkfMOCXlM4Yzmc-6W8YzKlsM9sqOVaEtJeXNEdgBMlqISX47JSYw3ANDWgj0gx7wBWUEDO5I-ejsVA4ZkJ5v2RY8Jw2wdxuJ2xDRiKNAkP--ND2G033WGV3dtC20MThh0wsKH_Oxwy62fFx9tst4V1hW6SDgv23DwAWN6SO4Peor46K6eks-vX326uCyv3r95e_HyqjRVxaHUsoeOGqyp7gdopITeAKem06JqB6gFMBywFnXNmBSyk32Vmw5Z2-s-F35KXmy6y9rN2Bt0KehJLcHOOuyV11b9PXF2VNf-m2pE_kZKs8CzO4Hgv67ZuZptzJtO2qFfo2ISauDAGc_o03_QG78Gl9fLFKOcMlE3mXq-USb4GAMOBzMU1M8sVc5S_coys0_-dH8gf4eXgfMNuLUT7v-vpN59uNwkfwAJD637 |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2023_105198 crossref_primary_10_1016_j_catena_2024_107840 crossref_primary_10_1007_s11104_024_06563_4 crossref_primary_10_1111_gcbb_13110 crossref_primary_10_1016_j_funeco_2024_101359 crossref_primary_10_1007_s11104_024_06483_3 crossref_primary_10_1111_nph_19690 |
Cites_doi | 10.1046/j.1469-8137.2003.00681.x 10.1111/nph.16269 10.1007/978-0-387-87458-6 10.1111/1758-2229.12612 10.1111/nph.13648 10.3389/fmicb.2016.02067 10.1111/nph.15884 10.1111/nph.17421 10.1038/s41396-018-0181-2 10.1007/978-3-540-38364-2_4 10.1038/s41396-021-01159-7 10.1002/jpln.201500541 10.1111/gcb.12996 10.1111/nph.12791 10.1006/niox.2000.0319 10.1038/ng.3223 10.1038/35081058 10.1111/nph.13201 10.1007/s00248-021-01736-5 10.1111/nph.17155 10.1016/S0038-0717(00)00002-X 10.1890/05-0755 10.1111/nph.13288 10.1186/1471-2180-12-255 10.1016/j.scitotenv.2018.01.012 10.1046/j.0028-646x.2001.00199.x 10.1371/journal.pone.0047500 10.1039/C8EM00253C 10.2136/sssaj1998.03615995006200020026x 10.1016/j.soilbio.2017.09.010 10.1111/j.1461-0248.2011.01611.x 10.1111/j.1469-8137.2005.01401.x 10.1111/1365-2435.12805 10.1093/bioinformatics/btu170 10.7717/peerj.2584 10.1038/233133a0 10.1007/s00442-003-1477-z 10.1155/2020/6085180 10.5194/bg-9-79-2012 10.1146/annurev-ecolsys-110617-062331 10.1111/2041-210X.12097 10.1126/science.1231923 10.1111/ele.13746 10.3897/mycokeys.10.4852 10.1111/nph.15679 10.1007/s00442-009-1433-7 10.1016/j.soilbio.2020.107730 10.1093/bioinformatics/btq461 10.1038/s41467-019-11472-7 10.1007/s11104-009-9925-0 10.1111/ele.12631 10.1111/nph.18566 10.1111/ele.13923 10.1007/s11557-006-0505-x 10.1890/10-1011.1 10.1111/ele.12862 10.1111/j.1365-2486.2006.01117.x 10.1016/j.scitotenv.2021.146819 10.1111/nph.13303 10.1111/nph.14598 10.1046/j.1469-8137.2003.00704.x 10.1111/nph.12221 10.1007/s10342-015-0882-2 10.1111/gcb.14069 10.1007/s13225-020-00466-2 10.1016/j.soilbio.2017.04.003 |
ContentType | Journal Article |
Copyright | 2023 The Authors. © 2023 New Phytologist Foundation 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. © 2023 New Phytologist Foundation – notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 5PM |
DOI | 10.1111/nph.18930 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 339 |
ExternalDocumentID | 10_1111_nph_18930 37084070 NPH18930 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund funderid: J‐4369 – fundername: Austrian Science Fund funderid: P29087‐B25 – fundername: Austrian Science Fund FWF grantid: J 4369 – fundername: Austrian Science Fund FWF grantid: P 29087 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AGUYK AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AHXOZ AILXY CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4430-a8d0b1ce51adf07880dc031cba649f05602efe565522868b8d4228be29dadbe23 |
IEDL.DBID | 33P |
ISSN | 0028-646X |
IngestDate | Tue Sep 17 21:29:57 EDT 2024 Fri Aug 16 01:22:35 EDT 2024 Thu Oct 10 17:00:25 EDT 2024 Fri Nov 22 01:13:25 EST 2024 Wed Oct 16 00:38:02 EDT 2024 Sat Aug 24 00:58:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | priming soil fungal communities nitrogen mining Gadgil effect carbon cycle Fagus sylvatica (beech) forest plant-soil feedback tree girdling |
Language | English |
License | Attribution 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4430-a8d0b1ce51adf07880dc031cba649f05602efe565522868b8d4228be29dadbe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5218-7776 0000-0001-8098-0616 0000-0002-2496-6307 0000-0002-5614-5888 0000-0001-5607-5800 0000-0003-0534-8391 0000-0003-4366-9188 0000-0001-9710-7688 0000-0003-3010-6044 0000-0001-7974-3058 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18930 |
PMID | 37084070 |
PQID | 2821312657 |
PQPubID | 2026848 |
PageCount | 339 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614611 proquest_miscellaneous_2805030323 proquest_journals_2821312657 crossref_primary_10_1111_nph_18930 pubmed_primary_37084070 wiley_primary_10_1111_nph_18930_NPH18930 |
PublicationCentury | 2000 |
PublicationDate | July 2023 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 24 2013; 4 2019; 50 2019; 10 2022; 25 2011; 14 2017; 111 2003; 157 2012; 12 1978; 8 2015; 47 2010; 26 2018; 217 2015; 134 2013; 199 2009; 321 2009; 161 2021; 230 2021; 231 2021; 82 2004; 139 2014; 203 2001; 411 1975; 5 2017a; 115 2017; 20 2016; 19 2016; 209 2006; 12 2020; 143 2015; 10 2020; 226 2009 2020; 105 2006; 5 2019; 223 2015; 206 2021; 782 2015; 205 2002 1998; 62 2018; 20 2022; 237 2018; 24 1999 2016; 4 2017b; 31 2016; 7 2001; 151 2020; 2020 2013; 339 2018; 628–629 2005; 167 2006; 87 2001; 5 2021 2000; 32 2011; 92 2015; 21 2016; 179 1971; 233 2016 2014 2014; 30 2018; 12 2012; 7 2018; 10 2022; 16 2012; 9 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Gadgil RL (e_1_2_9_22_1) 1978; 8 Gadgil RL (e_1_2_9_24_1) 1975; 5 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 R Core Team (e_1_2_9_56_1) 2021 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 ÖNORM L 1084 (e_1_2_9_50_1) 1999 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 230 start-page: 316 year: 2021 end-page: 326 article-title: Fine roots and mycorrhizal fungi accelerate leaf litter decomposition in a northern hardwood forest regardless of dominant tree mycorrhizal associations publication-title: New Phytologist – volume: 782 year: 2021 article-title: Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale publication-title: Science of the Total Environment – volume: 237 start-page: 576 year: 2022 end-page: 584 article-title: Do ectomycorrhizal exploration types reflect mycelial foraging strategies? publication-title: New Phytologist – volume: 231 start-page: 777 year: 2021 end-page: 790 article-title: Soil fertility relates to fungal‐mediated decomposition and organic matter turnover in a temperate mountain forest publication-title: New Phytologist – start-page: 93 year: 2002 end-page: 115 – volume: 10 start-page: 1 year: 2015 end-page: 43 article-title: Shotgun metagenomes and multiple primer pair‐barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi publication-title: MycoKeys – volume: 628–629 start-page: 1369 year: 2018 end-page: 1394 article-title: Early stage litter decomposition across biomes publication-title: Science of the Total Environment – volume: 157 start-page: 475 year: 2003 end-page: 492 article-title: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? publication-title: New Phytologist – volume: 10 start-page: 1 year: 2019 end-page: 9 article-title: Global ecological predictors of the soil priming effect publication-title: Nature Communications – volume: 5 start-page: 33 year: 1975 end-page: 41 article-title: Suppression of litter decomposition by mycorrhizal roots of publication-title: New Zealand Journal of Forest Science – volume: 10 start-page: 155 year: 2018 end-page: 166 article-title: The genome and microbiome of a dikaryotic fungus ( , ) revealed by metagenomics publication-title: Environmental Microbiology Reports – volume: 19 start-page: 937 year: 2016 end-page: 947 article-title: Ectomycorrhizal fungi slow soil carbon cycling publication-title: Ecology Letters – volume: 20 start-page: 1546 year: 2017 end-page: 1555 article-title: Below‐ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities publication-title: Ecology Letters – year: 2021 – volume: 226 start-page: 569 year: 2020 end-page: 582 article-title: Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition publication-title: New Phytologist – volume: 339 start-page: 1615 year: 2013 end-page: 1618 article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest publication-title: Science – volume: 223 start-page: 1595 year: 2019 end-page: 1606 article-title: Resource‐ratio theory predicts mycorrhizal control of litter decomposition publication-title: New Phytologist – volume: 139 start-page: 89 year: 2004 end-page: 97 article-title: Production, standing biomass and natural abundance of N and C in ectomycorrhizal mycelia collected at different soil depths in two forest types publication-title: Oecologia – year: 2014 – volume: 82 start-page: 243 year: 2021 end-page: 256 article-title: High fungal diversity but low seasonal dynamics and ectomycorrhizal abundance in a mountain beech forest publication-title: Microbial Ecology – volume: 321 start-page: 5 year: 2009 end-page: 33 article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface publication-title: Plant and Soil – volume: 4 start-page: 1070 year: 2013 end-page: 1075 article-title: Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems publication-title: Methods in Ecology and Evolution – volume: 167 start-page: 309 year: 2005 end-page: 319 article-title: Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests publication-title: New Phytologist – volume: 5 start-page: 62 year: 2001 end-page: 71 article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite publication-title: Nitric Oxide – volume: 12 start-page: 921 year: 2006 end-page: 943 article-title: Trends and methodological impacts in soil CO efflux partitioning: a metaanalytical review publication-title: Global Change Biology – volume: 9 start-page: 79 year: 2012 end-page: 95 article-title: Exploring the “overflow tap” theory: linking forest soil CO fluxes and individual mycorrhizosphere components to photosynthesis publication-title: Biogeosciences – volume: 47 start-page: 410 year: 2015 end-page: 415 article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists publication-title: Nature Genetics – volume: 25 start-page: 391 year: 2022 end-page: 404 article-title: Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability publication-title: Ecology Letters – volume: 206 start-page: 1274 year: 2015 end-page: 1282 article-title: Mycorrhizal type determines the magnitude and direction of root‐induced changes in decomposition in a temperate forest publication-title: New Phytologist – volume: 161 start-page: 657 year: 2009 end-page: 660 article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? publication-title: Oecologia – volume: 7 year: 2012 article-title: Differences in soil fungal communities between European beech ( L.) dominated forests are related to soil and understory vegetation publication-title: PLoS ONE – volume: 217 start-page: 68 year: 2018 end-page: 73 article-title: Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters publication-title: New Phytologist – volume: 92 start-page: 1036 year: 2011 end-page: 1051 article-title: Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation publication-title: Ecology – volume: 7 year: 2016 article-title: Fine spatial scale variation of soil microbial communities under European beech and Norway spruce publication-title: Frontiers in Microbiology – volume: 4 year: 2016 article-title: V : a versatile open source tool for metagenomics publication-title: PeerJ – volume: 157 start-page: 605 year: 2003 end-page: 615 article-title: Distribution of above‐ground and below‐ground carbohydrate reserves in adult trees of two contrasting broad‐leaved species ( and ) publication-title: New Phytologist – volume: 12 start-page: 255 year: 2012 article-title: FungiQuant: a broad‐coverage fungal quantitative real‐time PCR assay publication-title: BMC Microbiology – volume: 411 start-page: 789 year: 2001 end-page: 792 article-title: Large‐scale forest girdling shows that current photosynthesis drives soil respiration publication-title: Nature – volume: 14 start-page: 493 year: 2011 end-page: 502 article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment publication-title: Ecology Letters – volume: 32 start-page: 947 year: 2000 end-page: 958 article-title: Temperature dependence of carbon mineralisation: conclusions from a long‐term incubation of subalpine soil samples publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 213 year: 1978 end-page: 224 article-title: Influence of clearfelling on decomposition of litter publication-title: New Zealand Journal of Forest Science – volume: 24 start-page: 1341 year: 2021 end-page: 1351 article-title: A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest publication-title: Ecology Letters – year: 2016 – volume: 12 start-page: 2187 year: 2018 end-page: 2197 article-title: Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest publication-title: The ISME Journal – volume: 16 start-page: 1 year: 2022 end-page: 10 article-title: Forest tree growth is linked to mycorrhizal fungal composition and function across Europe publication-title: The ISME Journal – volume: 20 start-page: 1454 year: 2018 end-page: 1468 article-title: Validation of a quantitative PCR based detection system for indoor mold exposure assessment in bioaerosols publication-title: Environmental Science: Processes & Impacts – volume: 24 start-page: 1873 year: 2018 end-page: 1883 article-title: Impact of priming on global soil carbon stocks publication-title: Global Change Biology – volume: 30 start-page: 2114 year: 2014 end-page: 2120 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 115 start-page: 490 year: 2017a end-page: 498 article-title: Tree regeneration retards decomposition in a temperate mountain soil after forest gap disturbance publication-title: Soil Biology and Biochemistry – volume: 31 start-page: 1163 year: 2017b end-page: 1172 article-title: Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem publication-title: Functional Ecology – volume: 21 start-page: 4265 year: 2015 end-page: 4277 article-title: Microbial physiology and soil CO efflux after 9 years of soil warming in a temperate forest – no indications for thermal adaptations publication-title: Global Change Biology – volume: 134 start-page: 683 year: 2015 end-page: 692 article-title: Effects of stand patchiness due to windthrow and bark beetle abatement measures on soil CO efflux and net ecosystem productivity of a managed temperate mountain forest publication-title: European Journal of Forest Research – volume: 179 start-page: 129 year: 2016 end-page: 135 article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective publication-title: Journal of Plant Nutrition and Soil Science – volume: 209 start-page: 1382 year: 2016 end-page: 1394 article-title: Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? publication-title: New Phytologist – volume: 2020 start-page: 6085180 year: 2020 article-title: Chemical underpinning of the tea bag index: an examination of the decomposition of tea leaves publication-title: Applied and Environmental Soil Science – volume: 87 start-page: 563 year: 2006 end-page: 569 article-title: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies publication-title: Ecology – volume: 223 start-page: 33 year: 2019 end-page: 39 article-title: Exploring the role of ectomycorrhizal fungi in soil carbon dynamics publication-title: New Phytologist – volume: 62 start-page: 473 year: 1998 end-page: 480 article-title: Improving the Berthelot reaction for determining ammonium in soil extracts and water publication-title: Soil Science Society of America Journal – volume: 203 start-page: 245 year: 2014 end-page: 256 article-title: Ectomycorrhizal species participate in enzymatic oxidation of humus in northern forest ecosystems publication-title: New Phytologist – volume: 105 start-page: 1 year: 2020 end-page: 16 article-title: F T : a user‐friendly traits database of fungi and fungus‐like stramenopiles publication-title: Fungal Diversity – volume: 205 start-page: 1406 year: 2015 end-page: 1423 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytologist – volume: 111 start-page: 78 year: 2017 end-page: 84 article-title: Rhizosphere priming effect: a meta‐analysis publication-title: Soil Biology and Biochemistry – volume: 233 year: 1971 article-title: Mycorrhiza and litter decomposition publication-title: Nature – volume: 143 year: 2020 article-title: How do earthworms affect organic matter decomposition in the presence of clay‐sized minerals? publication-title: Soil Biology and Biochemistry – volume: 199 start-page: 41 year: 2013 end-page: 51 article-title: The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests publication-title: New Phytologist – volume: 205 start-page: 1443 year: 2015 end-page: 1447 article-title: Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs publication-title: New Phytologist – volume: 151 start-page: 753 year: 2001 end-page: 760 article-title: Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field publication-title: New Phytologist – volume: 5 start-page: 67 year: 2006 end-page: 107 article-title: Fungal relationships and structural identity of their ectomycorrhizae publication-title: Mycological Progress – volume: 50 start-page: 237 year: 2019 end-page: 259 article-title: Mycorrhizal fungi as mediators of soil organic matter dynamics publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than B publication-title: Bioinformatics – year: 1999 – ident: e_1_2_9_8_1 doi: 10.1046/j.1469-8137.2003.00681.x – ident: e_1_2_9_20_1 doi: 10.1111/nph.16269 – ident: e_1_2_9_48_1 – ident: e_1_2_9_73_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_9_6_1 doi: 10.1111/1758-2229.12612 – ident: e_1_2_9_19_1 doi: 10.1111/nph.13648 – ident: e_1_2_9_47_1 doi: 10.3389/fmicb.2016.02067 – ident: e_1_2_9_62_1 doi: 10.1111/nph.15884 – ident: e_1_2_9_44_1 doi: 10.1111/nph.17421 – ident: e_1_2_9_63_1 doi: 10.1038/s41396-018-0181-2 – volume: 8 start-page: 213 year: 1978 ident: e_1_2_9_22_1 article-title: Influence of clearfelling on decomposition of Pinus radiata litter publication-title: New Zealand Journal of Forest Science contributor: fullname: Gadgil RL – ident: e_1_2_9_49_1 doi: 10.1007/978-3-540-38364-2_4 – ident: e_1_2_9_3_1 doi: 10.1038/s41396-021-01159-7 – ident: e_1_2_9_39_1 doi: 10.1002/jpln.201500541 – ident: e_1_2_9_61_1 doi: 10.1111/gcb.12996 – ident: e_1_2_9_11_1 doi: 10.1111/nph.12791 – ident: e_1_2_9_46_1 doi: 10.1006/niox.2000.0319 – ident: e_1_2_9_36_1 doi: 10.1038/ng.3223 – volume-title: R: a language and environment for statistical computing year: 2021 ident: e_1_2_9_56_1 contributor: fullname: R Core Team – ident: e_1_2_9_29_1 doi: 10.1038/35081058 – ident: e_1_2_9_41_1 doi: 10.1111/nph.13201 – ident: e_1_2_9_25_1 doi: 10.1007/s00248-021-01736-5 – ident: e_1_2_9_38_1 doi: 10.1111/nph.17155 – ident: e_1_2_9_58_1 doi: 10.1016/S0038-0717(00)00002-X – ident: e_1_2_9_28_1 doi: 10.1890/05-0755 – ident: e_1_2_9_68_1 doi: 10.1111/nph.13288 – ident: e_1_2_9_42_1 doi: 10.1186/1471-2180-12-255 – ident: e_1_2_9_16_1 doi: 10.1016/j.scitotenv.2018.01.012 – ident: e_1_2_9_70_1 doi: 10.1046/j.0028-646x.2001.00199.x – ident: e_1_2_9_71_1 doi: 10.1371/journal.pone.0047500 – ident: e_1_2_9_67_1 doi: 10.1039/C8EM00253C – ident: e_1_2_9_59_1 doi: 10.2136/sssaj1998.03615995006200020026x – ident: e_1_2_9_43_1 doi: 10.1016/j.soilbio.2017.09.010 – ident: e_1_2_9_51_1 doi: 10.1111/j.1461-0248.2011.01611.x – ident: e_1_2_9_15_1 doi: 10.1111/j.1469-8137.2005.01401.x – ident: e_1_2_9_45_1 doi: 10.1111/1365-2435.12805 – ident: e_1_2_9_12_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_2_9_60_1 doi: 10.7717/peerj.2584 – ident: e_1_2_9_23_1 doi: 10.1038/233133a0 – volume: 5 start-page: 33 year: 1975 ident: e_1_2_9_24_1 article-title: Suppression of litter decomposition by mycorrhizal roots of Pinus radiata publication-title: New Zealand Journal of Forest Science contributor: fullname: Gadgil RL – ident: e_1_2_9_69_1 doi: 10.1007/s00442-003-1477-z – ident: e_1_2_9_17_1 doi: 10.1155/2020/6085180 – ident: e_1_2_9_27_1 doi: 10.5194/bg-9-79-2012 – ident: e_1_2_9_21_1 doi: 10.1146/annurev-ecolsys-110617-062331 – ident: e_1_2_9_34_1 doi: 10.1111/2041-210X.12097 – ident: e_1_2_9_54_1 – ident: e_1_2_9_14_1 doi: 10.1126/science.1231923 – ident: e_1_2_9_40_1 doi: 10.1111/ele.13746 – ident: e_1_2_9_65_1 doi: 10.3897/mycokeys.10.4852 – ident: e_1_2_9_72_1 doi: 10.1111/nph.15679 – ident: e_1_2_9_7_1 doi: 10.1007/s00442-009-1433-7 – ident: e_1_2_9_9_1 doi: 10.1016/j.soilbio.2020.107730 – ident: e_1_2_9_18_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_9_10_1 doi: 10.1038/s41467-019-11472-7 – ident: e_1_2_9_31_1 doi: 10.1007/s11104-009-9925-0 – ident: e_1_2_9_5_1 doi: 10.1111/ele.12631 – ident: e_1_2_9_32_1 doi: 10.1111/nph.18566 – ident: e_1_2_9_4_1 doi: 10.1111/ele.13923 – ident: e_1_2_9_2_1 doi: 10.1007/s11557-006-0505-x – ident: e_1_2_9_33_1 doi: 10.1890/10-1011.1 – ident: e_1_2_9_37_1 doi: 10.1111/ele.12862 – ident: e_1_2_9_64_1 doi: 10.1111/j.1365-2486.2006.01117.x – ident: e_1_2_9_66_1 doi: 10.1016/j.scitotenv.2021.146819 – ident: e_1_2_9_13_1 doi: 10.1111/nph.13303 – ident: e_1_2_9_52_1 doi: 10.1111/nph.14598 – ident: e_1_2_9_57_1 doi: 10.1046/j.1469-8137.2003.00704.x – ident: e_1_2_9_53_1 doi: 10.1111/nph.12221 – volume-title: Chemical analyses of soils – determination of carbonate taking into account air pressure and temperature year: 1999 ident: e_1_2_9_50_1 contributor: fullname: ÖNORM L 1084 – ident: e_1_2_9_35_1 doi: 10.1007/s10342-015-0882-2 – ident: e_1_2_9_26_1 doi: 10.1111/gcb.14069 – ident: e_1_2_9_55_1 doi: 10.1007/s13225-020-00466-2 – ident: e_1_2_9_30_1 doi: 10.1016/j.soilbio.2017.04.003 |
SSID | ssj0009562 |
Score | 2.530591 |
Snippet | Summary
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this... Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 325 |
SubjectTerms | Acceleration Carbon carbon cycle Carbon dioxide Community composition Deceleration Decomposition Ectomycorrhizas Efflux Fagus sylvatica (beech) forest Fertility Forest soils Forests Fungi Gadgil effect Girdling Mycorrhizae Nitrogen nitrogen mining Organic matter Organic soils plant–soil feedback Positive feedback priming Soil Soil dynamics Soil fertility soil fungal communities Soil Microbiology Temperate forests tree girdling Trees - microbiology |
Title | Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18930 https://www.ncbi.nlm.nih.gov/pubmed/37084070 https://www.proquest.com/docview/2821312657 https://search.proquest.com/docview/2805030323 https://pubmed.ncbi.nlm.nih.gov/PMC7614611 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4qHrz4flRXieLBS6Xpu3jyseJJBBW8lTQPW9B22e4i-uudSR_sIoLgqWmTpiGTyXyTTr4QcipiFijFtK2TDByURGQ22BluB3GWuFwlgglziO1jdP8S3wyRJuei2wvT8EP0C26oGWa-RgXnWT2j5OUoP2dgbdFfBy_BbN_wHmYId0O3Y2AO_fClZRXCKJ7-zXlb9ANg_oyTnMWvxgDdrv2r6etktcWd9LIZKBtkQZWbZPmqAmz4uUUmj1XxRjXGWCMsp7INklE1_cjNlmCKq_vvn-CrjvPiC2oCg_haUC4E2C2km6DVGF7r7yAJM00bEUaLknKKLFhNJgBl6IFt8nw7fLq-s9vzGGzh-55j81g6GRMqYFxqgBaxIwXMCSLjoZ9oQFKOq7QChAiYLg7jLJbIL5YpN5FcwsXbIUtlVao9QjXUAk8iKRLt-0rDmHATGB0BE44rnMgiJ51k0lFDu5F27gr0Xmp6zyKDTmZpq3l1Ci4k85gbBlDHcZ8NOoM_QnipqimWQRYcx3M9i-w2Iu6_4kUO-LwRVB7NCb8vgHzc8zllkRte7ijEQ9KZRc6M8H9veHr_cGcS-38vekBW8KT7JlJ4QJYm46k6JIu1nB6Zgf8NQOsJzg |
link.rule.ids | 230,315,782,786,887,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VbSW49EWhS2lxEYdeguI8HYlLy0OLSldIgMQtcvxgI9EE7bKq4Ncz4zy0K1SpUk9xYsexPB7PN874M8CeEjw2hlvPZgU6KJkqPLQz0otFkQXSZIord4jtRTq-FkfHRJNz0O2Fafgh-gU30gw3X5OC04L0gpZXd5N9juYWHfaXURIJGtNheL5AuZsEHQdzEiXXLa8QxfH0ry5bo2cQ83mk5CKCdSbo5M3_Nf4tvG6hJ_vejJV38MJU7-HVjxrh4cM63F_U5S2zFGZNyJzpNk7GzNifidsVzGiB__cDuqvTSfmINaFNvCmZVApNFzFOsHqKr_V3mMTJpg0KY2XFJCMirCYTsTJ2wQe4Ojm-PBx57ZEMnoqi0Pek0H7BlYm51BbRhfC1wmlBFTKJMotgyg-MNQgSEdaJRBRCE8VYYYJMS42XcAMGVV2Zj8As1oJPUq0yG0XG4rAIMhwgMVd-oPx0CLudaPK7hnkj7zwW7L3c9d4Qtjuh5a3yzXL0InnIgyTGOr722ag29C9EVqaeUxkiwvHDIBzCZiPj_ith6qPbm2Ll6ZL0-wJEyb2cU5UTR82dJnROOh_CNyf9vzc8H5-PXGLr34vuwOro8tdZfnY6_vkJ1ujg-yZweBsG99O5-QwrMz3_4rTgCe-3Dfc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5ylJCXJD2SbK6qpQ99cbB8mzzlWhJaloW0kDcj68gaEnvZzRKSX58Z-WCXUCjkybIly0Kj0Xwjjz4B_JAJD7XmxjFpjg5KKnMH7YxwwiRPPaFTyaU9xPYmHtwmF5dEk3PS7oWp-SG6BTfSDDtfk4KPlZlT8nI8OuZobdFfXw0QhlM8n-8P5xh3I6-lYI6C6LahFaIwnu7VRWP0BmG-DZScB7DWAvU339X2LdhogCc7rUfKR1jS5Sf4cFYhOHz-DI83VXHPDAVZEy5nqomS0VP2NLJ7ghkt7z88o7M6GRUvWBNaxLuCCSnRcBHfBKsm-Fp3h0mcapqQMFaUTDCiwaozESljD3yBv_3LP-dXTnMggyODwHcdkSg351KHXCiD2CJxlcRJQeYiClKDUMr1tNEIERHUJVGSJ4oIxnLtpUoovPjbsFJWpd4FZrAWfBIrmZog0AYHhZfi8Ai5dD3pxj343komG9e8G1nrr2DvZbb3enDQyixrVG-aoQ_Jfe5FIdbxrctGpaE_IaLU1YzKEA2O63t-D3ZqEXdf8WMXnd4YK48XhN8VIELuxZyyGFli7jiiU9J5D35a4f-74dlgeGUTe_9f9CusDS_62e_rwa99WKdT7-uo4QNYeZzM9CEsT9XsyOrAK6xjDJ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+fertility+determines+whether+ectomycorrhizal+fungi+accelerate+or+decelerate+decomposition+in+a+temperate+forest&rft.jtitle=The+New+phytologist&rft.au=Mayer%2C+Mathias&rft.au=Matthews%2C+Bradley&rft.au=Sand%C3%A9n%2C+Hans&rft.au=Katzensteiner%2C+Klaus&rft.date=2023-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=239&rft.issue=1&rft.spage=325&rft.epage=339&rft_id=info:doi/10.1111%2Fnph.18930&rft.externalDBID=10.1111%252Fnph.18930&rft.externalDocID=NPH18930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |