Cell-cell interactions and fluctuations in the direction of motility promote directed migration of osteoblasts in direct current electrotaxis

Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology Vol. 10; p. 995326
Main Authors: Dawson, Jonathan Edward, Sellmann, Tina, Porath, Katrin, Bader, Rainer, van Rienen, Ursula, Appali, Revathi, Köhling, Rüdiger
Format: Journal Article
Language:English
Published: Frontiers Media S.A 06-10-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
AbstractList Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
Author van Rienen, Ursula
Porath, Katrin
Bader, Rainer
Sellmann, Tina
Köhling, Rüdiger
Dawson, Jonathan Edward
Appali, Revathi
AuthorAffiliation 4 Department of Life, Light and Matter , Interdisciplinary Faculty , University of Rostock , Rostock , Germany
1 Institute of General Electrical Engineering , University of Rostock , Rostock , Germany
7 Center for Translational Neuroscience Research , Rostock University Medical Center , Rostock , Germany
3 Oscar-Langendorff-Institute of Physiology , Rostock University Medical Center , Rostock , Germany
6 Department of Ageing of Individuals and Society , Interdisciplinary Faculty , University of Rostock , Rostock , Germany
5 Biomechanics and Implant Research Lab , Department of Orthopedics , Rostock University Medical Center , Rostock , Germany
2 Department of Chemistry and Physics , Augusta University , Augusta , GA , United States
AuthorAffiliation_xml – name: 3 Oscar-Langendorff-Institute of Physiology , Rostock University Medical Center , Rostock , Germany
– name: 6 Department of Ageing of Individuals and Society , Interdisciplinary Faculty , University of Rostock , Rostock , Germany
– name: 1 Institute of General Electrical Engineering , University of Rostock , Rostock , Germany
– name: 4 Department of Life, Light and Matter , Interdisciplinary Faculty , University of Rostock , Rostock , Germany
– name: 2 Department of Chemistry and Physics , Augusta University , Augusta , GA , United States
– name: 5 Biomechanics and Implant Research Lab , Department of Orthopedics , Rostock University Medical Center , Rostock , Germany
– name: 7 Center for Translational Neuroscience Research , Rostock University Medical Center , Rostock , Germany
Author_xml – sequence: 1
  givenname: Jonathan Edward
  surname: Dawson
  fullname: Dawson, Jonathan Edward
– sequence: 2
  givenname: Tina
  surname: Sellmann
  fullname: Sellmann, Tina
– sequence: 3
  givenname: Katrin
  surname: Porath
  fullname: Porath, Katrin
– sequence: 4
  givenname: Rainer
  surname: Bader
  fullname: Bader, Rainer
– sequence: 5
  givenname: Ursula
  surname: van Rienen
  fullname: van Rienen, Ursula
– sequence: 6
  givenname: Revathi
  surname: Appali
  fullname: Appali, Revathi
– sequence: 7
  givenname: Rüdiger
  surname: Köhling
  fullname: Köhling, Rüdiger
BookMark eNpVkk1v3CAQhq0qlZqm-QG9cezFW75s4FKpWvUjUqRe2jPCMGyIsNkCrpof0f9cdp1UzQWGmVfPaJj3dXexpAW67i3BO8akeu-nkGBHMaU7pQZGxxfdJaVq7DmRw8V_8avuupR7jDGhgxgkvez-7CHG3rYDhaVCNraGtBRkFod8XG1dzZYIC6p3gFzIcJag5NGcaoihPqBjTi1-qoJDczhk8yRLpUKaoin1jNlEyK45w1IRxPbKqZrfobzpXnoTC1w_3lfdj8-fvu-_9rffvtzsP972lnNae4v5qCQF55QQngCWihjvBzeKNuTAGBcWCzYRJaXBvv0RFspP40TdgI0Q7Kq72bgumXt9zGE2-UEnE_Q5kfJBm1yDjaCdd3LwE-NyxJxQIkVrZuXoeOsLHDfWh411XKcZnG0zZROfQZ9XlnCnD-mXVm0B40gb4N0jIKefK5Sq51BOGzELpLVoKqgknHLFm5RsUptTKRn8vzYE65MV9NkK-mQFvVmB_QXRgK2k
CitedBy_id crossref_primary_10_1016_j_mtbio_2024_101083
crossref_primary_10_1103_PhysRevE_108_064411
crossref_primary_10_1089_wound_2024_0003
Cites_doi 10.1016/J.JTBI.2013.03.021
10.3390/math8111875
10.3389/fbioe.2019.00422
10.1146/annurev.cellbio.21.012704.131001
10.1016/j.cels.2020.05.009
10.1038/s41467-020-15164-5
10.1016/j.cels.2018.01.016
10.1088/1478-3975/11/2/026002
10.1074/jbc.m110.142232
10.1038/nphys1269
10.1002/term.1612
10.1002/jor.1100030310
10.1002/jcp.1041290303
10.1371/journal.pone.0122094
10.1016/j.bbrc.2011.07.004
10.3892/ijmm.2016.2590
10.1103/PhysRevE.74.061908
10.1371/journal.pcbi.1005569
10.1091/mbc.E14-12-1580
10.22203/eCM.v022a26
10.1385/cbb:33:1:33
10.1088/1361-6463/aa56fe
10.1007/BF02460652
10.1186/s12918-017-0413-5
10.1039/c3ib40137e
10.1096/fj.01-0811fje
10.1038/NPHYS3040
10.1016/j.jmb.2011.02.001
10.1016/j.bbrc.2004.11.078
10.1016/j.bpj.2021.06.034
10.1038/nmat3891
10.3389/fbioe.2020.557447
10.1073/pnas.1702526114
10.3390/app11125689
10.3892/ijmm.2011.778
10.1091/mbc.E18-01-0077
10.1016/j.bioelechem.2012.08.002
10.1016/j.bioelechem.2020.107578
10.1016/B978-0-12-814841-9.00018-X
ContentType Journal Article
Copyright Copyright © 2022 Dawson, Sellmann, Porath, Bader, van Rienen, Appali and Köhling. 2022 Dawson, Sellmann, Porath, Bader, van Rienen, Appali and Köhling
Copyright_xml – notice: Copyright © 2022 Dawson, Sellmann, Porath, Bader, van Rienen, Appali and Köhling. 2022 Dawson, Sellmann, Porath, Bader, van Rienen, Appali and Köhling
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fbioe.2022.995326
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Dawson et al
EISSN 2296-4185
EndPage 995326
ExternalDocumentID oai_doaj_org_article_dfd85fb34860412187891c86d41e0e40
10_3389_fbioe_2022_995326
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
ISR
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c442t-c046982edd977f1e0891aff5d6718553347c073b1988a0f338079fb6b2d50a773
IEDL.DBID RPM
ISSN 2296-4185
IngestDate Tue Oct 22 15:08:57 EDT 2024
Tue Sep 17 21:31:38 EDT 2024
Fri Oct 25 11:24:21 EDT 2024
Thu Nov 21 23:43:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-c046982edd977f1e0891aff5d6718553347c073b1988a0f338079fb6b2d50a773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Thomas Prescott, Bentley Systems, United Kingdom
Edited by: Bin Li, Soochow University, China
Paul Tsai, Okinawa Institute of Science and Technology Graduate University, Japan
This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582662/
PQID 2728142494
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_dfd85fb34860412187891c86d41e0e40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9582662
proquest_miscellaneous_2728142494
crossref_primary_10_3389_fbioe_2022_995326
PublicationCentury 2000
PublicationDate 2022-10-06
PublicationDateYYYYMMDD 2022-10-06
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-06
  day: 06
PublicationDecade 2020
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Waters (B36) 2005; 21
Szabó (B31) 2006; 74
Dawson (B7) 2020; 8
Zhao (B40) 2011; 22
Stains (B29) 2005
Zhao (B39) 2002; 16
Henkes (B11) 2020; 11
Lara Rodriguez (B15) 2013; 5
Brugués (B3) 2014; 10
Zajdel (B38) 2020; 10
Stains (B30) 2019; 2020
Simpson (B28) 2017; 11
Schienbein (B26) 1993; 55
Cohen (B6) 2014; 13
Gruler (B10) 2000; 33
(B19) 2021
Mousavi (B20) 2013; 329
Rohde (B24) 2019; 7
Prescott (B23) 2021; 120
Lin (B17) 2017; 114
Trepat (B33) 2009; 5
Barton (B1) 2017; 13
Kaivosoja (B14) 2015; 9
Mousavi (B22) 2015; 30
Vanegas-Acosta (B35) 2012; 88
Saltukoglu (B25) 2015
Liang (B16) 2020; 135
Hiemer (B12) 2016; 38
Lochner (B18) 2011; 28
Brighton (B2) 1985; 3
Gruening (B9) 2021; 11
Thurley (B32) 2018; 6
Wu (B37) 2011; 411
Mousavi (B21) 2014; 11
Urdeitx (B34) 2020; 8
Camley (B4) 2017; 50
Sich (B27) 2010; 285
Cho (B5) 2018; 29
Ferrier (B8) 1986; 129
Jacobs (B13) 2011; 407
References_xml – volume: 329
  start-page: 64
  year: 2013
  ident: B20
  article-title: 3D computational modelling of cell migration: A mechano-chemo-thermo-electrotaxis approach
  publication-title: J. Theor. Biol.
  doi: 10.1016/J.JTBI.2013.03.021
  contributor:
    fullname: Mousavi
– volume: 8
  start-page: 1875
  year: 2020
  ident: B34
  article-title: A computational model for cardiomyocytes mechano-electric stimulation to enhance cardiac tissue regeneration
  publication-title: Mathematics
  doi: 10.3390/math8111875
  contributor:
    fullname: Urdeitx
– volume: 7
  start-page: 422
  year: 2019
  ident: B24
  article-title: Human osteoblast migration in DC electrical fields depends on store operated Ca2+-release and is correlated to upregulation of stretch-activated TRPM7 channels
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00422
  contributor:
    fullname: Rohde
– volume: 21
  start-page: 319
  year: 2005
  ident: B36
  article-title: Quorum sensing: Cell-to-cell communication in bacteria
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.012704.131001
  contributor:
    fullname: Waters
– volume: 10
  start-page: 506
  year: 2020
  ident: B38
  article-title: Scheepdog: Programming electric cues to dynamically herd large-scale cell migration
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.05.009
  contributor:
    fullname: Zajdel
– volume: 11
  start-page: 1405
  year: 2020
  ident: B11
  article-title: Dense active matter model of motion patterns in confluent cell monolayers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15164-5
  contributor:
    fullname: Henkes
– volume: 6
  start-page: 355
  year: 2018
  ident: B32
  article-title: Modeling cell-to-cell communication networks using response-time distributions
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.01.016
  contributor:
    fullname: Thurley
– volume: 11
  start-page: 026002
  year: 2014
  ident: B21
  article-title: Computational modelling of multi-cell migration in a multi-signalling substrate
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/11/2/026002
  contributor:
    fullname: Mousavi
– volume: 285
  start-page: 39150
  year: 2010
  ident: B27
  article-title: Effects of actin-myosin kinetics on the calcium sensitivity of regulated thin filaments
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m110.142232
  contributor:
    fullname: Sich
– volume-title: Matlab
  year: 2021
  ident: B19
– volume: 5
  start-page: 426
  year: 2009
  ident: B33
  article-title: Physical forces during collective cell migration
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1269
  contributor:
    fullname: Trepat
– volume: 9
  start-page: 31
  year: 2015
  ident: B14
  article-title: The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1612
  contributor:
    fullname: Kaivosoja
– volume: 3
  start-page: 331
  year: 1985
  ident: B2
  article-title: Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100030310
  contributor:
    fullname: Brighton
– volume: 129
  start-page: 283
  year: 1986
  ident: B8
  article-title: Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041290303
  contributor:
    fullname: Ferrier
– volume: 30
  start-page: e0122094
  year: 2015
  ident: B22
  article-title: Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122094
  contributor:
    fullname: Mousavi
– volume: 411
  start-page: 695
  year: 2011
  ident: B37
  article-title: A receptor-electromigration-based model for cellular electrotactic sensing and migration
  publication-title: Biochem. Biophysical Res. Commun.
  doi: 10.1016/j.bbrc.2011.07.004
  contributor:
    fullname: Wu
– volume: 38
  start-page: 57
  year: 2016
  ident: B12
  article-title: Magnetically induced electrostimulation of human osteoblasts results in enhanced cell viability and osteogenic differentiation
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2590
  contributor:
    fullname: Hiemer
– volume: 74
  start-page: 061908
  year: 2006
  ident: B31
  article-title: Phase transition in the collective migration of tissue cells: Experiment and model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.061908
  contributor:
    fullname: Szabó
– volume: 13
  start-page: e1005569
  year: 2017
  ident: B1
  article-title: Active Vertex Model for cell-resolution description of epithelial tissue mechanics
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005569
  contributor:
    fullname: Barton
– year: 2015
  ident: B25
  article-title: Spontaneous and electric feld-controlled front-rear polarization of human keratinocytes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-12-1580
  contributor:
    fullname: Saltukoglu
– volume: 22
  start-page: 344
  year: 2011
  ident: B40
  article-title: Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field
  publication-title: Eur. Cell. Mat.
  doi: 10.22203/eCM.v022a26
  contributor:
    fullname: Zhao
– volume: 33
  start-page: 33
  year: 2000
  ident: B10
  article-title: The Galvanotaxis response mechanism of keratinocytes can be modeled as a proportional controller
  publication-title: Cell biochem. Biophys.
  doi: 10.1385/cbb:33:1:33
  contributor:
    fullname: Gruler
– volume: 50
  start-page: 113002
  year: 2017
  ident: B4
  article-title: Physical models of collective cell motility: From cell to tissue
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa56fe
  contributor:
    fullname: Camley
– volume: 55
  start-page: 585
  year: 1993
  ident: B26
  article-title: Langevin equation Fokker-Planck equation and cell migration
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02460652
  contributor:
    fullname: Schienbein
– volume: 11
  start-page: 39
  year: 2017
  ident: B28
  article-title: Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-017-0413-5
  contributor:
    fullname: Simpson
– volume: 5
  start-page: 1306
  year: 2013
  ident: B15
  article-title: Directed cell migration in multi-cue environments
  publication-title: Integr. Biol.
  doi: 10.1039/c3ib40137e
  contributor:
    fullname: Lara Rodriguez
– volume: 16
  start-page: 857
  year: 2002
  ident: B39
  article-title: Membrane lipidsEGF receptors and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0811fje
  contributor:
    fullname: Zhao
– volume: 10
  start-page: 683
  year: 2014
  ident: B3
  article-title: Forces driving epithelial wound healing
  publication-title: Nat. Phys.
  doi: 10.1038/NPHYS3040
  contributor:
    fullname: Brugués
– volume: 407
  start-page: 716
  year: 2011
  ident: B13
  article-title: Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.02.001
  contributor:
    fullname: Jacobs
– year: 2005
  ident: B29
  article-title: Cell-to-cell interactions in bone.
  doi: 10.1016/j.bbrc.2004.11.078
  contributor:
    fullname: Stains
– volume: 120
  start-page: 3363
  year: 2021
  ident: B23
  article-title: Quantifying the impact of electric fields on single-cell motility
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2021.06.034
  contributor:
    fullname: Prescott
– volume: 13
  start-page: 409
  year: 2014
  ident: B6
  article-title: Galvanotactic control of collective cell migration in epithelial monolayers
  publication-title: Nat. Mat.
  doi: 10.1038/nmat3891
  contributor:
    fullname: Cohen
– volume: 8
  start-page: 557447
  year: 2020
  ident: B7
  article-title: A general theoretical framework to study the influence of electrical fields on mesenchymal stem cells
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.557447
  contributor:
    fullname: Dawson
– volume: 114
  start-page: 8568
  year: 2017
  ident: B17
  article-title: Lipid rafts sense and direct electric field-induced migration
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1702526114
  contributor:
    fullname: Lin
– volume: 11
  start-page: 5689
  year: 2021
  ident: B9
  article-title: Automatic actin filament quantification and cell shape modeling of osteoblasts on charged ti surfaces
  publication-title: Appl. Sci.
  doi: 10.3390/app11125689
  contributor:
    fullname: Gruening
– volume: 28
  start-page: 1055
  year: 2011
  ident: B18
  article-title: The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2011.778
  contributor:
    fullname: Lochner
– volume: 29
  start-page: 2292
  year: 2018
  ident: B5
  article-title: Electric field-induced migration and intercellular stress alignment in a collective epithelial monolayer
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E18-01-0077
  contributor:
    fullname: Cho
– volume: 88
  start-page: 134
  year: 2012
  ident: B35
  article-title: Mathematical model of electrotaxis in osteoblastic cells
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2012.08.002
  contributor:
    fullname: Vanegas-Acosta
– volume: 135
  start-page: 107578
  year: 2020
  ident: B16
  article-title: Application of stable continuous external electric field promotes wound healing in pig wound model
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2020.107578
  contributor:
    fullname: Liang
– volume: 2020
  start-page: 432
  year: 2019
  ident: B30
  article-title: Intercellular junctions and cell-cell communication in the skeletal system
  publication-title: Principles of bone biology
  doi: 10.1016/B978-0-12-814841-9.00018-X
  contributor:
    fullname: Stains
SSID ssj0001257582
Score 2.2821782
Snippet Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 995326
SubjectTerms Bioengineering and Biotechnology
cell migration
collective migration
computational modeling
electrotaxis
osteoblasts
particle based approach
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbqSQ_GZ1xfwcSTSbWlLYWjr82evKiJNwIFtMnaGnc38U_4n52BXbM9efEKtKXMlPmGznxDyDkvdVbaPE-0NuCg1F4nRniWZLb0Mi29sSHDe_RYPbyIu3ukyfkt9YUxYZEeOC7clfVWwCU5FksqMjBIlZBZLbgtMpe6InrrKV9ypuLpCsAQweJvTPDC5JU3TYe0mIxdSlnmSKawZIgCX38PZPZDJJdsznCLbM7BIr2Ok9wmK67dIRtLFIK75PvWjccJHr9TZH74jHkKE6pbS_14hukhsaFpKWA9Gk0YtNDOUwzEQxhOP0JQ3qLXWfrevEbVwGGYB9IZgNnTcJs4iNaR2YnOC-lM9Vcz2SPPw_un21EyL7GQ1EXBpkkdKkgyZy3gQA8rCourvS8tB5tVYppuVcMmYDIphE59jvT00htumC1TXVX5Pllru9YdECqN5U7qCuloCmu0AKQo6lwXGWwctXUDcrFYb_URmTQUeCAoHBWEo1A4KgpnQG5QIr8DkQQ7NIBqqLlqqL9UY0DOFvJU8NGgKHTrutlEsYoJTPGTxYBUPUH3ntjvaZu3QL8tQbE4Z4f_McUjso5vHaID-TFZm37O3AlZndjZaVDoH2xz_vg
  priority: 102
  providerName: Directory of Open Access Journals
Title Cell-cell interactions and fluctuations in the direction of motility promote directed migration of osteoblasts in direct current electrotaxis
URI https://search.proquest.com/docview/2728142494
https://pubmed.ncbi.nlm.nih.gov/PMC9582662
https://doaj.org/article/dfd85fb34860412187891c86d41e0e40
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnuCAeIqFUhmJE1J2EydO7CNsW_UCQgIkbpafJdJustqHxJ_of-6MnVSba6-2k9iZceYbZ-YbQj7XXBfclWWmtQEHxQadGRFYVjgeZM6DcTHD--ZX8-OvuLxCmhw-5sLEoH1r2kW33iy69l-Mrdxu7HKME1v-_L6SHEBxzZYzMgNseOKip4MVQCCCpT-Y4IDJZTBtj4yYjC2k5CXyKJzYoEjVP8GX0-jIE3Nz_YI8H3Ai_Zrm85I88d0r8uyEPfA1uVv59TrDk3eKpA-7lKKwp7pzNKyPmBmSGtqOAsyjyXpBC-0DxRg8ROB0G-Pxxl7v6Ka9TVqBwzAFpDeAsA_xNmkQtYnUiQ41dA76f7t_Q_5cX_1e3WRDdYXMVhU7ZDYWj2TeOYCAofC5kIUOgbsazBXHDN3Gwv43hRRC56FEZnoZTG2Y47lumvItOev6zr8jVBpXe6kbZKKpnNECQKKwpa4K-GZY5-fky_i-1TaRaChwPlA4KgpHoXBUEs6cfEOJPAxE_uvY0O9u1aAFygUnQJFKLKFVFQBTGpi9FbWrYCG-yufk0yhPBfsFRaE73x_3ijVMYHafrOakmQh68sRpDyhiZN4eFO_9o6_8QJ7iUmM0YH1Ozg67o_9IZnt3vIinARdRl-8B80X_vQ
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOQAH3ogtLyNxQspuXk7sIyytFtFWSBSJm-VnG2k3We1D4k_0PzNjJ2hz7dV2Elsz9nzjzHxDyKeKqYzZokiU0uCgGK8SzX2eZJZ5kTKvbcjwXvyqL__wb6dIk8OGXJgQtG90M22Xq2nb3ITYyvXKzIY4sdnPi7lgAIqrfHZE7sN-TdMDJz1erQAG4Xn8hwkumJh53XTIiZnnUyFYgUwKB1YokPWPEOY4PvLA4Jw9ueNUn5LHPcKkX2L3M3LPtc_JowPewRfkdu6WywTv7CnSRWxicsOWqtZSv9xjTklsaFoKAJFGuwcttPMUo_cQu9N1iOQbep2lq-Y66hMOw-SRTgM234XXxEHURDoo2lff2am_zfYl-X12ejVfJH1dhsSUZb5LTCg7mTtrATz6zKVcZMp7ZiswdAxze2sDJ4fOBOcq9QVy2guvK51blqq6Ll6R47Zr3WtChbaVE6pGDpvSasUBXnJTqDKD08ZYNyGfBznJdaTfkOC2oFBlEKpEocoo1An5ipL8PxCZs0NDt7mWvVCk9ZaDChZYfKvMAODUMHvDK1vCQlyZTsjHQQ8k7DQUhWpdt9_KvM455gWKckLqkYKMvjjuAb0InN29Hpzc-ckP5MHi6uJcnn-__PGGPMRlh5jC6i053m327h052tr9-7AT_gFebBRl
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAceCO2vIzECSmbxHnZR9h2VQRUlQCJm-VnG2k3We1D4k_0PzNjZ6vNFa72JLE1Y89nZ-YbQj7UlcorWxSJUhoOKMarRHPPktxWXmSV1zZkeJ__aC5-89MzpMm5LfUVgvaNbqfdYjnt2usQW7lamnQfJ5Zefp-JCkBxzdKV9ekRuQtrNmMHB_V4vQI4hLP4HxOOYSL1uu2RF5OxqRBVgWwKB54oEPaPUOY4RvLA6cwf_cdwH5OHA9Kkn6LIE3LHdU_JgwP-wWfkZuYWiwTv7inSRqxjksOGqs5Sv9hhbklsaDsKQJFG_wcttPcUo_gQw9NViOjb9zpLl-1VtCsUwySSXgNG34bXRCFqIi0UHarwbNWfdvOc_Jqf_ZydJ0N9hsSUJdsmJpSfZM5aAJE-dxkXufK-sjU4vApzfBsDO4jOBecq8wVy2wuva81slammKV6Q467v3EtChba1E6pBLpvSasUBZnJTqDKHXcdYNyEf97qSq0jDIeH4goqVQbESFSujYifkM2rzVhAZtENDv76Sg2Kk9ZaDKRZYhKvMAeg0MHrDa1vCRFyZTcj7vS1IWHGoCtW5freRrGEc8wNFOSHNyEhGXxz3gG0E7u7BFk7--cl35N7l6Vx--3Lx9RW5j7MOoYX1a3K8Xe_cG3K0sbu3YTH8BeIpFuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-cell+interactions+and+fluctuations+in+the+direction+of+motility+promote+directed+migration+of+osteoblasts+in+direct+current+electrotaxis&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Dawson%2C+Jonathan+Edward&rft.au=Sellmann%2C+Tina&rft.au=Porath%2C+Katrin&rft.au=Bader%2C+Rainer&rft.date=2022-10-06&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft.spage=995326&rft.epage=995326&rft_id=info:doi/10.3389%2Ffbioe.2022.995326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon