Mathematical Modeling of Ultradeep Sequencing Data Reveals that Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques but Still Fail To Clear Founder Epitope Sequences

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Virology Vol. 84; no. 11; pp. 5802 - 5814
Main Authors: Love, Tanzy M T, Thurston, Sally W, Keefer, Michael C, Dewhurst, Stephen, Lee, Ha Youn
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 01-06-2010
American Society for Microbiology (ASM)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList The prominent role of antiviral cytotoxic CD8+ T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef103-111RM9 (RM9), Tat28-35SL8 (SL8), and Gag181-189CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day-1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day-1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
ABSTRACT The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef 103-111 RM9 (RM9), Tat 28-35 SL8 (SL8), and Gag 181-189 CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day −1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day −1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef 103-111 RM9 (RM9), Tat 28-35 SL8 (SL8), and Gag 181-189 CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day −1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day −1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
Author Stephen Dewhurst
Michael C. Keefer
Tanzy M. T. Love
Sally W. Thurston
Ha Youn Lee
AuthorAffiliation Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, 1 Department of Medicine, University of Rochester, Rochester, New York 14642, 2 Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642 3
AuthorAffiliation_xml – name: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, 1 Department of Medicine, University of Rochester, Rochester, New York 14642, 2 Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642 3
Author_xml – sequence: 1
  givenname: Tanzy M T
  surname: Love
  fullname: Love, Tanzy M T
  organization: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, USA
– sequence: 2
  givenname: Sally W
  surname: Thurston
  fullname: Thurston, Sally W
– sequence: 3
  givenname: Michael C
  surname: Keefer
  fullname: Keefer, Michael C
– sequence: 4
  givenname: Stephen
  surname: Dewhurst
  fullname: Dewhurst, Stephen
– sequence: 5
  givenname: Ha Youn
  surname: Lee
  fullname: Lee, Ha Youn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20335256$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiKaFHWtksWEBU_yY5wapShMISgRq0oqd5fHcybiasQfbE8gf5nfgkLaCFRtbuvfzueda5yw60UZDFL0k-IIQWrz_fLu4wJiQPCb4STQhuCziNCXJSTTBmNI4ZcW30-jMubtAJUmWPItOKWYspWk2iX6thG-hF15J0aGVqaFTeotMg246b0UNMKA1fB9By0P9SniBrmEHonPIt8KjSzl6QNOr4i3axMt9P7RG7kPlGtxgtAOHZj_BerT21gSBNXQgvdoB-mrBudECUhqtVa-ERou-H3Ww0CipwsA9ulV2dPFCN-EN1GglpAhWHKrGg6DqOjQXqkMbg6YdCIvmZtQ1WDQblDcDPDgH9zx62gTL8OL-Po9u5rPN9FO8_PJxMb1cxjJJqI-rukqrKhU4FQmUWTgwKyAvMa2qggDLpchLmgMjCW3KrCLBGBalSGQdmqxk59GHo-4wVj3UEnT4xI4PVvXC7rkRiv_b0arlW7PjtMizjKRB4M29gDWHVT3vlZPQdUKDGR3Pk4xkjGT4_yRjpKC4yAL57khKa5yz0Dz6IZgfMsRDhvifDIVKwF_9vcMj_BCaALw-Aq3atj-UBS5cz-92ihdJ0ONpgSn7DWqi1Og
CitedBy_id crossref_primary_10_1093_bioinformatics_btv101
crossref_primary_10_1186_s12977_017_0343_8
crossref_primary_10_1093_bioinformatics_btt434
crossref_primary_10_1371_journal_pone_0012303
crossref_primary_10_1016_j_tibtech_2012_05_005
crossref_primary_10_1186_1742_4690_10_8
crossref_primary_10_1073_pnas_1117201109
crossref_primary_10_1371_journal_ppat_1002529
crossref_primary_10_1016_j_coi_2011_04_005
crossref_primary_10_1371_journal_pcbi_1002381
crossref_primary_10_1371_journal_pcbi_1004492
crossref_primary_10_1007_s12026_010_8177_7
crossref_primary_10_1093_infdis_jis503
crossref_primary_10_1214_13_AOAS684
crossref_primary_10_1128_JVI_02420_10
crossref_primary_10_1016_j_jtbi_2014_02_020
crossref_primary_10_1371_journal_pone_0076502
crossref_primary_10_1088_1742_5468_2013_01_P01009
crossref_primary_10_3389_fimmu_2018_00140
crossref_primary_10_1371_journal_pone_0135903
Cites_doi 10.1128/JVI.77.24.13348-13360.2003
10.1016/j.meegid.2010.02.001
10.4049/jimmunol.171.10.5372
10.1371/journal.ppat.1000378
10.1073/pnas.94.5.1890
10.1371/journal.ppat.0040012
10.1128/JVI.78.5.2581-2585.2004
10.1126/science.281.5375.363
10.1186/1742-4690-6-57
10.1128/JVI.78.5.2187-2200.2004
10.1128/JVI.01277-07
10.1128/JVI.02132-08
10.1084/jem.20090365
10.1006/jtbi.2000.1076
10.1128/JVI.02660-07
10.1073/pnas.0802203105
10.1016/j.jbiotec.2008.03.021
10.1126/science.271.5255.1582
10.1097/00002030-200002180-00003
10.1084/jem.20082831
10.1128/JVI.00946-07
10.1128/JCM.43.1.406-413.2005
10.1038/nprot.2006.442
10.1128/JVI.02568-08
10.1038/35030124
10.1080/0266476042000214501
10.1126/science.286.5443.1353
10.1128/JVI.01061-08
10.1038/nm998
10.1128/jvi.68.7.4650-4655.1994
10.1128/jvi.68.4.2362-2370.1994
10.1073/pnas.0700666104
10.1126/science.283.5403.857
10.1038/nm0502-493
10.1016/j.jtbi.2009.07.038
10.1371/journal.pbio.0040090
10.1128/JVI.77.8.4911-4927.2003
10.1086/526786
10.1128/JVI.79.9.5721-5731.2005
10.1097/00002030-200309050-00005
10.1084/jem.20090378
10.1128/JVI.02176-07
10.1002/j.1538-7305.1951.tb01366.x
10.1128/JVI.77.8.5037-5038.2003
10.1371/journal.pcbi.0020024
10.1084/jem.189.6.991
10.1371/journal.pone.0000321
10.1038/nm992
10.1128/JVI.77.3.2081-2092.2003
10.1128/JVI.00199-09
10.1128/jvi.68.9.6103-6110.1994
10.1128/JVI.00897-09
10.1128/jvi.69.8.5087-5094.1995
10.1128/JVI.00465-07
10.1073/pnas.190065897
ContentType Journal Article
Copyright Copyright © 2010, American Society for Microbiology 2010
Copyright_xml – notice: Copyright © 2010, American Society for Microbiology 2010
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7T5
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
DOI 10.1128/JVI.00117-10
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Virology and AIDS Abstracts
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 5814
ExternalDocumentID 10_1128_JVI_00117_10
20335256
jvi_84_11_5802
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P30AI078498
– fundername: NIEHS NIH HHS
  grantid: T32 ES007271
– fundername: NIAID NIH HHS
  grantid: P30 AI078498-03
– fundername: NIAID NIH HHS
  grantid: R01 AI083115
– fundername: NIAID NIH HHS
  grantid: P30 AI078498
– fundername: NIEHS NIH HHS
  grantid: T32 ES 007271
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F20
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
AAYXX
CITATION
7X8
7T5
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
ID FETCH-LOGICAL-c442t-bdb5bb5a05a4e96a4e038e7902bb81e37ca7927e3142f96b1fec0a9a4cde37393
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 21:07:59 EDT 2024
Fri Oct 25 02:29:38 EDT 2024
Fri Oct 25 09:48:30 EDT 2024
Thu Sep 12 17:36:02 EDT 2024
Sat Sep 28 08:01:20 EDT 2024
Wed May 18 15:25:59 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-bdb5bb5a05a4e96a4e038e7902bb81e37ca7927e3142f96b1fec0a9a4cde37393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doi.org/10.1128/jvi.00117-10
PMID 20335256
PQID 733182086
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_746163160
highwire_asm_jvi_84_11_5802
proquest_miscellaneous_733182086
crossref_primary_10_1128_JVI_00117_10
pubmed_primary_20335256
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2876615
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2010
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References 15827187 - J Virol. 2005 May;79(9):5721-31
15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13
14966520 - Nat Med. 2004 Mar;10(3):275-81
12663814 - J Virol. 2003 Apr;77(8):5037-8
14770175 - Nat Med. 2004 Mar;10(3):282-9
17389912 - PLoS One. 2007;2(3):e321
19360124 - PLoS Pathog. 2009 Apr;5(4):e1000378
18353945 - J Virol. 2008 Jun;82(11):5398-407
19487424 - J Exp Med. 2009 Jun 8;206(6):1273-89
12960819 - AIDS. 2003 Sep 5;17(13):1871-9
19193811 - J Virol. 2009 Apr;83(8):3556-67
19535437 - J Virol. 2009 Sep;83(17):8470-81
17406511 - Nat Protoc. 2006;1(6):2573-82
18256145 - J Virol. 2008 Apr;82(8):3952-70
12663797 - J Virol. 2003 Apr;77(8):4911-27
14963115 - J Virol. 2004 Mar;78(5):2187-200
19414559 - J Exp Med. 2009 May 11;206(5):1117-34
16515366 - PLoS Biol. 2006 Apr;4(4):e90
14645590 - J Virol. 2003 Dec;77(24):13348-60
19515775 - J Virol. 2009 Aug;83(16):8247-53
18616967 - J Biotechnol. 2008 Aug 31;136(1-2):3-10
15905727 - J Acquir Immune Defic Syndr. 2005 Jun 1;39(2):133-7
14963161 - J Virol. 2004 Mar;78(5):2581-5
8057491 - J Virol. 1994 Sep;68(9):6103-10
17699572 - J Virol. 2007 Nov;81(21):11982-91
16604188 - PLoS Comput Biol. 2006 Mar;2(3):e24
18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7
7541846 - J Virol. 1995 Aug;69(8):5087-94
12525643 - J Virol. 2003 Feb;77(3):2081-92
17404226 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6365-70
10558989 - Science. 1999 Nov 12;286(5443):1353-7
20149896 - Infect Genet Evol. 2010 May;10(4):555-60
11984594 - Nat Med. 2002 May;8(5):493-9
9705713 - Science. 1998 Jul 17;281(5375):363, 365
19339351 - J Virol. 2009 Jun;83(12):6011-9
18225952 - PLoS Pathog. 2008 Jan;4(1):e12
10716497 - AIDS. 2000 Feb 18;14(3):225-33
8207839 - J Virol. 1994 Jul;68(7):4650-5
19660475 - J Theor Biol. 2009 Nov 21;261(2):341-60
10716909 - J Theor Biol. 2000 Apr 7;203(3):285-301
10995459 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10966-71
11014195 - Nature. 2000 Sep 21;407(6802):386-90
8139022 - J Virol. 1994 Apr;68(4):2362-70
9933172 - Science. 1999 Feb 5;283(5403):857-60
8599114 - Science. 1996 Mar 15;271(5255):1582-6
17728222 - J Virol. 2007 Nov;81(22):12179-88
18275276 - J Infect Dis. 2008 Feb 15;197(4):563-71
19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72
19505314 - Retrovirology. 2009;6:57
19036810 - J Virol. 2009 Feb;83(4):1845-55
17507468 - J Virol. 2007 Aug;81(15):8346-51
10075982 - J Exp Med. 1999 Mar 15;189(6):991-8
14607940 - J Immunol. 2003 Nov 15;171(10):5372-9
9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
(e_1_3_2_19_2) 2005; 39
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_55_2
  doi: 10.1128/JVI.77.24.13348-13360.2003
– ident: e_1_3_2_27_2
  doi: 10.1016/j.meegid.2010.02.001
– ident: e_1_3_2_28_2
  doi: 10.4049/jimmunol.171.10.5372
– volume: 39
  start-page: 133
  year: 2005
  ident: e_1_3_2_19_2
  publication-title: J. Acquir. Immune. Defic. Syndr.
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.ppat.1000378
– ident: e_1_3_2_47_2
  doi: 10.1073/pnas.94.5.1890
– ident: e_1_3_2_37_2
  doi: 10.1371/journal.ppat.0040012
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.78.5.2581-2585.2004
– ident: e_1_3_2_49_2
  doi: 10.1126/science.281.5375.363
– ident: e_1_3_2_10_2
  doi: 10.1186/1742-4690-6-57
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.78.5.2187-2200.2004
– ident: e_1_3_2_36_2
  doi: 10.1128/JVI.01277-07
– ident: e_1_3_2_5_2
– ident: e_1_3_2_2_2
  doi: 10.1128/JVI.02132-08
– ident: e_1_3_2_25_2
  doi: 10.1084/jem.20090365
– ident: e_1_3_2_54_2
  doi: 10.1006/jtbi.2000.1076
– ident: e_1_3_2_50_2
  doi: 10.1128/JVI.02660-07
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.0802203105
– ident: e_1_3_2_15_2
  doi: 10.1016/j.jbiotec.2008.03.021
– ident: e_1_3_2_44_2
  doi: 10.1126/science.271.5255.1582
– ident: e_1_3_2_58_2
  doi: 10.1097/00002030-200002180-00003
– ident: e_1_3_2_31_2
  doi: 10.1084/jem.20082831
– ident: e_1_3_2_39_2
  doi: 10.1128/JVI.00946-07
– ident: e_1_3_2_43_2
  doi: 10.1128/JCM.43.1.406-413.2005
– ident: e_1_3_2_33_2
  doi: 10.1038/nprot.2006.442
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.02568-08
– ident: e_1_3_2_6_2
  doi: 10.1038/35030124
– ident: e_1_3_2_18_2
  doi: 10.1080/0266476042000214501
– ident: e_1_3_2_59_2
  doi: 10.1126/science.286.5443.1353
– ident: e_1_3_2_56_2
  doi: 10.1128/JVI.01061-08
– ident: e_1_3_2_22_2
  doi: 10.1038/nm998
– ident: e_1_3_2_32_2
  doi: 10.1128/jvi.68.7.4650-4655.1994
– ident: e_1_3_2_48_2
  doi: 10.1128/jvi.68.4.2362-2370.1994
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.0700666104
– ident: e_1_3_2_52_2
  doi: 10.1126/science.283.5403.857
– ident: e_1_3_2_46_2
– ident: e_1_3_2_42_2
  doi: 10.1038/nm0502-493
– ident: e_1_3_2_34_2
  doi: 10.1016/j.jtbi.2009.07.038
– ident: e_1_3_2_7_2
  doi: 10.1371/journal.pbio.0040090
– ident: e_1_3_2_57_2
  doi: 10.1128/JVI.77.8.4911-4927.2003
– ident: e_1_3_2_45_2
  doi: 10.1086/526786
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.79.9.5721-5731.2005
– ident: e_1_3_2_20_2
  doi: 10.1097/00002030-200309050-00005
– ident: e_1_3_2_51_2
  doi: 10.1084/jem.20090378
– ident: e_1_3_2_16_2
  doi: 10.1128/JVI.02176-07
– ident: e_1_3_2_53_2
  doi: 10.1002/j.1538-7305.1951.tb01366.x
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.77.8.5037-5038.2003
– ident: e_1_3_2_24_2
  doi: 10.1371/journal.pcbi.0020024
– ident: e_1_3_2_29_2
  doi: 10.1084/jem.189.6.991
– ident: e_1_3_2_3_2
  doi: 10.1371/journal.pone.0000321
– ident: e_1_3_2_35_2
  doi: 10.1038/nm992
– ident: e_1_3_2_4_2
  doi: 10.1128/JVI.77.3.2081-2092.2003
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.00199-09
– ident: e_1_3_2_11_2
  doi: 10.1128/jvi.68.9.6103-6110.1994
– ident: e_1_3_2_9_2
  doi: 10.1128/JVI.00897-09
– ident: e_1_3_2_40_2
  doi: 10.1128/jvi.69.8.5087-5094.1995
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.00465-07
– ident: e_1_3_2_26_2
  doi: 10.1073/pnas.190065897
SSID ssj0014464
Score 2.1474001
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and...
ABSTRACT The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses...
The prominent role of antiviral cytotoxic CD8+ T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and...
The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5802
SubjectTerms Amino Acid Sequence
Animals
Antibodies, Viral
Antigens, Viral
CD8-Positive T-Lymphocytes - immunology
Epitopes
Founder Effect
Human immunodeficiency virus 1
Immune Evasion - immunology
Immunity, Cellular
Macaca
Models, Immunological
Models, Theoretical
Pathogenesis and Immunity
Simian Acquired Immunodeficiency Syndrome - immunology
Simian immunodeficiency virus
Simian Immunodeficiency Virus - immunology
Title Mathematical Modeling of Ultradeep Sequencing Data Reveals that Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques but Still Fail To Clear Founder Epitope Sequences
URI http://jvi.asm.org/content/84/11/5802.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20335256
https://search.proquest.com/docview/733182086
https://search.proquest.com/docview/746163160
https://pubmed.ncbi.nlm.nih.gov/PMC2876615
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLaWSpN2mfZ7WbvpHbbTREPAgDlW-aFmWqapSavekI1fViYCUYCq-Yf3d-wZ4qidph124WCMecif7Wfzve8x9lGlfrrSfuisBKLDAxU4sRdph1afQGtXu6hM7PD5Ivp2LcYTI5MT2FiYlrSfquy0yNenRXbTcis363RgeWKD7_MRefm0rASDHuuRb2i36PtfB7S_4VYinEbztWW7e2Lw5WrWiVPS5GNUgF0TcGRSV99fkqxM8N9czj-Zk_eWoukz9nTvQ8JZZ-tz9giLF-xxl1Vy95L9mh-kWKmWSXZmQs6hXMFlTs1pxA0sOga1KR_LWsIF3pLHWEF9I2s4S5saYTQWn2HpfN1Rf5fpjkouOj4tVjC5w20NC3OM_oPayrtZE7pYwy1CVsAiWxPyYGbiT8gEI1RhojzhKts2lTNrOWCoYS5Tab4eVGMazPIcpjLLYVnCyGS0gDbvE25hsqG5Z4PWcqxescvpZDk6d_bpHJyUc692lFaBUoF0A8kxDuni-gKj2PWUEkP0o1RGhBP0h9xbxaEakiGujCVPNd30Y_81OyrKAt8y0IZbh7ESXow88lGFPFJcaXcVEfZir88-2R5NNp1qR9LudjyREAhaIl9EJX12bLs7kdU6-XmbJYJTvSQQLrUCFgEJDTrzJ0UWWDZVYhJdkuskwn9U4SG5usOQ3vGmw8zBEou7PoseoOlQwUh-P7xDI6GV_t4j_91_P3nMnnT8B3OOdMKO6m2D71mv0s2Hdhj9BhfjJ3I
link.rule.ids 230,315,729,782,786,887,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWaFEV76b646TKH9lQoliVqOwZeYLd2UMROkJtAiqNGhSwblhTUP9zv6FAyjaQoeshFB5KiRsIjOaTevGHsk0zcJFWub6UhosU96VmREyiLVh9PKVvZKHXs8HgenF6Gg6GWyfFMLExD2k9kdlzky-Miu2q4letl0jU8se73WZ-8fFpWvO4Bu0_j1XbNJn3384B2ONyIhFP9peG7O2H368Wklaek6UfrANs65Egnr765KBmh4H85nX9zJ28sRqMnd3yNp-zxzvuEk7b6GbuHxXP2oM1HuX3Bfs_2Iq7USqdJ08HqsErhPCczFOIa5i33WpcPRCXgDK_J1yyhuhIVnCR1hdAfhF9gYU23hJRVsqWSs5aJiyUMf-Gmgrk-gP9BfeXtfAttlOIGIStgni0JszDRkStkgpa40PGhcJFt6tKaNOwxVDATidBfDWStO8zyHEYiy2Gxgr7OhQFNxijcwHBNs9YajeVYvmTno-GiP7Z2iSCshHOnsqSSnpSesD3BMfLpYrshBpHtSBn20A0SERDC0O1xJ4182SNDbBEJniiqdCP3FTssVgW-YaA0Kw8jGToR8sBF6fNAcqnsNCDURk6HfTZIiNet3kfc7JOcMCbwNBTAgEo67MjAJBblMv55ncUhp3axF9rUCxjkxDRc9T8YUeCqLmOdIpOcrtD_TxPuk5Pc8-kZr1us7S0xeO2w4BYK9w20WPjtGgJfIxq-A9vbO9_5kT0cL2bTeDo5_XbEHrUsCn0a9Y4dVpsa37ODUtUfmqH4Bws9PQA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEF41qVr10ndaN33MoT1VxBgWWI6RH4rbOIriJMoN7bJDQ4UxMhDVf7i_o7NgrKSqemgvPuwO6wF9uzsL33zD2EcVu3GiXd9KBKLFPeVZoRNoi3YfT2tb26hM7vDRPDi5EqOxkcnZlvpqSPuxSg_ybHGQp9cNt7JYxP2OJ9Y_nQ0pyqdtxesXOunvsPs0Z22vO6hvPiDQKYd3QuHUf9Vx3h3R_3I5bSUqaQkyWsC2STsyBaxvb0ydWPCfAs_f-ZO3NqTJk_-4lafs8SYKhcPW5Bm7h_lz9qCtS7l-wX7OtmKuZGXKpZmkdVgmcJGRKxqxgHnLwTbtI1lJOMMbijlLqK5lBYdxXSEMR-IznFvHa0LMMl5Ty1nLyMUSxj9wVcHcvIj_RmNl7boLbbbiCiHNYZ4uCLswNRks5IKRujB5onCZrurSmjYsMtQwk7E0Tw5UbQZMswwmMs3gfAlDUxMDmspRuIJxQatXgZ3nWL5kF5Px-fDI2hSEsGLOncpSWnlKedL2JMfQpx_bFRiEtqOUGKAbxDIgpKE74E4S-mpAjtgylDzW1OmG7h7bzZc5vmagDTsPQyWcEHngovJ5oLjSdhIQekOnxz51aIiKVvcjas5LjogIQA0VMKCWHtvvoBLJchF9v0kjwcku8oRNo0CHnoimrfkWI3Nc1mVkSmVS8CX8v5hwn4LlgU__8arF29aTDrM9FtxB4tbAiIbf7SEANuLhG8C9-ecrP7CHp6NJdDw9-brPHrVkCvNS6i3brVY1vmM7pa7fN7PxF8bjP4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+of+ultradeep+sequencing+data+reveals+that+acute+CD8%2B+T-lymphocyte+responses+exert+strong+selective+pressure+in+simian+immunodeficiency+virus-infected+macaques+but+still+fail+to+clear+founder+epitope+sequences&rft.jtitle=Journal+of+virology&rft.au=Love%2C+Tanzy+M+T&rft.au=Thurston%2C+Sally+W&rft.au=Keefer%2C+Michael+C&rft.au=Dewhurst%2C+Stephen&rft.date=2010-06-01&rft.eissn=1098-5514&rft.volume=84&rft.issue=11&rft.spage=5802&rft.epage=5814&rft_id=info:doi/10.1128%2FJVI.00117-10&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon