Mathematical Modeling of Ultradeep Sequencing Data Reveals that Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques but Still Fail To Clear Founder Epitope Sequences
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in: | Journal of Virology Vol. 84; no. 11; pp. 5802 - 5814 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Society for Microbiology
01-06-2010
American Society for Microbiology (ASM) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | The prominent role of antiviral cytotoxic CD8+ T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef103-111RM9 (RM9), Tat28-35SL8 (SL8), and Gag181-189CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day-1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day-1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope. ABSTRACT The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef 103-111 RM9 (RM9), Tat 28-35 SL8 (SL8), and Gag 181-189 CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day −1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day −1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope. The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef 103-111 RM9 (RM9), Tat 28-35 SL8 (SL8), and Gag 181-189 CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day −1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day −1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope. |
Author | Stephen Dewhurst Michael C. Keefer Tanzy M. T. Love Sally W. Thurston Ha Youn Lee |
AuthorAffiliation | Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, 1 Department of Medicine, University of Rochester, Rochester, New York 14642, 2 Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642 3 |
AuthorAffiliation_xml | – name: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, 1 Department of Medicine, University of Rochester, Rochester, New York 14642, 2 Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642 3 |
Author_xml | – sequence: 1 givenname: Tanzy M T surname: Love fullname: Love, Tanzy M T organization: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, USA – sequence: 2 givenname: Sally W surname: Thurston fullname: Thurston, Sally W – sequence: 3 givenname: Michael C surname: Keefer fullname: Keefer, Michael C – sequence: 4 givenname: Stephen surname: Dewhurst fullname: Dewhurst, Stephen – sequence: 5 givenname: Ha Youn surname: Lee fullname: Lee, Ha Youn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20335256$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhUeoiKaFHWtksWEBU_yY5wapShMISgRq0oqd5fHcybiasQfbE8gf5nfgkLaCFRtbuvfzueda5yw60UZDFL0k-IIQWrz_fLu4wJiQPCb4STQhuCziNCXJSTTBmNI4ZcW30-jMubtAJUmWPItOKWYspWk2iX6thG-hF15J0aGVqaFTeotMg246b0UNMKA1fB9By0P9SniBrmEHonPIt8KjSzl6QNOr4i3axMt9P7RG7kPlGtxgtAOHZj_BerT21gSBNXQgvdoB-mrBudECUhqtVa-ERou-H3Ww0CipwsA9ulV2dPFCN-EN1GglpAhWHKrGg6DqOjQXqkMbg6YdCIvmZtQ1WDQblDcDPDgH9zx62gTL8OL-Po9u5rPN9FO8_PJxMb1cxjJJqI-rukqrKhU4FQmUWTgwKyAvMa2qggDLpchLmgMjCW3KrCLBGBalSGQdmqxk59GHo-4wVj3UEnT4xI4PVvXC7rkRiv_b0arlW7PjtMizjKRB4M29gDWHVT3vlZPQdUKDGR3Pk4xkjGT4_yRjpKC4yAL57khKa5yz0Dz6IZgfMsRDhvifDIVKwF_9vcMj_BCaALw-Aq3atj-UBS5cz-92ihdJ0ONpgSn7DWqi1Og |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btv101 crossref_primary_10_1186_s12977_017_0343_8 crossref_primary_10_1093_bioinformatics_btt434 crossref_primary_10_1371_journal_pone_0012303 crossref_primary_10_1016_j_tibtech_2012_05_005 crossref_primary_10_1186_1742_4690_10_8 crossref_primary_10_1073_pnas_1117201109 crossref_primary_10_1371_journal_ppat_1002529 crossref_primary_10_1016_j_coi_2011_04_005 crossref_primary_10_1371_journal_pcbi_1002381 crossref_primary_10_1371_journal_pcbi_1004492 crossref_primary_10_1007_s12026_010_8177_7 crossref_primary_10_1093_infdis_jis503 crossref_primary_10_1214_13_AOAS684 crossref_primary_10_1128_JVI_02420_10 crossref_primary_10_1016_j_jtbi_2014_02_020 crossref_primary_10_1371_journal_pone_0076502 crossref_primary_10_1088_1742_5468_2013_01_P01009 crossref_primary_10_3389_fimmu_2018_00140 crossref_primary_10_1371_journal_pone_0135903 |
Cites_doi | 10.1128/JVI.77.24.13348-13360.2003 10.1016/j.meegid.2010.02.001 10.4049/jimmunol.171.10.5372 10.1371/journal.ppat.1000378 10.1073/pnas.94.5.1890 10.1371/journal.ppat.0040012 10.1128/JVI.78.5.2581-2585.2004 10.1126/science.281.5375.363 10.1186/1742-4690-6-57 10.1128/JVI.78.5.2187-2200.2004 10.1128/JVI.01277-07 10.1128/JVI.02132-08 10.1084/jem.20090365 10.1006/jtbi.2000.1076 10.1128/JVI.02660-07 10.1073/pnas.0802203105 10.1016/j.jbiotec.2008.03.021 10.1126/science.271.5255.1582 10.1097/00002030-200002180-00003 10.1084/jem.20082831 10.1128/JVI.00946-07 10.1128/JCM.43.1.406-413.2005 10.1038/nprot.2006.442 10.1128/JVI.02568-08 10.1038/35030124 10.1080/0266476042000214501 10.1126/science.286.5443.1353 10.1128/JVI.01061-08 10.1038/nm998 10.1128/jvi.68.7.4650-4655.1994 10.1128/jvi.68.4.2362-2370.1994 10.1073/pnas.0700666104 10.1126/science.283.5403.857 10.1038/nm0502-493 10.1016/j.jtbi.2009.07.038 10.1371/journal.pbio.0040090 10.1128/JVI.77.8.4911-4927.2003 10.1086/526786 10.1128/JVI.79.9.5721-5731.2005 10.1097/00002030-200309050-00005 10.1084/jem.20090378 10.1128/JVI.02176-07 10.1002/j.1538-7305.1951.tb01366.x 10.1128/JVI.77.8.5037-5038.2003 10.1371/journal.pcbi.0020024 10.1084/jem.189.6.991 10.1371/journal.pone.0000321 10.1038/nm992 10.1128/JVI.77.3.2081-2092.2003 10.1128/JVI.00199-09 10.1128/jvi.68.9.6103-6110.1994 10.1128/JVI.00897-09 10.1128/jvi.69.8.5087-5094.1995 10.1128/JVI.00465-07 10.1073/pnas.190065897 |
ContentType | Journal Article |
Copyright | Copyright © 2010, American Society for Microbiology 2010 |
Copyright_xml | – notice: Copyright © 2010, American Society for Microbiology 2010 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7T5 7T7 7U9 8FD C1K FR3 H94 P64 5PM |
DOI | 10.1128/JVI.00117-10 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 5814 |
ExternalDocumentID | 10_1128_JVI_00117_10 20335256 jvi_84_11_5802 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P30AI078498 – fundername: NIEHS NIH HHS grantid: T32 ES007271 – fundername: NIAID NIH HHS grantid: P30 AI078498-03 – fundername: NIAID NIH HHS grantid: R01 AI083115 – fundername: NIAID NIH HHS grantid: P30 AI078498 – fundername: NIEHS NIH HHS grantid: T32 ES 007271 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAYJJ ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F20 F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHF RHI RNS RPM RSF TR2 UCJ UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM AAYXX CITATION 7X8 7T5 7T7 7U9 8FD C1K FR3 H94 P64 5PM |
ID | FETCH-LOGICAL-c442t-bdb5bb5a05a4e96a4e038e7902bb81e37ca7927e3142f96b1fec0a9a4cde37393 |
IEDL.DBID | RPM |
ISSN | 0022-538X |
IngestDate | Tue Sep 17 21:07:59 EDT 2024 Fri Oct 25 02:29:38 EDT 2024 Fri Oct 25 09:48:30 EDT 2024 Thu Sep 12 17:36:02 EDT 2024 Sat Sep 28 08:01:20 EDT 2024 Wed May 18 15:25:59 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-bdb5bb5a05a4e96a4e038e7902bb81e37ca7927e3142f96b1fec0a9a4cde37393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doi.org/10.1128/jvi.00117-10 |
PMID | 20335256 |
PQID | 733182086 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_746163160 highwire_asm_jvi_84_11_5802 proquest_miscellaneous_733182086 crossref_primary_10_1128_JVI_00117_10 pubmed_primary_20335256 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2876615 |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2010 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | 15827187 - J Virol. 2005 May;79(9):5721-31 15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13 14966520 - Nat Med. 2004 Mar;10(3):275-81 12663814 - J Virol. 2003 Apr;77(8):5037-8 14770175 - Nat Med. 2004 Mar;10(3):282-9 17389912 - PLoS One. 2007;2(3):e321 19360124 - PLoS Pathog. 2009 Apr;5(4):e1000378 18353945 - J Virol. 2008 Jun;82(11):5398-407 19487424 - J Exp Med. 2009 Jun 8;206(6):1273-89 12960819 - AIDS. 2003 Sep 5;17(13):1871-9 19193811 - J Virol. 2009 Apr;83(8):3556-67 19535437 - J Virol. 2009 Sep;83(17):8470-81 17406511 - Nat Protoc. 2006;1(6):2573-82 18256145 - J Virol. 2008 Apr;82(8):3952-70 12663797 - J Virol. 2003 Apr;77(8):4911-27 14963115 - J Virol. 2004 Mar;78(5):2187-200 19414559 - J Exp Med. 2009 May 11;206(5):1117-34 16515366 - PLoS Biol. 2006 Apr;4(4):e90 14645590 - J Virol. 2003 Dec;77(24):13348-60 19515775 - J Virol. 2009 Aug;83(16):8247-53 18616967 - J Biotechnol. 2008 Aug 31;136(1-2):3-10 15905727 - J Acquir Immune Defic Syndr. 2005 Jun 1;39(2):133-7 14963161 - J Virol. 2004 Mar;78(5):2581-5 8057491 - J Virol. 1994 Sep;68(9):6103-10 17699572 - J Virol. 2007 Nov;81(21):11982-91 16604188 - PLoS Comput Biol. 2006 Mar;2(3):e24 18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7 7541846 - J Virol. 1995 Aug;69(8):5087-94 12525643 - J Virol. 2003 Feb;77(3):2081-92 17404226 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6365-70 10558989 - Science. 1999 Nov 12;286(5443):1353-7 20149896 - Infect Genet Evol. 2010 May;10(4):555-60 11984594 - Nat Med. 2002 May;8(5):493-9 9705713 - Science. 1998 Jul 17;281(5375):363, 365 19339351 - J Virol. 2009 Jun;83(12):6011-9 18225952 - PLoS Pathog. 2008 Jan;4(1):e12 10716497 - AIDS. 2000 Feb 18;14(3):225-33 8207839 - J Virol. 1994 Jul;68(7):4650-5 19660475 - J Theor Biol. 2009 Nov 21;261(2):341-60 10716909 - J Theor Biol. 2000 Apr 7;203(3):285-301 10995459 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10966-71 11014195 - Nature. 2000 Sep 21;407(6802):386-90 8139022 - J Virol. 1994 Apr;68(4):2362-70 9933172 - Science. 1999 Feb 5;283(5403):857-60 8599114 - Science. 1996 Mar 15;271(5255):1582-6 17728222 - J Virol. 2007 Nov;81(22):12179-88 18275276 - J Infect Dis. 2008 Feb 15;197(4):563-71 19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72 19505314 - Retrovirology. 2009;6:57 19036810 - J Virol. 2009 Feb;83(4):1845-55 17507468 - J Virol. 2007 Aug;81(15):8346-51 10075982 - J Exp Med. 1999 Mar 15;189(6):991-8 14607940 - J Immunol. 2003 Nov 15;171(10):5372-9 9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_19_2) 2005; 39 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_55_2 doi: 10.1128/JVI.77.24.13348-13360.2003 – ident: e_1_3_2_27_2 doi: 10.1016/j.meegid.2010.02.001 – ident: e_1_3_2_28_2 doi: 10.4049/jimmunol.171.10.5372 – volume: 39 start-page: 133 year: 2005 ident: e_1_3_2_19_2 publication-title: J. Acquir. Immune. Defic. Syndr. – ident: e_1_3_2_38_2 doi: 10.1371/journal.ppat.1000378 – ident: e_1_3_2_47_2 doi: 10.1073/pnas.94.5.1890 – ident: e_1_3_2_37_2 doi: 10.1371/journal.ppat.0040012 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.78.5.2581-2585.2004 – ident: e_1_3_2_49_2 doi: 10.1126/science.281.5375.363 – ident: e_1_3_2_10_2 doi: 10.1186/1742-4690-6-57 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.78.5.2187-2200.2004 – ident: e_1_3_2_36_2 doi: 10.1128/JVI.01277-07 – ident: e_1_3_2_5_2 – ident: e_1_3_2_2_2 doi: 10.1128/JVI.02132-08 – ident: e_1_3_2_25_2 doi: 10.1084/jem.20090365 – ident: e_1_3_2_54_2 doi: 10.1006/jtbi.2000.1076 – ident: e_1_3_2_50_2 doi: 10.1128/JVI.02660-07 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.0802203105 – ident: e_1_3_2_15_2 doi: 10.1016/j.jbiotec.2008.03.021 – ident: e_1_3_2_44_2 doi: 10.1126/science.271.5255.1582 – ident: e_1_3_2_58_2 doi: 10.1097/00002030-200002180-00003 – ident: e_1_3_2_31_2 doi: 10.1084/jem.20082831 – ident: e_1_3_2_39_2 doi: 10.1128/JVI.00946-07 – ident: e_1_3_2_43_2 doi: 10.1128/JCM.43.1.406-413.2005 – ident: e_1_3_2_33_2 doi: 10.1038/nprot.2006.442 – ident: e_1_3_2_12_2 doi: 10.1128/JVI.02568-08 – ident: e_1_3_2_6_2 doi: 10.1038/35030124 – ident: e_1_3_2_18_2 doi: 10.1080/0266476042000214501 – ident: e_1_3_2_59_2 doi: 10.1126/science.286.5443.1353 – ident: e_1_3_2_56_2 doi: 10.1128/JVI.01061-08 – ident: e_1_3_2_22_2 doi: 10.1038/nm998 – ident: e_1_3_2_32_2 doi: 10.1128/jvi.68.7.4650-4655.1994 – ident: e_1_3_2_48_2 doi: 10.1128/jvi.68.4.2362-2370.1994 – ident: e_1_3_2_8_2 doi: 10.1073/pnas.0700666104 – ident: e_1_3_2_52_2 doi: 10.1126/science.283.5403.857 – ident: e_1_3_2_46_2 – ident: e_1_3_2_42_2 doi: 10.1038/nm0502-493 – ident: e_1_3_2_34_2 doi: 10.1016/j.jtbi.2009.07.038 – ident: e_1_3_2_7_2 doi: 10.1371/journal.pbio.0040090 – ident: e_1_3_2_57_2 doi: 10.1128/JVI.77.8.4911-4927.2003 – ident: e_1_3_2_45_2 doi: 10.1086/526786 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.79.9.5721-5731.2005 – ident: e_1_3_2_20_2 doi: 10.1097/00002030-200309050-00005 – ident: e_1_3_2_51_2 doi: 10.1084/jem.20090378 – ident: e_1_3_2_16_2 doi: 10.1128/JVI.02176-07 – ident: e_1_3_2_53_2 doi: 10.1002/j.1538-7305.1951.tb01366.x – ident: e_1_3_2_41_2 doi: 10.1128/JVI.77.8.5037-5038.2003 – ident: e_1_3_2_24_2 doi: 10.1371/journal.pcbi.0020024 – ident: e_1_3_2_29_2 doi: 10.1084/jem.189.6.991 – ident: e_1_3_2_3_2 doi: 10.1371/journal.pone.0000321 – ident: e_1_3_2_35_2 doi: 10.1038/nm992 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.77.3.2081-2092.2003 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.00199-09 – ident: e_1_3_2_11_2 doi: 10.1128/jvi.68.9.6103-6110.1994 – ident: e_1_3_2_9_2 doi: 10.1128/JVI.00897-09 – ident: e_1_3_2_40_2 doi: 10.1128/jvi.69.8.5087-5094.1995 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.00465-07 – ident: e_1_3_2_26_2 doi: 10.1073/pnas.190065897 |
SSID | ssj0014464 |
Score | 2.1474001 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and... ABSTRACT The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses... The prominent role of antiviral cytotoxic CD8+ T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and... The prominent role of antiviral cytotoxic CD8 + T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5802 |
SubjectTerms | Amino Acid Sequence Animals Antibodies, Viral Antigens, Viral CD8-Positive T-Lymphocytes - immunology Epitopes Founder Effect Human immunodeficiency virus 1 Immune Evasion - immunology Immunity, Cellular Macaca Models, Immunological Models, Theoretical Pathogenesis and Immunity Simian Acquired Immunodeficiency Syndrome - immunology Simian immunodeficiency virus Simian Immunodeficiency Virus - immunology |
Title | Mathematical Modeling of Ultradeep Sequencing Data Reveals that Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques but Still Fail To Clear Founder Epitope Sequences |
URI | http://jvi.asm.org/content/84/11/5802.abstract https://www.ncbi.nlm.nih.gov/pubmed/20335256 https://search.proquest.com/docview/733182086 https://search.proquest.com/docview/746163160 https://pubmed.ncbi.nlm.nih.gov/PMC2876615 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLaWSpN2mfZ7WbvpHbbTREPAgDlW-aFmWqapSavekI1fViYCUYCq-Yf3d-wZ4qidph124WCMecif7Wfzve8x9lGlfrrSfuisBKLDAxU4sRdph1afQGtXu6hM7PD5Ivp2LcYTI5MT2FiYlrSfquy0yNenRXbTcis363RgeWKD7_MRefm0rASDHuuRb2i36PtfB7S_4VYinEbztWW7e2Lw5WrWiVPS5GNUgF0TcGRSV99fkqxM8N9czj-Zk_eWoukz9nTvQ8JZZ-tz9giLF-xxl1Vy95L9mh-kWKmWSXZmQs6hXMFlTs1pxA0sOga1KR_LWsIF3pLHWEF9I2s4S5saYTQWn2HpfN1Rf5fpjkouOj4tVjC5w20NC3OM_oPayrtZE7pYwy1CVsAiWxPyYGbiT8gEI1RhojzhKts2lTNrOWCoYS5Tab4eVGMazPIcpjLLYVnCyGS0gDbvE25hsqG5Z4PWcqxescvpZDk6d_bpHJyUc692lFaBUoF0A8kxDuni-gKj2PWUEkP0o1RGhBP0h9xbxaEakiGujCVPNd30Y_81OyrKAt8y0IZbh7ESXow88lGFPFJcaXcVEfZir88-2R5NNp1qR9LudjyREAhaIl9EJX12bLs7kdU6-XmbJYJTvSQQLrUCFgEJDTrzJ0UWWDZVYhJdkuskwn9U4SG5usOQ3vGmw8zBEou7PoseoOlQwUh-P7xDI6GV_t4j_91_P3nMnnT8B3OOdMKO6m2D71mv0s2Hdhj9BhfjJ3I |
link.rule.ids | 230,315,729,782,786,887,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWaFEV76b646TKH9lQoliVqOwZeYLd2UMROkJtAiqNGhSwblhTUP9zv6FAyjaQoeshFB5KiRsIjOaTevGHsk0zcJFWub6UhosU96VmREyiLVh9PKVvZKHXs8HgenF6Gg6GWyfFMLExD2k9kdlzky-Miu2q4letl0jU8se73WZ-8fFpWvO4Bu0_j1XbNJn3384B2ONyIhFP9peG7O2H368Wklaek6UfrANs65Egnr765KBmh4H85nX9zJ28sRqMnd3yNp-zxzvuEk7b6GbuHxXP2oM1HuX3Bfs_2Iq7USqdJ08HqsErhPCczFOIa5i33WpcPRCXgDK_J1yyhuhIVnCR1hdAfhF9gYU23hJRVsqWSs5aJiyUMf-Gmgrk-gP9BfeXtfAttlOIGIStgni0JszDRkStkgpa40PGhcJFt6tKaNOwxVDATidBfDWStO8zyHEYiy2Gxgr7OhQFNxijcwHBNs9YajeVYvmTno-GiP7Z2iSCshHOnsqSSnpSesD3BMfLpYrshBpHtSBn20A0SERDC0O1xJ4182SNDbBEJniiqdCP3FTssVgW-YaA0Kw8jGToR8sBF6fNAcqnsNCDURk6HfTZIiNet3kfc7JOcMCbwNBTAgEo67MjAJBblMv55ncUhp3axF9rUCxjkxDRc9T8YUeCqLmOdIpOcrtD_TxPuk5Pc8-kZr1us7S0xeO2w4BYK9w20WPjtGgJfIxq-A9vbO9_5kT0cL2bTeDo5_XbEHrUsCn0a9Y4dVpsa37ODUtUfmqH4Bws9PQA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEF41qVr10ndaN33MoT1VxBgWWI6RH4rbOIriJMoN7bJDQ4UxMhDVf7i_o7NgrKSqemgvPuwO6wF9uzsL33zD2EcVu3GiXd9KBKLFPeVZoRNoi3YfT2tb26hM7vDRPDi5EqOxkcnZlvpqSPuxSg_ybHGQp9cNt7JYxP2OJ9Y_nQ0pyqdtxesXOunvsPs0Z22vO6hvPiDQKYd3QuHUf9Vx3h3R_3I5bSUqaQkyWsC2STsyBaxvb0ydWPCfAs_f-ZO3NqTJk_-4lafs8SYKhcPW5Bm7h_lz9qCtS7l-wX7OtmKuZGXKpZmkdVgmcJGRKxqxgHnLwTbtI1lJOMMbijlLqK5lBYdxXSEMR-IznFvHa0LMMl5Ty1nLyMUSxj9wVcHcvIj_RmNl7boLbbbiCiHNYZ4uCLswNRks5IKRujB5onCZrurSmjYsMtQwk7E0Tw5UbQZMswwmMs3gfAlDUxMDmspRuIJxQatXgZ3nWL5kF5Px-fDI2hSEsGLOncpSWnlKedL2JMfQpx_bFRiEtqOUGKAbxDIgpKE74E4S-mpAjtgylDzW1OmG7h7bzZc5vmagDTsPQyWcEHngovJ5oLjSdhIQekOnxz51aIiKVvcjas5LjogIQA0VMKCWHtvvoBLJchF9v0kjwcku8oRNo0CHnoimrfkWI3Nc1mVkSmVS8CX8v5hwn4LlgU__8arF29aTDrM9FtxB4tbAiIbf7SEANuLhG8C9-ecrP7CHp6NJdDw9-brPHrVkCvNS6i3brVY1vmM7pa7fN7PxF8bjP4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+of+ultradeep+sequencing+data+reveals+that+acute+CD8%2B+T-lymphocyte+responses+exert+strong+selective+pressure+in+simian+immunodeficiency+virus-infected+macaques+but+still+fail+to+clear+founder+epitope+sequences&rft.jtitle=Journal+of+virology&rft.au=Love%2C+Tanzy+M+T&rft.au=Thurston%2C+Sally+W&rft.au=Keefer%2C+Michael+C&rft.au=Dewhurst%2C+Stephen&rft.date=2010-06-01&rft.eissn=1098-5514&rft.volume=84&rft.issue=11&rft.spage=5802&rft.epage=5814&rft_id=info:doi/10.1128%2FJVI.00117-10&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |