Comparison of different modeling approaches for thermoelectric elements
Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the sam...
Saved in:
Published in: | Energy conversion and management Vol. 65; pp. 351 - 356 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-01-2013
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the same results as the reference model (TEC and TEG).
Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode – TEH or TEC – and in power generation mode – TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides.
This paper attempts to analyze simplified models’ accuracy, with regards to the performance (COP, efficiency), the voltage–current characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined. |
---|---|
AbstractList | Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode a TEH or TEC a and in power generation mode a TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides. This paper attempts to analyze simplified modelsa accuracy, with regards to the performance (COP, efficiency), the voltageacurrent characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined. Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the same results as the reference model (TEC and TEG). Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode – TEH or TEC – and in power generation mode – TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides. This paper attempts to analyze simplified models’ accuracy, with regards to the performance (COP, efficiency), the voltage–current characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined. |
Author | Sgorlon, D. Fraisse, G. Goupil, C. Ramousse, J. |
Author_xml | – sequence: 1 givenname: G. surname: Fraisse fullname: Fraisse, G. email: gilles.fraisse@univ-savoie.fr organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France – sequence: 2 givenname: J. surname: Ramousse fullname: Ramousse, J. organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France – sequence: 3 givenname: D. surname: Sgorlon fullname: Sgorlon, D. organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France – sequence: 4 givenname: C. surname: Goupil fullname: Goupil, C. email: christophe.goupil@ensicaen.fr organization: Laboratoire de Cristallographie et de Science des Matériaux, CRISMAT ENSICAEN, 6 Bd. Maréchal Juin, 14050 Caen, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26701047$$DView record in Pascal Francis https://hal.univ-smb.fr/hal-04163089$$DView record in HAL |
BookMark | eNqFkU1vGyEQhlGVSnXS_oVqL5Xaw26GWczCrZGVJpUs9dKeEWaHGmsXXNhE6r8PrtNcwwUGPfPOx3vJLmKKxNhHDh0HLq8PHUWX4mxjh8CxA9UB4hu24mrQLSIOF2wFXMtWaRDv2GUpBwDo1yBX7G6T5qPNoaTYJN-MwXvKFJdmTiNNIf5u7PGYk3V7Ko1PuVn2lOdEE7klB9fUx1zx8p699XYq9OH5vmK_vt3-3Ny32x933zc329YJgUtrVS-FlMNubbm0Trmeo7dSuxF7CcrVwCqvAQnHtcV-p9cOFe40Agr02F-xL2fdvZ3MMYfZ5r8m2WDub7bm9AeCyx6UfuSV_Xxm6wB_HqgsZg7F0TTZSOmhGC4HLgZez-toL7QYQP9D5Rl1OZWSyb-0wcGcDDEH898QczLEgDLVkJr46bmGLc5OPtvoQnnJRjkABzFU7uuZo7rHx0DZFBeqIo0h162bMYXXSj0B1qak3w |
CODEN | ECMADL |
CitedBy_id | crossref_primary_10_1016_j_energy_2014_02_030 crossref_primary_10_1016_j_applthermaleng_2020_116210 crossref_primary_10_1016_j_energy_2023_128411 crossref_primary_10_21303_2461_4262_2023_003102 crossref_primary_10_1016_j_enconman_2015_09_068 crossref_primary_10_1051_e3sconf_202020903017 crossref_primary_10_3390_su142416821 crossref_primary_10_48084_etasr_5561 crossref_primary_10_1016_j_ijthermalsci_2014_06_003 crossref_primary_10_1063_5_0121380 crossref_primary_10_1016_j_renene_2018_07_002 crossref_primary_10_1007_s11664_015_3664_1 crossref_primary_10_1007_s10973_024_13159_8 crossref_primary_10_3390_e20010029 crossref_primary_10_1016_j_enconman_2020_113120 crossref_primary_10_1088_1742_6596_1203_1_012049 crossref_primary_10_1007_s11664_019_07217_3 crossref_primary_10_2139_ssrn_4142198 crossref_primary_10_1007_s11664_016_5038_8 crossref_primary_10_1002_er_3795 crossref_primary_10_1016_j_tsep_2020_100747 crossref_primary_10_1080_10407790_2022_2143156 crossref_primary_10_1016_j_applthermaleng_2018_11_014 crossref_primary_10_1007_s11664_019_07541_8 crossref_primary_10_1016_j_enconman_2019_111834 crossref_primary_10_3390_en12010169 crossref_primary_10_1016_j_ijhydene_2015_09_017 crossref_primary_10_1115_1_4050132 crossref_primary_10_1016_j_enconman_2021_113992 crossref_primary_10_1016_j_rser_2017_03_051 crossref_primary_10_1016_j_csite_2019_100509 crossref_primary_10_1016_j_rser_2020_110361 crossref_primary_10_1016_j_jpowsour_2019_02_020 crossref_primary_10_1016_j_applthermaleng_2020_116206 crossref_primary_10_1016_j_energy_2019_01_003 crossref_primary_10_1016_j_enconman_2013_08_014 crossref_primary_10_1016_j_csite_2022_102522 crossref_primary_10_3389_fenrg_2023_1315100 crossref_primary_10_1140_epjp_s13360_019_00020_3 crossref_primary_10_1007_s40095_020_00376_8 crossref_primary_10_1016_j_energy_2015_10_130 crossref_primary_10_1016_j_ijrefrig_2019_01_007 crossref_primary_10_1016_j_seta_2023_103394 crossref_primary_10_1016_j_energy_2013_03_010 crossref_primary_10_1016_j_rser_2016_07_034 crossref_primary_10_1007_s11664_019_06983_4 crossref_primary_10_1016_j_applthermaleng_2015_04_054 crossref_primary_10_1016_j_jpowsour_2014_01_002 crossref_primary_10_1109_JSEN_2022_3215777 crossref_primary_10_1016_j_applthermaleng_2020_115384 crossref_primary_10_1016_j_tsep_2022_101493 crossref_primary_10_1515_jnet_2017_0029 crossref_primary_10_1016_j_aej_2024_06_064 crossref_primary_10_1016_j_enconman_2015_05_036 crossref_primary_10_1016_j_enconman_2017_04_069 crossref_primary_10_1007_s11664_019_07006_y crossref_primary_10_1038_s41467_019_09707_8 crossref_primary_10_3390_en11092231 crossref_primary_10_1016_j_applthermaleng_2022_119706 crossref_primary_10_1016_j_enbuild_2013_11_021 crossref_primary_10_1016_j_enconman_2018_08_045 crossref_primary_10_1016_j_apenergy_2019_114434 crossref_primary_10_1016_j_apenergy_2020_114587 crossref_primary_10_1016_j_ijrefrig_2015_12_007 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_155 crossref_primary_10_1007_s11664_014_3020_x crossref_primary_10_1016_j_applthermaleng_2024_123438 crossref_primary_10_1016_j_applthermaleng_2022_118045 crossref_primary_10_1016_j_enconman_2016_05_064 crossref_primary_10_1039_D0EE01640C crossref_primary_10_1007_s11664_014_3602_7 crossref_primary_10_1007_s11664_016_4930_6 crossref_primary_10_1016_j_enconman_2018_01_043 crossref_primary_10_1016_j_energy_2019_116624 crossref_primary_10_1016_j_energy_2021_121220 crossref_primary_10_1063_1_5119022 crossref_primary_10_1016_j_enconman_2018_10_104 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125617 crossref_primary_10_1016_j_renene_2020_04_120 crossref_primary_10_1016_j_enconman_2015_03_089 crossref_primary_10_1016_j_applthermaleng_2020_116412 crossref_primary_10_1016_j_energy_2015_06_090 crossref_primary_10_1016_j_enss_2023_12_001 crossref_primary_10_1016_j_energy_2015_12_005 crossref_primary_10_1016_j_energy_2023_126824 crossref_primary_10_1021_acs_energyfuels_0c03943 crossref_primary_10_15377_2409_5818_2020_07_5 crossref_primary_10_1007_s11664_019_07351_y crossref_primary_10_1016_j_enconman_2019_06_057 crossref_primary_10_1016_j_enconman_2018_06_058 crossref_primary_10_1116_1_4878595 crossref_primary_10_1016_j_ifacol_2020_12_508 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_006 crossref_primary_10_1016_j_enconman_2014_04_040 crossref_primary_10_1002_er_6467 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124203 crossref_primary_10_3390_e20090666 crossref_primary_10_1177_0954406214536150 crossref_primary_10_1016_j_apenergy_2018_09_162 crossref_primary_10_2139_ssrn_4067272 crossref_primary_10_35429_JOES_2019_21_6_1_7 crossref_primary_10_1016_j_enconman_2016_05_087 crossref_primary_10_3390_en7063664 crossref_primary_10_1002_er_8595 crossref_primary_10_1016_j_energy_2015_03_033 crossref_primary_10_1016_j_compstruct_2019_111484 crossref_primary_10_1016_j_apenergy_2016_08_019 crossref_primary_10_1016_j_enconman_2015_10_029 crossref_primary_10_1016_j_applthermaleng_2014_01_074 crossref_primary_10_1016_j_jpowsour_2020_228713 crossref_primary_10_1007_s11664_020_08270_z crossref_primary_10_1007_s00231_021_03153_3 crossref_primary_10_4028_www_scientific_net_KEM_861_499 crossref_primary_10_1016_j_applthermaleng_2016_11_001 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125366 crossref_primary_10_3390_en13123137 crossref_primary_10_1007_s11664_019_07680_y crossref_primary_10_1016_j_egypro_2014_11_950 crossref_primary_10_1016_j_energy_2018_01_099 crossref_primary_10_1016_j_enconman_2013_09_047 crossref_primary_10_1016_j_apenergy_2015_03_120 crossref_primary_10_1016_j_applthermaleng_2018_02_084 crossref_primary_10_1016_j_applthermaleng_2015_02_042 crossref_primary_10_2514_1_B38695 crossref_primary_10_1016_j_enconman_2021_114754 crossref_primary_10_1016_j_enconman_2023_117419 crossref_primary_10_1002_aenm_201700524 crossref_primary_10_3390_su16125206 crossref_primary_10_1039_C6SE00028B crossref_primary_10_1115_1_4039926 crossref_primary_10_1016_j_renene_2022_09_091 crossref_primary_10_3390_e22101128 crossref_primary_10_1016_j_energy_2021_122127 crossref_primary_10_1134_S0040601520070083 crossref_primary_10_1016_j_ijthermalsci_2018_03_010 crossref_primary_10_1016_j_esd_2017_01_003 crossref_primary_10_1016_j_ijthermalsci_2018_03_006 crossref_primary_10_1016_j_enconman_2015_03_090 crossref_primary_10_1016_j_enconman_2016_05_021 crossref_primary_10_1016_j_enconman_2022_116389 crossref_primary_10_1016_j_renene_2021_11_016 crossref_primary_10_1016_j_rser_2014_07_045 crossref_primary_10_1016_j_apenergy_2014_05_048 crossref_primary_10_1016_j_enconman_2014_05_061 crossref_primary_10_1016_j_ijrefrig_2022_11_010 crossref_primary_10_3390_en16207082 crossref_primary_10_1016_j_enconman_2014_10_020 crossref_primary_10_1016_j_apenergy_2016_12_157 crossref_primary_10_1016_j_enconman_2021_115034 crossref_primary_10_1016_j_enbuild_2022_112376 crossref_primary_10_1016_j_apenergy_2021_117151 crossref_primary_10_1016_j_enconman_2019_02_064 crossref_primary_10_1016_j_energy_2017_02_020 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123718 crossref_primary_10_1109_ACCESS_2020_2993288 |
Cites_doi | 10.1016/0038-1101(64)90044-9 10.1016/S0196-8904(99)00164-8 10.1016/j.enconman.2004.07.006 10.1016/j.ijheatmasstransfer.2005.09.028 10.1016/j.apenergy.2007.10.005 10.1016/S0378-7788(02)00019-1 10.1016/j.ijheatmasstransfer.2010.08.024 10.1109/ICT.2005.1519922 10.1016/0038-1101(66)90081-5 10.1063/1.362507 10.1002/er.991 10.1016/S0038-1101(99)00045-3 10.1016/j.jpowsour.2008.02.073 10.1016/j.ijheatmasstransfer.2010.04.011 10.1016/S0927-0248(02)00357-4 10.1016/j.apenergy.2008.12.006 10.1016/j.apenergy.2004.12.003 10.1016/j.ijheatmasstransfer.2006.02.047 10.1016/S0196-8904(01)00153-4 10.1016/j.sna.2010.06.026 10.1016/j.energy.2009.11.030 10.1016/j.ijheatmasstransfer.2004.05.040 10.1016/j.buildenv.2005.12.021 10.1063/1.1449830 10.1016/j.apenergy.2010.02.013 10.1016/j.jpowsour.2007.07.045 10.1016/j.enconman.2005.04.011 10.1016/j.ijheatmasstransfer.2005.04.028 10.1016/j.apenergy.2008.02.011 10.1016/j.applthermaleng.2005.07.016 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | IQODW AAYXX CITATION 7ST C1K SOI 7SU 7TB 8FD FR3 1XC |
DOI | 10.1016/j.enconman.2012.08.022 |
DatabaseName | Pascal-Francis CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts |
DatabaseTitleList | Engineering Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-2227 |
EndPage | 356 |
ExternalDocumentID | oai_HAL_hal_04163089v1 10_1016_j_enconman_2012_08_022 26701047 S0196890412003500 |
GeographicLocations | Germany, Niedersachsen, Seebeck |
GeographicLocations_xml | – name: Germany, Niedersachsen, Seebeck |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 08R 8W4 AALMO ABFLS ABPIF ABPTK ABQIS ADALY IPNFZ IQODW AAHBH AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7ST C1K SOI 7SU 7TB 8FD FR3 1XC |
ID | FETCH-LOGICAL-c442t-a8364667b5a16ac8c312fa69cd23608c2faa8f902e2d5a23b95c282b920242f23 |
ISSN | 0196-8904 |
IngestDate | Tue Oct 15 15:48:23 EDT 2024 Fri Oct 25 12:18:40 EDT 2024 Fri Oct 25 07:49:28 EDT 2024 Thu Nov 21 22:49:17 EST 2024 Fri Nov 25 01:09:40 EST 2022 Fri Feb 23 02:39:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Seebeck coefficient Thomson effect Cooling Thermoelectric elements Modeling Power generation |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-a8364667b5a16ac8c312fa69cd23608c2faa8f902e2d5a23b95c282b920242f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0954-7603 |
PQID | 1349470911 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | hal_primary_oai_HAL_hal_04163089v1 proquest_miscellaneous_1671471111 proquest_miscellaneous_1349470911 crossref_primary_10_1016_j_enconman_2012_08_022 pascalfrancis_primary_26701047 elsevier_sciencedirect_doi_10_1016_j_enconman_2012_08_022 |
PublicationCentury | 2000 |
PublicationDate | January 2013 2013 2013-01-00 20130101 2013-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Energy conversion and management |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jincan, Zijun (b0065) 1996; 79 Min, Rowe (b0130) 1999; 43 Yamashita (b0050) 2009; 86 Moizhes (b0060) 1960; 2 Gou, Xiao, Yang (b0155) 2010; 87 Riffat, Ma (b0135) 2004; 28 Saber HH, El-Genk MS. A three-dimensional, performance model of segmented thermoelectric converters, using ANSYS commercial software. In: El-Genk MS, editor. Proceedings space technology and applications international forum (STAIF-02), AIP conference proceedings, New York: American Institute of Physics; 2002. p. 999. Fraisse, Goupil, Lazard, Serrat (b0020) 2010; 53 Pramanick, Das (b0170) 2006; 49 Antonova EE, Looman DC. Finite elements for thermoelectric device analysis in ANSYS. In: 24th International conference on thermoelectrics (ICT); 2005. p. 215–18. Sunderland, Burak (b0030) 1964; 7 Nuwayhid, Moukalled, Noueihed (b0145) 2000; 41 Agbossou, Zhang, Sebald, Guyomar (b0180) 2010; 163 TJ. Seebeck. Ueber den Magnetismus der galvanischen Kette. Abh Akad Wiss. Berlin; 1821. p. 289. Adamson, Sunderland (b0040) 1966; 9 Chen, Li, Sun, Wu (b0080) 2008; 85 EES manual, Engineering Equation Solver. V8, F-Chart Software. p. 313. Fraisse, Viardot, Lafabrie, Achard (b0190) 2002; 34 Peltier JCA. Nouvelles expériences sur la caloricité des courants électriques. Ann. Chem. Phys 1834;371–56. Thomson (b0015) 1854; 5 Chen, Li, Sun, Wu (b0075) 2005; 82 Gurevich, Logvinov (b0175) 2007; 53 Dai, Wang, Ni (b0095) 2003; 77 Xu, Van Dessel, Messac (b0140) 2007; 42 Qiu, Hayden (b0160) 2008; 180 Chen, Rosendahl, Condra (b0205) 2011 Xuan, Ng, Yap, Chua (b0185) 2002; 43 Hsiao, Chang, Chen (b0085) 2010; 35 Huang, Yen, Wang (b0025) 2005; 48 Ioffe (b0070) 1957 Adamson WL. The effects of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance. Master’s thesis, Georgia Institute of Technology; 1965. Khattab, El Shenawy (b0090) 2006; 47 . Riffat, Ma, Wilson (b0195) 2006; 26 Khire, Messac, Van Dessel (b0105) 2005; 48 Nuwayhid, Shihadeh, Ghaddar (b0150) 2005; 46 Chakraborty, Saha, Koyama, Ng (b0110) 2006; 49 Madenci, Guven (b0125) 2006 Yamashita (b0045) 2008; 85 Burshtein (b0055) 1957; 2 Kousksou T, Bédécarrats JP, Champier D, Koch S, Brillet C, Pignolet P. Numerical analysis of thermoelectric power generation: aircraft systems application. In: International conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, ECOS; 2010. p. 8. Yu, Zhao (b0100) 2007; 172 Chen (10.1016/j.enconman.2012.08.022_b0080) 2008; 85 Chen (10.1016/j.enconman.2012.08.022_b0075) 2005; 82 Yamashita (10.1016/j.enconman.2012.08.022_b0045) 2008; 85 10.1016/j.enconman.2012.08.022_b0120 Khattab (10.1016/j.enconman.2012.08.022_b0090) 2006; 47 Chakraborty (10.1016/j.enconman.2012.08.022_b0110) 2006; 49 10.1016/j.enconman.2012.08.022_b0165 Fraisse (10.1016/j.enconman.2012.08.022_b0190) 2002; 34 Fraisse (10.1016/j.enconman.2012.08.022_b0020) 2010; 53 Moizhes (10.1016/j.enconman.2012.08.022_b0060) 1960; 2 Riffat (10.1016/j.enconman.2012.08.022_b0135) 2004; 28 Riffat (10.1016/j.enconman.2012.08.022_b0195) 2006; 26 Xuan (10.1016/j.enconman.2012.08.022_b0185) 2002; 43 Khire (10.1016/j.enconman.2012.08.022_b0105) 2005; 48 Madenci (10.1016/j.enconman.2012.08.022_b0125) 2006 Ioffe (10.1016/j.enconman.2012.08.022_b0070) 1957 Yu (10.1016/j.enconman.2012.08.022_b0100) 2007; 172 Gou (10.1016/j.enconman.2012.08.022_b0155) 2010; 87 Chen (10.1016/j.enconman.2012.08.022_b0205) 2011 Min (10.1016/j.enconman.2012.08.022_b0130) 1999; 43 Yamashita (10.1016/j.enconman.2012.08.022_b0050) 2009; 86 Burshtein (10.1016/j.enconman.2012.08.022_b0055) 1957; 2 10.1016/j.enconman.2012.08.022_b0200 Nuwayhid (10.1016/j.enconman.2012.08.022_b0150) 2005; 46 10.1016/j.enconman.2012.08.022_b0005 Hsiao (10.1016/j.enconman.2012.08.022_b0085) 2010; 35 Pramanick (10.1016/j.enconman.2012.08.022_b0170) 2006; 49 Thomson (10.1016/j.enconman.2012.08.022_b0015) 1854; 5 Jincan (10.1016/j.enconman.2012.08.022_b0065) 1996; 79 Adamson (10.1016/j.enconman.2012.08.022_b0040) 1966; 9 Xu (10.1016/j.enconman.2012.08.022_b0140) 2007; 42 Gurevich (10.1016/j.enconman.2012.08.022_b0175) 2007; 53 Dai (10.1016/j.enconman.2012.08.022_b0095) 2003; 77 10.1016/j.enconman.2012.08.022_b0210 Agbossou (10.1016/j.enconman.2012.08.022_b0180) 2010; 163 10.1016/j.enconman.2012.08.022_b0035 Huang (10.1016/j.enconman.2012.08.022_b0025) 2005; 48 10.1016/j.enconman.2012.08.022_b0115 Qiu (10.1016/j.enconman.2012.08.022_b0160) 2008; 180 Sunderland (10.1016/j.enconman.2012.08.022_b0030) 1964; 7 Nuwayhid (10.1016/j.enconman.2012.08.022_b0145) 2000; 41 |
References_xml | – volume: 46 start-page: 1631 year: 2005 end-page: 1643 ident: b0150 article-title: Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling publication-title: Energy Convers Manage contributor: fullname: Ghaddar – volume: 42 start-page: 1489 year: 2007 end-page: 1502 ident: b0140 article-title: Study of the performance of thermoelectric modules for use in active building envelopes publication-title: Build Environ contributor: fullname: Messac – volume: 82 start-page: 300 year: 2005 end-page: 312 ident: b0075 article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator publication-title: Appl Energy contributor: fullname: Wu – volume: 28 start-page: 753 year: 2004 end-page: 768 ident: b0135 article-title: Improving the coefficient of performance of thermoelectric cooling systems: a review publication-title: Int J Energy Res contributor: fullname: Ma – volume: 7 start-page: 465 year: 1964 end-page: 471 ident: b0030 article-title: The influence of the Thomson effect on the performance of a thermoelectric power generator publication-title: Solid-State Electr contributor: fullname: Burak – volume: 43 start-page: 923 year: 1999 end-page: 929 ident: b0130 article-title: Cooling performance of integrated thermoelectric micro-cooler publication-title: Solid-State Electr contributor: fullname: Rowe – volume: 5 start-page: 62 year: 1854 end-page: 68 ident: b0015 article-title: Account of researches in thermo-electricity publication-title: Philos Mag contributor: fullname: Thomson – volume: 85 start-page: 641 year: 2008 end-page: 649 ident: b0080 article-title: Performance optimization of a two-stage thermoelectric heat-pump with internal and external irreversibilities publication-title: Appl Energy contributor: fullname: Wu – volume: 48 start-page: 413 year: 2005 end-page: 418 ident: b0025 article-title: The influence of the Thomson effect on the performance of a thermoelectric cooler publication-title: Int J Heat Mass Trans contributor: fullname: Wang – year: 2006 ident: b0125 article-title: The finite element method and applications in engineering using ANSYS contributor: fullname: Guven – volume: 163 start-page: 277 year: 2010 end-page: 283 ident: b0180 article-title: Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis publication-title: Sensors Actuators contributor: fullname: Guyomar – volume: 85 start-page: 1002 year: 2008 end-page: 1014 ident: b0045 article-title: Effect of the temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element publication-title: Appl Energy contributor: fullname: Yamashita – volume: 35 start-page: 1447 year: 2010 end-page: 1454 ident: b0085 article-title: A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine publication-title: Energy contributor: fullname: Chen – volume: 26 start-page: 494 year: 2006 end-page: 501 ident: b0195 article-title: Performance simulation and experimental testing of a novel thermoelectric heat pump system publication-title: Appl Thermal Eng contributor: fullname: Wilson – volume: 2 start-page: 671 year: 1960 end-page: 680 ident: b0060 article-title: The influence of the temperature dependence of physical parameters on the efficiency of thermoelectric generators and refrigerators publication-title: Sov Phys – Solid State contributor: fullname: Moizhes – volume: 34 start-page: 1017 year: 2002 end-page: 1031 ident: b0190 article-title: Development of a simplified and accurate building model based on electrical analogy publication-title: Energy Build contributor: fullname: Achard – volume: 47 start-page: 407 year: 2006 end-page: 426 ident: b0090 article-title: Optimal operation of thermoelectric cooler driven by solar thermoelectric generator publication-title: Energy Convers Manage contributor: fullname: El Shenawy – volume: 9 start-page: 105 year: 1966 end-page: 112 ident: b0040 article-title: The influence of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance publication-title: Solid-State Electr contributor: fullname: Sunderland – volume: 48 start-page: 4028 year: 2005 end-page: 4040 ident: b0105 article-title: Design of thermoelectric heat pump unit for active building envelope systems publication-title: Int J Heat Mass Trans contributor: fullname: Van Dessel – volume: 53 start-page: 3503 year: 2010 end-page: 3512 ident: b0020 article-title: Study of thermoelement’s behaviour through a modeling based on electrical analogy publication-title: Int J Heat Mass Trans contributor: fullname: Serrat – volume: 43 start-page: 2041 year: 2002 end-page: 2052 ident: b0185 article-title: Optimization of two-stage thermoelectric coolers with two design configurations publication-title: Energy Convers Manage contributor: fullname: Chua – volume: 77 start-page: 377 year: 2003 end-page: 391 ident: b0095 article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells publication-title: Solar Energy Mater Solar Cells contributor: fullname: Ni – volume: 86 start-page: 1746 year: 2009 end-page: 1756 ident: b0050 article-title: Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance publication-title: Appl Energy contributor: fullname: Yamashita – volume: 180 start-page: 884 year: 2008 end-page: 889 ident: b0160 article-title: Development of a thermoelectric self-powered residential heating system publication-title: J Power Sources contributor: fullname: Hayden – year: 1957 ident: b0070 article-title: Semiconductor thermoelements and thermoelectric cooling contributor: fullname: Ioffe – volume: 87 start-page: 3131 year: 2010 end-page: 3136 ident: b0155 article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system publication-title: Appl Energy contributor: fullname: Yang – volume: 2 start-page: 1397 year: 1957 end-page: 1406 ident: b0055 article-title: An investigation of the steady-state heat flow through a current-carrying conductor publication-title: Sov Phys-Tech Phys contributor: fullname: Burshtein – volume: 49 start-page: 1420 year: 2006 end-page: 1429 ident: b0170 article-title: Constructal design of a thermoelectric device publication-title: Int J Heat Mass Trans contributor: fullname: Das – volume: 49 start-page: 3547 year: 2006 end-page: 3554 ident: b0110 article-title: Thermodynamic modelling of a solid state thermoelectric cooling device: temperature–entropy analysis publication-title: Int J Heat Mass Trans contributor: fullname: Ng – volume: 172 start-page: 428 year: 2007 end-page: 434 ident: b0100 article-title: A numerical model for thermoelectric generator with the parallel-plate heat exchanger publication-title: J Power Sources contributor: fullname: Zhao – volume: 41 start-page: 891 year: 2000 end-page: 914 ident: b0145 article-title: On entropy generation in thermoelectric devices publication-title: Energy Convers Manage contributor: fullname: Noueihed – volume: 79 start-page: 8823 year: 1996 end-page: 8828 ident: b0065 article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator publication-title: J Appl Phys contributor: fullname: Zijun – volume: 53 start-page: 337 year: 2007 end-page: 349 ident: b0175 article-title: Theory of thermoelectric cooling in semiconductors structures publication-title: Revista mexicana de fisica contributor: fullname: Logvinov – start-page: 345 year: 2011 end-page: 355 ident: b0205 article-title: A three-dimensional numerical model of thermoelectric generators in fluid power systems publication-title: Int J Heat Mass Trans contributor: fullname: Condra – year: 2006 ident: 10.1016/j.enconman.2012.08.022_b0125 contributor: fullname: Madenci – ident: 10.1016/j.enconman.2012.08.022_b0165 – volume: 7 start-page: 465 issue: 6 year: 1964 ident: 10.1016/j.enconman.2012.08.022_b0030 article-title: The influence of the Thomson effect on the performance of a thermoelectric power generator publication-title: Solid-State Electr doi: 10.1016/0038-1101(64)90044-9 contributor: fullname: Sunderland – ident: 10.1016/j.enconman.2012.08.022_b0035 – year: 1957 ident: 10.1016/j.enconman.2012.08.022_b0070 contributor: fullname: Ioffe – volume: 41 start-page: 891 year: 2000 ident: 10.1016/j.enconman.2012.08.022_b0145 article-title: On entropy generation in thermoelectric devices publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(99)00164-8 contributor: fullname: Nuwayhid – volume: 46 start-page: 1631 issue: 9–10 year: 2005 ident: 10.1016/j.enconman.2012.08.022_b0150 article-title: Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2004.07.006 contributor: fullname: Nuwayhid – volume: 49 start-page: 1420 year: 2006 ident: 10.1016/j.enconman.2012.08.022_b0170 article-title: Constructal design of a thermoelectric device publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2005.09.028 contributor: fullname: Pramanick – volume: 85 start-page: 641 year: 2008 ident: 10.1016/j.enconman.2012.08.022_b0080 article-title: Performance optimization of a two-stage thermoelectric heat-pump with internal and external irreversibilities publication-title: Appl Energy doi: 10.1016/j.apenergy.2007.10.005 contributor: fullname: Chen – volume: 34 start-page: 1017 issue: 10 year: 2002 ident: 10.1016/j.enconman.2012.08.022_b0190 article-title: Development of a simplified and accurate building model based on electrical analogy publication-title: Energy Build doi: 10.1016/S0378-7788(02)00019-1 contributor: fullname: Fraisse – start-page: 345 issue: 1–3 year: 2011 ident: 10.1016/j.enconman.2012.08.022_b0205 article-title: A three-dimensional numerical model of thermoelectric generators in fluid power systems publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2010.08.024 contributor: fullname: Chen – ident: 10.1016/j.enconman.2012.08.022_b0120 doi: 10.1109/ICT.2005.1519922 – volume: 9 start-page: 105 issue: 2 year: 1966 ident: 10.1016/j.enconman.2012.08.022_b0040 article-title: The influence of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance publication-title: Solid-State Electr doi: 10.1016/0038-1101(66)90081-5 contributor: fullname: Adamson – volume: 79 start-page: 8823 issue: 11 year: 1996 ident: 10.1016/j.enconman.2012.08.022_b0065 article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator publication-title: J Appl Phys doi: 10.1063/1.362507 contributor: fullname: Jincan – volume: 28 start-page: 753 year: 2004 ident: 10.1016/j.enconman.2012.08.022_b0135 article-title: Improving the coefficient of performance of thermoelectric cooling systems: a review publication-title: Int J Energy Res doi: 10.1002/er.991 contributor: fullname: Riffat – volume: 43 start-page: 923 year: 1999 ident: 10.1016/j.enconman.2012.08.022_b0130 article-title: Cooling performance of integrated thermoelectric micro-cooler publication-title: Solid-State Electr doi: 10.1016/S0038-1101(99)00045-3 contributor: fullname: Min – volume: 180 start-page: 884 issue: 2 year: 2008 ident: 10.1016/j.enconman.2012.08.022_b0160 article-title: Development of a thermoelectric self-powered residential heating system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.02.073 contributor: fullname: Qiu – volume: 53 start-page: 337 issue: 5 year: 2007 ident: 10.1016/j.enconman.2012.08.022_b0175 article-title: Theory of thermoelectric cooling in semiconductors structures publication-title: Revista mexicana de fisica contributor: fullname: Gurevich – volume: 53 start-page: 3503 issue: 17–18 year: 2010 ident: 10.1016/j.enconman.2012.08.022_b0020 article-title: Study of thermoelement’s behaviour through a modeling based on electrical analogy publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2010.04.011 contributor: fullname: Fraisse – volume: 77 start-page: 377 issue: 4 year: 2003 ident: 10.1016/j.enconman.2012.08.022_b0095 article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells publication-title: Solar Energy Mater Solar Cells doi: 10.1016/S0927-0248(02)00357-4 contributor: fullname: Dai – ident: 10.1016/j.enconman.2012.08.022_b0210 – volume: 86 start-page: 1746 year: 2009 ident: 10.1016/j.enconman.2012.08.022_b0050 article-title: Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.12.006 contributor: fullname: Yamashita – volume: 82 start-page: 300 year: 2005 ident: 10.1016/j.enconman.2012.08.022_b0075 article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.12.003 contributor: fullname: Chen – volume: 49 start-page: 3547 issue: 19–20 year: 2006 ident: 10.1016/j.enconman.2012.08.022_b0110 article-title: Thermodynamic modelling of a solid state thermoelectric cooling device: temperature–entropy analysis publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2006.02.047 contributor: fullname: Chakraborty – volume: 43 start-page: 2041 issue: 15 year: 2002 ident: 10.1016/j.enconman.2012.08.022_b0185 article-title: Optimization of two-stage thermoelectric coolers with two design configurations publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(01)00153-4 contributor: fullname: Xuan – volume: 163 start-page: 277 year: 2010 ident: 10.1016/j.enconman.2012.08.022_b0180 article-title: Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis publication-title: Sensors Actuators doi: 10.1016/j.sna.2010.06.026 contributor: fullname: Agbossou – ident: 10.1016/j.enconman.2012.08.022_b0200 – volume: 35 start-page: 1447 issue: 3 year: 2010 ident: 10.1016/j.enconman.2012.08.022_b0085 article-title: A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine publication-title: Energy doi: 10.1016/j.energy.2009.11.030 contributor: fullname: Hsiao – volume: 48 start-page: 413 year: 2005 ident: 10.1016/j.enconman.2012.08.022_b0025 article-title: The influence of the Thomson effect on the performance of a thermoelectric cooler publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2004.05.040 contributor: fullname: Huang – volume: 42 start-page: 1489 issue: 3 year: 2007 ident: 10.1016/j.enconman.2012.08.022_b0140 article-title: Study of the performance of thermoelectric modules for use in active building envelopes publication-title: Build Environ doi: 10.1016/j.buildenv.2005.12.021 contributor: fullname: Xu – ident: 10.1016/j.enconman.2012.08.022_b0115 doi: 10.1063/1.1449830 – volume: 87 start-page: 3131 issue: 10 year: 2010 ident: 10.1016/j.enconman.2012.08.022_b0155 article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.02.013 contributor: fullname: Gou – volume: 2 start-page: 1397 year: 1957 ident: 10.1016/j.enconman.2012.08.022_b0055 article-title: An investigation of the steady-state heat flow through a current-carrying conductor publication-title: Sov Phys-Tech Phys contributor: fullname: Burshtein – ident: 10.1016/j.enconman.2012.08.022_b0005 – volume: 172 start-page: 428 issue: 1 year: 2007 ident: 10.1016/j.enconman.2012.08.022_b0100 article-title: A numerical model for thermoelectric generator with the parallel-plate heat exchanger publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.07.045 contributor: fullname: Yu – volume: 47 start-page: 407 issue: 4 year: 2006 ident: 10.1016/j.enconman.2012.08.022_b0090 article-title: Optimal operation of thermoelectric cooler driven by solar thermoelectric generator publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2005.04.011 contributor: fullname: Khattab – volume: 48 start-page: 4028 issue: 19–20 year: 2005 ident: 10.1016/j.enconman.2012.08.022_b0105 article-title: Design of thermoelectric heat pump unit for active building envelope systems publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2005.04.028 contributor: fullname: Khire – volume: 85 start-page: 1002 year: 2008 ident: 10.1016/j.enconman.2012.08.022_b0045 article-title: Effect of the temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.02.011 contributor: fullname: Yamashita – volume: 2 start-page: 671 year: 1960 ident: 10.1016/j.enconman.2012.08.022_b0060 article-title: The influence of the temperature dependence of physical parameters on the efficiency of thermoelectric generators and refrigerators publication-title: Sov Phys – Solid State contributor: fullname: Moizhes – volume: 26 start-page: 494 year: 2006 ident: 10.1016/j.enconman.2012.08.022_b0195 article-title: Performance simulation and experimental testing of a novel thermoelectric heat pump system publication-title: Appl Thermal Eng doi: 10.1016/j.applthermaleng.2005.07.016 contributor: fullname: Riffat – volume: 5 start-page: 62 year: 1854 ident: 10.1016/j.enconman.2012.08.022_b0015 article-title: Account of researches in thermo-electricity publication-title: Philos Mag contributor: fullname: Thomson |
SSID | ssj0003506 |
Score | 2.5106866 |
Snippet | Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved... Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical... |
SourceID | hal proquest crossref pascalfrancis elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 351 |
SubjectTerms | Accuracy Analogies Applied sciences Computer programs Cooling Energy Engineering Sciences Exact sciences and technology Finite element method Mathematical analysis Mathematical models Modeling Power generation Seebeck coefficient Thermoelectric elements Thermoelectricity Thomson coefficient Thomson effect |
Title | Comparison of different modeling approaches for thermoelectric elements |
URI | https://dx.doi.org/10.1016/j.enconman.2012.08.022 https://search.proquest.com/docview/1349470911 https://search.proquest.com/docview/1671471111 https://hal.univ-smb.fr/hal-04163089 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfa7gU08TFAlI8pIN5QRmInTvwYja4tKitqV2lvUew4gklrp6Xd38_5I19sMHigD1FjJbHi--V8Pt_dD6EPAJIgCgVzZeZzN2C8cLkIiEuFZLTgMheaDmiyjE7P48-jYNTrVa6Bpu2_ShraQNYqc_YfpF0_FBrgP8gcjiB1OP6V3I_bxII1_8nWUN7ojERbRVyWVYjh9eXGsOH8EB-lCScvOx57kx-oA9S1d03vOFzeCpw5WSTT5VKHV9aMXYvk63xlG5sdqPF8MZufdgKOx_PVt-ms8dtaT4RJITWOMTuLt_2UjLoxM8zCR9Lo1jhirkq9bStfGra0J7G1Z6U9o3fqeONuuDhShT7X8K4qPg_rOqwmw7lbVPuXya4OQcQ00qWJ-mgPg47CA7SXTEfnX-ppnISamLV-k1Z6-d19_86y6X9XIbb7V1kJX11h6FJuzfzanDl7gh7ZdYiTGAA9RT25PkCP7ZrEsRq_PEAPWwUrn6Fxgy5nUzg1upwKXU6DLgfQ5XTR5VToeo5WJ6Oz44lrqThcEQR462YxoQGlEQ8zn2YiFsTHRUaZyDGhXizgJIsL5mGJ8zDDhLNQwGKeM6xswAKTF2iw3qzlS-TwKOeUR54IOQkKn6ryUUFGeFTEBawe8iH6VA1jemUqrqRVKOJFWg18qgY-VQyqGA8Rq0Y7tXajsQdTgMy9974H8dQdqWLrk2SWqjZPrVW8mN34Q3TYkV59eQWiIXpXiTMF9az23LK13OzKVFX_DCIwyv0_XEMjH2xE-L26r6PX6AHWfCzKB_gGDbbXO_kW9ct8d2jx-xPHHbjM |
link.rule.ids | 230,315,782,786,887,4028,27932,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+modeling+approaches+for+thermoelectric+elements&rft.jtitle=Energy+conversion+and+management&rft.au=FRAISSE%2C+G&rft.au=RAMOUSSE%2C+J&rft.au=SGORLON%2C+D&rft.au=GOUPIL%2C+C&rft.date=2013&rft.pub=Elsevier&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=65&rft.spage=351&rft.epage=356&rft_id=info:doi/10.1016%2Fj.enconman.2012.08.022&rft.externalDBID=n%2Fa&rft.externalDocID=26701047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |