Comparison of different modeling approaches for thermoelectric elements

Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the sam...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 65; pp. 351 - 356
Main Authors: Fraisse, G., Ramousse, J., Sgorlon, D., Goupil, C.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-01-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the same results as the reference model (TEC and TEG). Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode – TEH or TEC – and in power generation mode – TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides. This paper attempts to analyze simplified models’ accuracy, with regards to the performance (COP, efficiency), the voltage–current characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined.
AbstractList Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode a TEH or TEC a and in power generation mode a TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides. This paper attempts to analyze simplified modelsa accuracy, with regards to the performance (COP, efficiency), the voltageacurrent characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined.
Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved simplified model presents good accuracy in TEC and TEG. Standard simplified model presents good accuracy in TEC/TEH. Analogy model gives the same results as the reference model (TEC and TEG). Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical behavior in a wide number of situations (e.g., in both heating/cooling mode – TEH or TEC – and in power generation mode – TEG). The accuracy of these models depends on different assumptions like: (i) the Thomson effect is assumed to be negligible and (ii) the thermoelectric properties are assumed to be constant in the thermoelectric leg and are estimated from the mean temperature of its two sides. This paper attempts to analyze simplified models’ accuracy, with regards to the performance (COP, efficiency), the voltage–current characteristics and the thermal/electrical power. The simplified models are compared to more accurate models, such as models based on an electrical analogy and on the finite element method (FEM). The benefits and drawbacks of each kind of model are discussed in order to help select the appropriate approach depending of the goal aimed. The improved simplified model using two different Seebeck coefficients with a constant Thomson coefficient greatly increases the accuracy of the results, particularly in TEG mode with large temperature differences between the two sides. The model based on the electrical analogy gives an intermediate approach between simplified models and FEM models. For one-dimensional modeling, the analogical model gives strictly the same results as those obtained with ANSYS (FEM-based software). In all the cases, we show that the key point is to use a null Thomson coefficient when a constant Seebeck coefficient is defined.
Author Sgorlon, D.
Fraisse, G.
Goupil, C.
Ramousse, J.
Author_xml – sequence: 1
  givenname: G.
  surname: Fraisse
  fullname: Fraisse, G.
  email: gilles.fraisse@univ-savoie.fr
  organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France
– sequence: 2
  givenname: J.
  surname: Ramousse
  fullname: Ramousse, J.
  organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France
– sequence: 3
  givenname: D.
  surname: Sgorlon
  fullname: Sgorlon, D.
  organization: Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, LOCIE-CNRS, UMR 5271, Polytech’Annecy-Chambéry, Savoie Technolac, 73376 Le Bourget-Du-Lac, France
– sequence: 4
  givenname: C.
  surname: Goupil
  fullname: Goupil, C.
  email: christophe.goupil@ensicaen.fr
  organization: Laboratoire de Cristallographie et de Science des Matériaux, CRISMAT ENSICAEN, 6 Bd. Maréchal Juin, 14050 Caen, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26701047$$DView record in Pascal Francis
https://hal.univ-smb.fr/hal-04163089$$DView record in HAL
BookMark eNqFkU1vGyEQhlGVSnXS_oVqL5Xaw26GWczCrZGVJpUs9dKeEWaHGmsXXNhE6r8PrtNcwwUGPfPOx3vJLmKKxNhHDh0HLq8PHUWX4mxjh8CxA9UB4hu24mrQLSIOF2wFXMtWaRDv2GUpBwDo1yBX7G6T5qPNoaTYJN-MwXvKFJdmTiNNIf5u7PGYk3V7Ko1PuVn2lOdEE7klB9fUx1zx8p699XYq9OH5vmK_vt3-3Ny32x933zc329YJgUtrVS-FlMNubbm0Trmeo7dSuxF7CcrVwCqvAQnHtcV-p9cOFe40Agr02F-xL2fdvZ3MMYfZ5r8m2WDub7bm9AeCyx6UfuSV_Xxm6wB_HqgsZg7F0TTZSOmhGC4HLgZez-toL7QYQP9D5Rl1OZWSyb-0wcGcDDEH898QczLEgDLVkJr46bmGLc5OPtvoQnnJRjkABzFU7uuZo7rHx0DZFBeqIo0h162bMYXXSj0B1qak3w
CODEN ECMADL
CitedBy_id crossref_primary_10_1016_j_energy_2014_02_030
crossref_primary_10_1016_j_applthermaleng_2020_116210
crossref_primary_10_1016_j_energy_2023_128411
crossref_primary_10_21303_2461_4262_2023_003102
crossref_primary_10_1016_j_enconman_2015_09_068
crossref_primary_10_1051_e3sconf_202020903017
crossref_primary_10_3390_su142416821
crossref_primary_10_48084_etasr_5561
crossref_primary_10_1016_j_ijthermalsci_2014_06_003
crossref_primary_10_1063_5_0121380
crossref_primary_10_1016_j_renene_2018_07_002
crossref_primary_10_1007_s11664_015_3664_1
crossref_primary_10_1007_s10973_024_13159_8
crossref_primary_10_3390_e20010029
crossref_primary_10_1016_j_enconman_2020_113120
crossref_primary_10_1088_1742_6596_1203_1_012049
crossref_primary_10_1007_s11664_019_07217_3
crossref_primary_10_2139_ssrn_4142198
crossref_primary_10_1007_s11664_016_5038_8
crossref_primary_10_1002_er_3795
crossref_primary_10_1016_j_tsep_2020_100747
crossref_primary_10_1080_10407790_2022_2143156
crossref_primary_10_1016_j_applthermaleng_2018_11_014
crossref_primary_10_1007_s11664_019_07541_8
crossref_primary_10_1016_j_enconman_2019_111834
crossref_primary_10_3390_en12010169
crossref_primary_10_1016_j_ijhydene_2015_09_017
crossref_primary_10_1115_1_4050132
crossref_primary_10_1016_j_enconman_2021_113992
crossref_primary_10_1016_j_rser_2017_03_051
crossref_primary_10_1016_j_csite_2019_100509
crossref_primary_10_1016_j_rser_2020_110361
crossref_primary_10_1016_j_jpowsour_2019_02_020
crossref_primary_10_1016_j_applthermaleng_2020_116206
crossref_primary_10_1016_j_energy_2019_01_003
crossref_primary_10_1016_j_enconman_2013_08_014
crossref_primary_10_1016_j_csite_2022_102522
crossref_primary_10_3389_fenrg_2023_1315100
crossref_primary_10_1140_epjp_s13360_019_00020_3
crossref_primary_10_1007_s40095_020_00376_8
crossref_primary_10_1016_j_energy_2015_10_130
crossref_primary_10_1016_j_ijrefrig_2019_01_007
crossref_primary_10_1016_j_seta_2023_103394
crossref_primary_10_1016_j_energy_2013_03_010
crossref_primary_10_1016_j_rser_2016_07_034
crossref_primary_10_1007_s11664_019_06983_4
crossref_primary_10_1016_j_applthermaleng_2015_04_054
crossref_primary_10_1016_j_jpowsour_2014_01_002
crossref_primary_10_1109_JSEN_2022_3215777
crossref_primary_10_1016_j_applthermaleng_2020_115384
crossref_primary_10_1016_j_tsep_2022_101493
crossref_primary_10_1515_jnet_2017_0029
crossref_primary_10_1016_j_aej_2024_06_064
crossref_primary_10_1016_j_enconman_2015_05_036
crossref_primary_10_1016_j_enconman_2017_04_069
crossref_primary_10_1007_s11664_019_07006_y
crossref_primary_10_1038_s41467_019_09707_8
crossref_primary_10_3390_en11092231
crossref_primary_10_1016_j_applthermaleng_2022_119706
crossref_primary_10_1016_j_enbuild_2013_11_021
crossref_primary_10_1016_j_enconman_2018_08_045
crossref_primary_10_1016_j_apenergy_2019_114434
crossref_primary_10_1016_j_apenergy_2020_114587
crossref_primary_10_1016_j_ijrefrig_2015_12_007
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_155
crossref_primary_10_1007_s11664_014_3020_x
crossref_primary_10_1016_j_applthermaleng_2024_123438
crossref_primary_10_1016_j_applthermaleng_2022_118045
crossref_primary_10_1016_j_enconman_2016_05_064
crossref_primary_10_1039_D0EE01640C
crossref_primary_10_1007_s11664_014_3602_7
crossref_primary_10_1007_s11664_016_4930_6
crossref_primary_10_1016_j_enconman_2018_01_043
crossref_primary_10_1016_j_energy_2019_116624
crossref_primary_10_1016_j_energy_2021_121220
crossref_primary_10_1063_1_5119022
crossref_primary_10_1016_j_enconman_2018_10_104
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125617
crossref_primary_10_1016_j_renene_2020_04_120
crossref_primary_10_1016_j_enconman_2015_03_089
crossref_primary_10_1016_j_applthermaleng_2020_116412
crossref_primary_10_1016_j_energy_2015_06_090
crossref_primary_10_1016_j_enss_2023_12_001
crossref_primary_10_1016_j_energy_2015_12_005
crossref_primary_10_1016_j_energy_2023_126824
crossref_primary_10_1021_acs_energyfuels_0c03943
crossref_primary_10_15377_2409_5818_2020_07_5
crossref_primary_10_1007_s11664_019_07351_y
crossref_primary_10_1016_j_enconman_2019_06_057
crossref_primary_10_1016_j_enconman_2018_06_058
crossref_primary_10_1116_1_4878595
crossref_primary_10_1016_j_ifacol_2020_12_508
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_006
crossref_primary_10_1016_j_enconman_2014_04_040
crossref_primary_10_1002_er_6467
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124203
crossref_primary_10_3390_e20090666
crossref_primary_10_1177_0954406214536150
crossref_primary_10_1016_j_apenergy_2018_09_162
crossref_primary_10_2139_ssrn_4067272
crossref_primary_10_35429_JOES_2019_21_6_1_7
crossref_primary_10_1016_j_enconman_2016_05_087
crossref_primary_10_3390_en7063664
crossref_primary_10_1002_er_8595
crossref_primary_10_1016_j_energy_2015_03_033
crossref_primary_10_1016_j_compstruct_2019_111484
crossref_primary_10_1016_j_apenergy_2016_08_019
crossref_primary_10_1016_j_enconman_2015_10_029
crossref_primary_10_1016_j_applthermaleng_2014_01_074
crossref_primary_10_1016_j_jpowsour_2020_228713
crossref_primary_10_1007_s11664_020_08270_z
crossref_primary_10_1007_s00231_021_03153_3
crossref_primary_10_4028_www_scientific_net_KEM_861_499
crossref_primary_10_1016_j_applthermaleng_2016_11_001
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125366
crossref_primary_10_3390_en13123137
crossref_primary_10_1007_s11664_019_07680_y
crossref_primary_10_1016_j_egypro_2014_11_950
crossref_primary_10_1016_j_energy_2018_01_099
crossref_primary_10_1016_j_enconman_2013_09_047
crossref_primary_10_1016_j_apenergy_2015_03_120
crossref_primary_10_1016_j_applthermaleng_2018_02_084
crossref_primary_10_1016_j_applthermaleng_2015_02_042
crossref_primary_10_2514_1_B38695
crossref_primary_10_1016_j_enconman_2021_114754
crossref_primary_10_1016_j_enconman_2023_117419
crossref_primary_10_1002_aenm_201700524
crossref_primary_10_3390_su16125206
crossref_primary_10_1039_C6SE00028B
crossref_primary_10_1115_1_4039926
crossref_primary_10_1016_j_renene_2022_09_091
crossref_primary_10_3390_e22101128
crossref_primary_10_1016_j_energy_2021_122127
crossref_primary_10_1134_S0040601520070083
crossref_primary_10_1016_j_ijthermalsci_2018_03_010
crossref_primary_10_1016_j_esd_2017_01_003
crossref_primary_10_1016_j_ijthermalsci_2018_03_006
crossref_primary_10_1016_j_enconman_2015_03_090
crossref_primary_10_1016_j_enconman_2016_05_021
crossref_primary_10_1016_j_enconman_2022_116389
crossref_primary_10_1016_j_renene_2021_11_016
crossref_primary_10_1016_j_rser_2014_07_045
crossref_primary_10_1016_j_apenergy_2014_05_048
crossref_primary_10_1016_j_enconman_2014_05_061
crossref_primary_10_1016_j_ijrefrig_2022_11_010
crossref_primary_10_3390_en16207082
crossref_primary_10_1016_j_enconman_2014_10_020
crossref_primary_10_1016_j_apenergy_2016_12_157
crossref_primary_10_1016_j_enconman_2021_115034
crossref_primary_10_1016_j_enbuild_2022_112376
crossref_primary_10_1016_j_apenergy_2021_117151
crossref_primary_10_1016_j_enconman_2019_02_064
crossref_primary_10_1016_j_energy_2017_02_020
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123718
crossref_primary_10_1109_ACCESS_2020_2993288
Cites_doi 10.1016/0038-1101(64)90044-9
10.1016/S0196-8904(99)00164-8
10.1016/j.enconman.2004.07.006
10.1016/j.ijheatmasstransfer.2005.09.028
10.1016/j.apenergy.2007.10.005
10.1016/S0378-7788(02)00019-1
10.1016/j.ijheatmasstransfer.2010.08.024
10.1109/ICT.2005.1519922
10.1016/0038-1101(66)90081-5
10.1063/1.362507
10.1002/er.991
10.1016/S0038-1101(99)00045-3
10.1016/j.jpowsour.2008.02.073
10.1016/j.ijheatmasstransfer.2010.04.011
10.1016/S0927-0248(02)00357-4
10.1016/j.apenergy.2008.12.006
10.1016/j.apenergy.2004.12.003
10.1016/j.ijheatmasstransfer.2006.02.047
10.1016/S0196-8904(01)00153-4
10.1016/j.sna.2010.06.026
10.1016/j.energy.2009.11.030
10.1016/j.ijheatmasstransfer.2004.05.040
10.1016/j.buildenv.2005.12.021
10.1063/1.1449830
10.1016/j.apenergy.2010.02.013
10.1016/j.jpowsour.2007.07.045
10.1016/j.enconman.2005.04.011
10.1016/j.ijheatmasstransfer.2005.04.028
10.1016/j.apenergy.2008.02.011
10.1016/j.applthermaleng.2005.07.016
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID IQODW
AAYXX
CITATION
7ST
C1K
SOI
7SU
7TB
8FD
FR3
1XC
DOI 10.1016/j.enconman.2012.08.022
DatabaseName Pascal-Francis
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
DatabaseTitleList Engineering Research Database

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 356
ExternalDocumentID oai_HAL_hal_04163089v1
10_1016_j_enconman_2012_08_022
26701047
S0196890412003500
GeographicLocations Germany, Niedersachsen, Seebeck
GeographicLocations_xml – name: Germany, Niedersachsen, Seebeck
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
08R
8W4
AALMO
ABFLS
ABPIF
ABPTK
ABQIS
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7ST
C1K
SOI
7SU
7TB
8FD
FR3
1XC
ID FETCH-LOGICAL-c442t-a8364667b5a16ac8c312fa69cd23608c2faa8f902e2d5a23b95c282b920242f23
ISSN 0196-8904
IngestDate Tue Oct 15 15:48:23 EDT 2024
Fri Oct 25 12:18:40 EDT 2024
Fri Oct 25 07:49:28 EDT 2024
Thu Nov 21 22:49:17 EST 2024
Fri Nov 25 01:09:40 EST 2022
Fri Feb 23 02:39:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Seebeck coefficient
Thomson effect
Cooling
Thermoelectric elements
Modeling
Power generation
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-a8364667b5a16ac8c312fa69cd23608c2faa8f902e2d5a23b95c282b920242f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0954-7603
PQID 1349470911
PQPubID 23462
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_04163089v1
proquest_miscellaneous_1671471111
proquest_miscellaneous_1349470911
crossref_primary_10_1016_j_enconman_2012_08_022
pascalfrancis_primary_26701047
elsevier_sciencedirect_doi_10_1016_j_enconman_2012_08_022
PublicationCentury 2000
PublicationDate January 2013
2013
2013-01-00
20130101
2013-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy conversion and management
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jincan, Zijun (b0065) 1996; 79
Min, Rowe (b0130) 1999; 43
Yamashita (b0050) 2009; 86
Moizhes (b0060) 1960; 2
Gou, Xiao, Yang (b0155) 2010; 87
Riffat, Ma (b0135) 2004; 28
Saber HH, El-Genk MS. A three-dimensional, performance model of segmented thermoelectric converters, using ANSYS commercial software. In: El-Genk MS, editor. Proceedings space technology and applications international forum (STAIF-02), AIP conference proceedings, New York: American Institute of Physics; 2002. p. 999.
Fraisse, Goupil, Lazard, Serrat (b0020) 2010; 53
Pramanick, Das (b0170) 2006; 49
Antonova EE, Looman DC. Finite elements for thermoelectric device analysis in ANSYS. In: 24th International conference on thermoelectrics (ICT); 2005. p. 215–18.
Sunderland, Burak (b0030) 1964; 7
Nuwayhid, Moukalled, Noueihed (b0145) 2000; 41
Agbossou, Zhang, Sebald, Guyomar (b0180) 2010; 163
TJ. Seebeck. Ueber den Magnetismus der galvanischen Kette. Abh Akad Wiss. Berlin; 1821. p. 289.
Adamson, Sunderland (b0040) 1966; 9
Chen, Li, Sun, Wu (b0080) 2008; 85
EES manual, Engineering Equation Solver. V8, F-Chart Software. p. 313.
Fraisse, Viardot, Lafabrie, Achard (b0190) 2002; 34
Peltier JCA. Nouvelles expériences sur la caloricité des courants électriques. Ann. Chem. Phys 1834;371–56.
Thomson (b0015) 1854; 5
Chen, Li, Sun, Wu (b0075) 2005; 82
Gurevich, Logvinov (b0175) 2007; 53
Dai, Wang, Ni (b0095) 2003; 77
Xu, Van Dessel, Messac (b0140) 2007; 42
Qiu, Hayden (b0160) 2008; 180
Chen, Rosendahl, Condra (b0205) 2011
Xuan, Ng, Yap, Chua (b0185) 2002; 43
Hsiao, Chang, Chen (b0085) 2010; 35
Huang, Yen, Wang (b0025) 2005; 48
Ioffe (b0070) 1957
Adamson WL. The effects of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance. Master’s thesis, Georgia Institute of Technology; 1965.
Khattab, El Shenawy (b0090) 2006; 47
.
Riffat, Ma, Wilson (b0195) 2006; 26
Khire, Messac, Van Dessel (b0105) 2005; 48
Nuwayhid, Shihadeh, Ghaddar (b0150) 2005; 46
Chakraborty, Saha, Koyama, Ng (b0110) 2006; 49
Madenci, Guven (b0125) 2006
Yamashita (b0045) 2008; 85
Burshtein (b0055) 1957; 2
Kousksou T, Bédécarrats JP, Champier D, Koch S, Brillet C, Pignolet P. Numerical analysis of thermoelectric power generation: aircraft systems application. In: International conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, ECOS; 2010. p. 8.
Yu, Zhao (b0100) 2007; 172
Chen (10.1016/j.enconman.2012.08.022_b0080) 2008; 85
Chen (10.1016/j.enconman.2012.08.022_b0075) 2005; 82
Yamashita (10.1016/j.enconman.2012.08.022_b0045) 2008; 85
10.1016/j.enconman.2012.08.022_b0120
Khattab (10.1016/j.enconman.2012.08.022_b0090) 2006; 47
Chakraborty (10.1016/j.enconman.2012.08.022_b0110) 2006; 49
10.1016/j.enconman.2012.08.022_b0165
Fraisse (10.1016/j.enconman.2012.08.022_b0190) 2002; 34
Fraisse (10.1016/j.enconman.2012.08.022_b0020) 2010; 53
Moizhes (10.1016/j.enconman.2012.08.022_b0060) 1960; 2
Riffat (10.1016/j.enconman.2012.08.022_b0135) 2004; 28
Riffat (10.1016/j.enconman.2012.08.022_b0195) 2006; 26
Xuan (10.1016/j.enconman.2012.08.022_b0185) 2002; 43
Khire (10.1016/j.enconman.2012.08.022_b0105) 2005; 48
Madenci (10.1016/j.enconman.2012.08.022_b0125) 2006
Ioffe (10.1016/j.enconman.2012.08.022_b0070) 1957
Yu (10.1016/j.enconman.2012.08.022_b0100) 2007; 172
Gou (10.1016/j.enconman.2012.08.022_b0155) 2010; 87
Chen (10.1016/j.enconman.2012.08.022_b0205) 2011
Min (10.1016/j.enconman.2012.08.022_b0130) 1999; 43
Yamashita (10.1016/j.enconman.2012.08.022_b0050) 2009; 86
Burshtein (10.1016/j.enconman.2012.08.022_b0055) 1957; 2
10.1016/j.enconman.2012.08.022_b0200
Nuwayhid (10.1016/j.enconman.2012.08.022_b0150) 2005; 46
10.1016/j.enconman.2012.08.022_b0005
Hsiao (10.1016/j.enconman.2012.08.022_b0085) 2010; 35
Pramanick (10.1016/j.enconman.2012.08.022_b0170) 2006; 49
Thomson (10.1016/j.enconman.2012.08.022_b0015) 1854; 5
Jincan (10.1016/j.enconman.2012.08.022_b0065) 1996; 79
Adamson (10.1016/j.enconman.2012.08.022_b0040) 1966; 9
Xu (10.1016/j.enconman.2012.08.022_b0140) 2007; 42
Gurevich (10.1016/j.enconman.2012.08.022_b0175) 2007; 53
Dai (10.1016/j.enconman.2012.08.022_b0095) 2003; 77
10.1016/j.enconman.2012.08.022_b0210
Agbossou (10.1016/j.enconman.2012.08.022_b0180) 2010; 163
10.1016/j.enconman.2012.08.022_b0035
Huang (10.1016/j.enconman.2012.08.022_b0025) 2005; 48
10.1016/j.enconman.2012.08.022_b0115
Qiu (10.1016/j.enconman.2012.08.022_b0160) 2008; 180
Sunderland (10.1016/j.enconman.2012.08.022_b0030) 1964; 7
Nuwayhid (10.1016/j.enconman.2012.08.022_b0145) 2000; 41
References_xml – volume: 46
  start-page: 1631
  year: 2005
  end-page: 1643
  ident: b0150
  article-title: Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling
  publication-title: Energy Convers Manage
  contributor:
    fullname: Ghaddar
– volume: 42
  start-page: 1489
  year: 2007
  end-page: 1502
  ident: b0140
  article-title: Study of the performance of thermoelectric modules for use in active building envelopes
  publication-title: Build Environ
  contributor:
    fullname: Messac
– volume: 82
  start-page: 300
  year: 2005
  end-page: 312
  ident: b0075
  article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator
  publication-title: Appl Energy
  contributor:
    fullname: Wu
– volume: 28
  start-page: 753
  year: 2004
  end-page: 768
  ident: b0135
  article-title: Improving the coefficient of performance of thermoelectric cooling systems: a review
  publication-title: Int J Energy Res
  contributor:
    fullname: Ma
– volume: 7
  start-page: 465
  year: 1964
  end-page: 471
  ident: b0030
  article-title: The influence of the Thomson effect on the performance of a thermoelectric power generator
  publication-title: Solid-State Electr
  contributor:
    fullname: Burak
– volume: 43
  start-page: 923
  year: 1999
  end-page: 929
  ident: b0130
  article-title: Cooling performance of integrated thermoelectric micro-cooler
  publication-title: Solid-State Electr
  contributor:
    fullname: Rowe
– volume: 5
  start-page: 62
  year: 1854
  end-page: 68
  ident: b0015
  article-title: Account of researches in thermo-electricity
  publication-title: Philos Mag
  contributor:
    fullname: Thomson
– volume: 85
  start-page: 641
  year: 2008
  end-page: 649
  ident: b0080
  article-title: Performance optimization of a two-stage thermoelectric heat-pump with internal and external irreversibilities
  publication-title: Appl Energy
  contributor:
    fullname: Wu
– volume: 48
  start-page: 413
  year: 2005
  end-page: 418
  ident: b0025
  article-title: The influence of the Thomson effect on the performance of a thermoelectric cooler
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Wang
– year: 2006
  ident: b0125
  article-title: The finite element method and applications in engineering using ANSYS
  contributor:
    fullname: Guven
– volume: 163
  start-page: 277
  year: 2010
  end-page: 283
  ident: b0180
  article-title: Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis
  publication-title: Sensors Actuators
  contributor:
    fullname: Guyomar
– volume: 85
  start-page: 1002
  year: 2008
  end-page: 1014
  ident: b0045
  article-title: Effect of the temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element
  publication-title: Appl Energy
  contributor:
    fullname: Yamashita
– volume: 35
  start-page: 1447
  year: 2010
  end-page: 1454
  ident: b0085
  article-title: A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 26
  start-page: 494
  year: 2006
  end-page: 501
  ident: b0195
  article-title: Performance simulation and experimental testing of a novel thermoelectric heat pump system
  publication-title: Appl Thermal Eng
  contributor:
    fullname: Wilson
– volume: 2
  start-page: 671
  year: 1960
  end-page: 680
  ident: b0060
  article-title: The influence of the temperature dependence of physical parameters on the efficiency of thermoelectric generators and refrigerators
  publication-title: Sov Phys – Solid State
  contributor:
    fullname: Moizhes
– volume: 34
  start-page: 1017
  year: 2002
  end-page: 1031
  ident: b0190
  article-title: Development of a simplified and accurate building model based on electrical analogy
  publication-title: Energy Build
  contributor:
    fullname: Achard
– volume: 47
  start-page: 407
  year: 2006
  end-page: 426
  ident: b0090
  article-title: Optimal operation of thermoelectric cooler driven by solar thermoelectric generator
  publication-title: Energy Convers Manage
  contributor:
    fullname: El Shenawy
– volume: 9
  start-page: 105
  year: 1966
  end-page: 112
  ident: b0040
  article-title: The influence of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance
  publication-title: Solid-State Electr
  contributor:
    fullname: Sunderland
– volume: 48
  start-page: 4028
  year: 2005
  end-page: 4040
  ident: b0105
  article-title: Design of thermoelectric heat pump unit for active building envelope systems
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Van Dessel
– volume: 53
  start-page: 3503
  year: 2010
  end-page: 3512
  ident: b0020
  article-title: Study of thermoelement’s behaviour through a modeling based on electrical analogy
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Serrat
– volume: 43
  start-page: 2041
  year: 2002
  end-page: 2052
  ident: b0185
  article-title: Optimization of two-stage thermoelectric coolers with two design configurations
  publication-title: Energy Convers Manage
  contributor:
    fullname: Chua
– volume: 77
  start-page: 377
  year: 2003
  end-page: 391
  ident: b0095
  article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells
  publication-title: Solar Energy Mater Solar Cells
  contributor:
    fullname: Ni
– volume: 86
  start-page: 1746
  year: 2009
  end-page: 1756
  ident: b0050
  article-title: Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance
  publication-title: Appl Energy
  contributor:
    fullname: Yamashita
– volume: 180
  start-page: 884
  year: 2008
  end-page: 889
  ident: b0160
  article-title: Development of a thermoelectric self-powered residential heating system
  publication-title: J Power Sources
  contributor:
    fullname: Hayden
– year: 1957
  ident: b0070
  article-title: Semiconductor thermoelements and thermoelectric cooling
  contributor:
    fullname: Ioffe
– volume: 87
  start-page: 3131
  year: 2010
  end-page: 3136
  ident: b0155
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl Energy
  contributor:
    fullname: Yang
– volume: 2
  start-page: 1397
  year: 1957
  end-page: 1406
  ident: b0055
  article-title: An investigation of the steady-state heat flow through a current-carrying conductor
  publication-title: Sov Phys-Tech Phys
  contributor:
    fullname: Burshtein
– volume: 49
  start-page: 1420
  year: 2006
  end-page: 1429
  ident: b0170
  article-title: Constructal design of a thermoelectric device
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Das
– volume: 49
  start-page: 3547
  year: 2006
  end-page: 3554
  ident: b0110
  article-title: Thermodynamic modelling of a solid state thermoelectric cooling device: temperature–entropy analysis
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Ng
– volume: 172
  start-page: 428
  year: 2007
  end-page: 434
  ident: b0100
  article-title: A numerical model for thermoelectric generator with the parallel-plate heat exchanger
  publication-title: J Power Sources
  contributor:
    fullname: Zhao
– volume: 41
  start-page: 891
  year: 2000
  end-page: 914
  ident: b0145
  article-title: On entropy generation in thermoelectric devices
  publication-title: Energy Convers Manage
  contributor:
    fullname: Noueihed
– volume: 79
  start-page: 8823
  year: 1996
  end-page: 8828
  ident: b0065
  article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator
  publication-title: J Appl Phys
  contributor:
    fullname: Zijun
– volume: 53
  start-page: 337
  year: 2007
  end-page: 349
  ident: b0175
  article-title: Theory of thermoelectric cooling in semiconductors structures
  publication-title: Revista mexicana de fisica
  contributor:
    fullname: Logvinov
– start-page: 345
  year: 2011
  end-page: 355
  ident: b0205
  article-title: A three-dimensional numerical model of thermoelectric generators in fluid power systems
  publication-title: Int J Heat Mass Trans
  contributor:
    fullname: Condra
– year: 2006
  ident: 10.1016/j.enconman.2012.08.022_b0125
  contributor:
    fullname: Madenci
– ident: 10.1016/j.enconman.2012.08.022_b0165
– volume: 7
  start-page: 465
  issue: 6
  year: 1964
  ident: 10.1016/j.enconman.2012.08.022_b0030
  article-title: The influence of the Thomson effect on the performance of a thermoelectric power generator
  publication-title: Solid-State Electr
  doi: 10.1016/0038-1101(64)90044-9
  contributor:
    fullname: Sunderland
– ident: 10.1016/j.enconman.2012.08.022_b0035
– year: 1957
  ident: 10.1016/j.enconman.2012.08.022_b0070
  contributor:
    fullname: Ioffe
– volume: 41
  start-page: 891
  year: 2000
  ident: 10.1016/j.enconman.2012.08.022_b0145
  article-title: On entropy generation in thermoelectric devices
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(99)00164-8
  contributor:
    fullname: Nuwayhid
– volume: 46
  start-page: 1631
  issue: 9–10
  year: 2005
  ident: 10.1016/j.enconman.2012.08.022_b0150
  article-title: Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2004.07.006
  contributor:
    fullname: Nuwayhid
– volume: 49
  start-page: 1420
  year: 2006
  ident: 10.1016/j.enconman.2012.08.022_b0170
  article-title: Constructal design of a thermoelectric device
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2005.09.028
  contributor:
    fullname: Pramanick
– volume: 85
  start-page: 641
  year: 2008
  ident: 10.1016/j.enconman.2012.08.022_b0080
  article-title: Performance optimization of a two-stage thermoelectric heat-pump with internal and external irreversibilities
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.10.005
  contributor:
    fullname: Chen
– volume: 34
  start-page: 1017
  issue: 10
  year: 2002
  ident: 10.1016/j.enconman.2012.08.022_b0190
  article-title: Development of a simplified and accurate building model based on electrical analogy
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(02)00019-1
  contributor:
    fullname: Fraisse
– start-page: 345
  issue: 1–3
  year: 2011
  ident: 10.1016/j.enconman.2012.08.022_b0205
  article-title: A three-dimensional numerical model of thermoelectric generators in fluid power systems
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2010.08.024
  contributor:
    fullname: Chen
– ident: 10.1016/j.enconman.2012.08.022_b0120
  doi: 10.1109/ICT.2005.1519922
– volume: 9
  start-page: 105
  issue: 2
  year: 1966
  ident: 10.1016/j.enconman.2012.08.022_b0040
  article-title: The influence of the Thomson coefficient and variable resistivity on thermoelectric heat pump performance
  publication-title: Solid-State Electr
  doi: 10.1016/0038-1101(66)90081-5
  contributor:
    fullname: Adamson
– volume: 79
  start-page: 8823
  issue: 11
  year: 1996
  ident: 10.1016/j.enconman.2012.08.022_b0065
  article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator
  publication-title: J Appl Phys
  doi: 10.1063/1.362507
  contributor:
    fullname: Jincan
– volume: 28
  start-page: 753
  year: 2004
  ident: 10.1016/j.enconman.2012.08.022_b0135
  article-title: Improving the coefficient of performance of thermoelectric cooling systems: a review
  publication-title: Int J Energy Res
  doi: 10.1002/er.991
  contributor:
    fullname: Riffat
– volume: 43
  start-page: 923
  year: 1999
  ident: 10.1016/j.enconman.2012.08.022_b0130
  article-title: Cooling performance of integrated thermoelectric micro-cooler
  publication-title: Solid-State Electr
  doi: 10.1016/S0038-1101(99)00045-3
  contributor:
    fullname: Min
– volume: 180
  start-page: 884
  issue: 2
  year: 2008
  ident: 10.1016/j.enconman.2012.08.022_b0160
  article-title: Development of a thermoelectric self-powered residential heating system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.02.073
  contributor:
    fullname: Qiu
– volume: 53
  start-page: 337
  issue: 5
  year: 2007
  ident: 10.1016/j.enconman.2012.08.022_b0175
  article-title: Theory of thermoelectric cooling in semiconductors structures
  publication-title: Revista mexicana de fisica
  contributor:
    fullname: Gurevich
– volume: 53
  start-page: 3503
  issue: 17–18
  year: 2010
  ident: 10.1016/j.enconman.2012.08.022_b0020
  article-title: Study of thermoelement’s behaviour through a modeling based on electrical analogy
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2010.04.011
  contributor:
    fullname: Fraisse
– volume: 77
  start-page: 377
  issue: 4
  year: 2003
  ident: 10.1016/j.enconman.2012.08.022_b0095
  article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/S0927-0248(02)00357-4
  contributor:
    fullname: Dai
– ident: 10.1016/j.enconman.2012.08.022_b0210
– volume: 86
  start-page: 1746
  year: 2009
  ident: 10.1016/j.enconman.2012.08.022_b0050
  article-title: Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.12.006
  contributor:
    fullname: Yamashita
– volume: 82
  start-page: 300
  year: 2005
  ident: 10.1016/j.enconman.2012.08.022_b0075
  article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.12.003
  contributor:
    fullname: Chen
– volume: 49
  start-page: 3547
  issue: 19–20
  year: 2006
  ident: 10.1016/j.enconman.2012.08.022_b0110
  article-title: Thermodynamic modelling of a solid state thermoelectric cooling device: temperature–entropy analysis
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2006.02.047
  contributor:
    fullname: Chakraborty
– volume: 43
  start-page: 2041
  issue: 15
  year: 2002
  ident: 10.1016/j.enconman.2012.08.022_b0185
  article-title: Optimization of two-stage thermoelectric coolers with two design configurations
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(01)00153-4
  contributor:
    fullname: Xuan
– volume: 163
  start-page: 277
  year: 2010
  ident: 10.1016/j.enconman.2012.08.022_b0180
  article-title: Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis
  publication-title: Sensors Actuators
  doi: 10.1016/j.sna.2010.06.026
  contributor:
    fullname: Agbossou
– ident: 10.1016/j.enconman.2012.08.022_b0200
– volume: 35
  start-page: 1447
  issue: 3
  year: 2010
  ident: 10.1016/j.enconman.2012.08.022_b0085
  article-title: A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.030
  contributor:
    fullname: Hsiao
– volume: 48
  start-page: 413
  year: 2005
  ident: 10.1016/j.enconman.2012.08.022_b0025
  article-title: The influence of the Thomson effect on the performance of a thermoelectric cooler
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2004.05.040
  contributor:
    fullname: Huang
– volume: 42
  start-page: 1489
  issue: 3
  year: 2007
  ident: 10.1016/j.enconman.2012.08.022_b0140
  article-title: Study of the performance of thermoelectric modules for use in active building envelopes
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2005.12.021
  contributor:
    fullname: Xu
– ident: 10.1016/j.enconman.2012.08.022_b0115
  doi: 10.1063/1.1449830
– volume: 87
  start-page: 3131
  issue: 10
  year: 2010
  ident: 10.1016/j.enconman.2012.08.022_b0155
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.02.013
  contributor:
    fullname: Gou
– volume: 2
  start-page: 1397
  year: 1957
  ident: 10.1016/j.enconman.2012.08.022_b0055
  article-title: An investigation of the steady-state heat flow through a current-carrying conductor
  publication-title: Sov Phys-Tech Phys
  contributor:
    fullname: Burshtein
– ident: 10.1016/j.enconman.2012.08.022_b0005
– volume: 172
  start-page: 428
  issue: 1
  year: 2007
  ident: 10.1016/j.enconman.2012.08.022_b0100
  article-title: A numerical model for thermoelectric generator with the parallel-plate heat exchanger
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.07.045
  contributor:
    fullname: Yu
– volume: 47
  start-page: 407
  issue: 4
  year: 2006
  ident: 10.1016/j.enconman.2012.08.022_b0090
  article-title: Optimal operation of thermoelectric cooler driven by solar thermoelectric generator
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2005.04.011
  contributor:
    fullname: Khattab
– volume: 48
  start-page: 4028
  issue: 19–20
  year: 2005
  ident: 10.1016/j.enconman.2012.08.022_b0105
  article-title: Design of thermoelectric heat pump unit for active building envelope systems
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2005.04.028
  contributor:
    fullname: Khire
– volume: 85
  start-page: 1002
  year: 2008
  ident: 10.1016/j.enconman.2012.08.022_b0045
  article-title: Effect of the temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.02.011
  contributor:
    fullname: Yamashita
– volume: 2
  start-page: 671
  year: 1960
  ident: 10.1016/j.enconman.2012.08.022_b0060
  article-title: The influence of the temperature dependence of physical parameters on the efficiency of thermoelectric generators and refrigerators
  publication-title: Sov Phys – Solid State
  contributor:
    fullname: Moizhes
– volume: 26
  start-page: 494
  year: 2006
  ident: 10.1016/j.enconman.2012.08.022_b0195
  article-title: Performance simulation and experimental testing of a novel thermoelectric heat pump system
  publication-title: Appl Thermal Eng
  doi: 10.1016/j.applthermaleng.2005.07.016
  contributor:
    fullname: Riffat
– volume: 5
  start-page: 62
  year: 1854
  ident: 10.1016/j.enconman.2012.08.022_b0015
  article-title: Account of researches in thermo-electricity
  publication-title: Philos Mag
  contributor:
    fullname: Thomson
SSID ssj0003506
Score 2.5106866
Snippet Simplified models and details models are presented and compared. The Thomson effect must not be used when the Seebeck coefficient is constant. The improved...
Simplified models are usually used to describe the behavior of thermoelectric elements due to their low computational effort needed for solving the physical...
SourceID hal
proquest
crossref
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 351
SubjectTerms Accuracy
Analogies
Applied sciences
Computer programs
Cooling
Energy
Engineering Sciences
Exact sciences and technology
Finite element method
Mathematical analysis
Mathematical models
Modeling
Power generation
Seebeck coefficient
Thermoelectric elements
Thermoelectricity
Thomson coefficient
Thomson effect
Title Comparison of different modeling approaches for thermoelectric elements
URI https://dx.doi.org/10.1016/j.enconman.2012.08.022
https://search.proquest.com/docview/1349470911
https://search.proquest.com/docview/1671471111
https://hal.univ-smb.fr/hal-04163089
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfa7gU08TFAlI8pIN5QRmInTvwYja4tKitqV2lvUew4gklrp6Xd38_5I19sMHigD1FjJbHi--V8Pt_dD6EPAJIgCgVzZeZzN2C8cLkIiEuFZLTgMheaDmiyjE7P48-jYNTrVa6Bpu2_ShraQNYqc_YfpF0_FBrgP8gcjiB1OP6V3I_bxII1_8nWUN7ojERbRVyWVYjh9eXGsOH8EB-lCScvOx57kx-oA9S1d03vOFzeCpw5WSTT5VKHV9aMXYvk63xlG5sdqPF8MZufdgKOx_PVt-ms8dtaT4RJITWOMTuLt_2UjLoxM8zCR9Lo1jhirkq9bStfGra0J7G1Z6U9o3fqeONuuDhShT7X8K4qPg_rOqwmw7lbVPuXya4OQcQ00qWJ-mgPg47CA7SXTEfnX-ppnISamLV-k1Z6-d19_86y6X9XIbb7V1kJX11h6FJuzfzanDl7gh7ZdYiTGAA9RT25PkCP7ZrEsRq_PEAPWwUrn6Fxgy5nUzg1upwKXU6DLgfQ5XTR5VToeo5WJ6Oz44lrqThcEQR462YxoQGlEQ8zn2YiFsTHRUaZyDGhXizgJIsL5mGJ8zDDhLNQwGKeM6xswAKTF2iw3qzlS-TwKOeUR54IOQkKn6ryUUFGeFTEBawe8iH6VA1jemUqrqRVKOJFWg18qgY-VQyqGA8Rq0Y7tXajsQdTgMy9974H8dQdqWLrk2SWqjZPrVW8mN34Q3TYkV59eQWiIXpXiTMF9az23LK13OzKVFX_DCIwyv0_XEMjH2xE-L26r6PX6AHWfCzKB_gGDbbXO_kW9ct8d2jx-xPHHbjM
link.rule.ids 230,315,782,786,887,4028,27932,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+modeling+approaches+for+thermoelectric+elements&rft.jtitle=Energy+conversion+and+management&rft.au=FRAISSE%2C+G&rft.au=RAMOUSSE%2C+J&rft.au=SGORLON%2C+D&rft.au=GOUPIL%2C+C&rft.date=2013&rft.pub=Elsevier&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=65&rft.spage=351&rft.epage=356&rft_id=info:doi/10.1016%2Fj.enconman.2012.08.022&rft.externalDBID=n%2Fa&rft.externalDocID=26701047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon