Quantum phase transition between hyperuniform density distributions

We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to establish a classification and analysis method for aperiodic but orderly density distributions realized in, e.g., quasicrystals. Using the Aubry-André-Harper model, we first reveal that the elect...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research Vol. 4; no. 3; p. 033241
Main Authors: Sakai, Shiro, Arita, Ryotaro, Ohtsuki, Tomi
Format: Journal Article
Language:English
Published: American Physical Society 26-09-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to establish a classification and analysis method for aperiodic but orderly density distributions realized in, e.g., quasicrystals. Using the Aubry-André-Harper model, we first reveal that the electron-charge distribution changes its character as the increased quasiperiodic potential alters the eigenstates from extended to localized ones. While these changes of the charge distribution are characterized by neither multifractality nor translational-symmetry breaking, they are characterized by hyperuniformity class and its order metric. We find a nontrivial relationship between the density of states at the Fermi level, a charge-distribution histogram, and the hyperuniformity class. The change to a different hyperuniformity class occurs as a first-order phase transition except for an electron-hole symmetric point, where the transition is of the third order. Moreover, we generalize the hyperuniformity order metric to a function, to capture more detailed features of the density distribution, in some analogy with a generalization of the fractal dimension to a multifractal one.
AbstractList We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to establish a classification and analysis method for aperiodic but orderly density distributions realized in, e.g., quasicrystals. Using the Aubry-André-Harper model, we first reveal that the electron-charge distribution changes its character as the increased quasiperiodic potential alters the eigenstates from extended to localized ones. While these changes of the charge distribution are characterized by neither multifractality nor translational-symmetry breaking, they are characterized by hyperuniformity class and its order metric. We find a nontrivial relationship between the density of states at the Fermi level, a charge-distribution histogram, and the hyperuniformity class. The change to a different hyperuniformity class occurs as a first-order phase transition except for an electron-hole symmetric point, where the transition is of the third order. Moreover, we generalize the hyperuniformity order metric to a function, to capture more detailed features of the density distribution, in some analogy with a generalization of the fractal dimension to a multifractal one.
ArticleNumber 033241
Author Ohtsuki, Tomi
Arita, Ryotaro
Sakai, Shiro
Author_xml – sequence: 1
  givenname: Shiro
  orcidid: 0000-0001-5495-3884
  surname: Sakai
  fullname: Sakai, Shiro
– sequence: 2
  givenname: Ryotaro
  orcidid: 0000-0001-5725-072X
  surname: Arita
  fullname: Arita, Ryotaro
– sequence: 3
  givenname: Tomi
  orcidid: 0000-0002-4069-6917
  surname: Ohtsuki
  fullname: Ohtsuki, Tomi
BookMark eNpdkNtKw0AURQepYK39h_xA6twneZTipVBQiz4PczljprRJmUmU_L3WiohPZ3P2Zj2sSzRpuxYQKgheEILZ9VMz5g28byCDSa5Z8AVmjHJyhqZUclYSIfnkT75A85y3GGMqCOGVmKLl82DaftgXh8ZkKPpk2hz72LWFhf4DoC2a8QBpaGPo0r7wcKzHwsfcp2iH4zJfofNgdhnmP3eGXu9uX5YP5frxfrW8WZeOc9KXAdeKUukZBVDCclFb5SrsgTkpiA2cKyxri2UViJQWvDTScM9rYyh2grEZWp24vjNbfUhxb9KoOxP196NLb9qkProdaKZ8xSVWgXjLg6I1FsYRIh1gRVWAL1Z1YrnU5Zwg_PII1ke3-p9bzfXJLfsEmbR0bA
CitedBy_id crossref_primary_10_1088_1742_6596_2461_1_012002
crossref_primary_10_1103_PhysRevLett_133_028401
crossref_primary_10_1103_PhysRevE_109_044103
crossref_primary_10_1103_PhysRevB_106_235427
crossref_primary_10_1103_PhysRevE_108_045306
Cites_doi 10.1103/PhysRevB.102.115108
10.1103/PhysRevB.22.3519
10.1103/PhysRevB.104.184202
10.1103/PhysRevB.71.104427
10.1103/PhysRevB.96.054202
10.1103/PhysRevE.102.012134
10.1103/PhysRevB.80.155112
10.1103/PhysRevE.68.041113
10.1038/nature07071
10.1103/PhysRevB.96.045138
10.1103/PhysRevB.95.054119
10.2320/matertrans.MT-MB2020001
10.1016/0370-1573(85)90088-2
10.1103/PhysRevB.95.024509
10.1021/jacs.1c09954
10.1103/PhysRevLett.109.106402
10.1103/PhysRevA.33.1141
10.1103/PhysRevE.94.022122
10.1103/PhysRevLett.90.177205
10.1016/j.physrep.2018.03.001
10.1103/PhysRevB.35.1020
10.1016/0378-4371(82)90359-4
10.1103/PhysRevLett.93.076407
10.1103/PhysRevB.35.9529
10.1038/s41467-017-02667-x
10.1103/PhysRev.109.1492
10.1103/PhysRevLett.103.013901
10.1103/PhysRevB.38.5981
10.1103/PhysRevB.92.224409
10.1103/PhysRevLett.53.2477
10.1103/PhysRevB.100.014510
10.7566/JPSJ.89.074703
10.1103/PhysRevResearch.1.022002
10.1103/PhysRevLett.42.673
10.1209/0295-5075/110/57003
10.1103/PhysRevB.34.2041
10.1103/PhysRevB.83.075105
10.1103/PhysRevB.75.212407
10.1103/PhysRevA.75.063404
10.1063/1.4989492
10.1088/0370-1298/68/10/304
10.1103/PhysRevE.89.022721
10.1103/PhysRevLett.120.247401
10.1103/PhysRevB.96.214402
10.1103/PhysRevB.101.014205
10.1103/PhysRevLett.53.1951
10.1073/pnas.2112202118
10.1103/PhysRevB.99.224204
10.1103/PhysRevB.102.115125
10.1103/PhysRevLett.114.146601
10.1103/PhysRevB.105.205138
10.1103/PhysRevB.40.8225
10.1103/RevModPhys.93.045001
10.1103/PhysRevB.105.054202
10.1103/PhysRevLett.104.070601
10.1103/PhysRevB.22.5823
10.1103/PhysRevB.96.214201
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.4.033241
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_37d84607f1db4f72905ac116ce0727fe
10_1103_PhysRevResearch_4_033241
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c441t-f097226d32ee75b459b7c80de3c651bf447069b068f166bed6a6a4d49aa20c533
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Tue Oct 22 14:56:15 EDT 2024
Fri Aug 23 01:30:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-f097226d32ee75b459b7c80de3c651bf447069b068f166bed6a6a4d49aa20c533
ORCID 0000-0001-5725-072X
0000-0001-5495-3884
0000-0002-4069-6917
OpenAccessLink https://doaj.org/article/37d84607f1db4f72905ac116ce0727fe
ParticipantIDs doaj_primary_oai_doaj_org_article_37d84607f1db4f72905ac116ce0727fe
crossref_primary_10_1103_PhysRevResearch_4_033241
PublicationCentury 2000
PublicationDate 2022-09-26
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-26
  day: 26
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.4.033241Cc18R1
PhysRevResearch.4.033241Cc39R1
PhysRevResearch.4.033241Cc40R1
PhysRevResearch.4.033241Cc23R1
PhysRevResearch.4.033241Cc46R1
PhysRevResearch.4.033241Cc21R1
PhysRevResearch.4.033241Cc48R1
PhysRevResearch.4.033241Cc27R1
PhysRevResearch.4.033241Cc42R1
PhysRevResearch.4.033241Cc25R1
PhysRevResearch.4.033241Cc44R1
PhysRevResearch.4.033241Cc6R1
PhysRevResearch.4.033241Cc4R1
PhysRevResearch.4.033241Cc29R1
PhysRevResearch.4.033241Cc8R1
PhysRevResearch.4.033241Cc2R1
PhysRevResearch.4.033241Cc51R1
PhysRevResearch.4.033241Cc30R1
PhysRevResearch.4.033241Cc11R1
PhysRevResearch.4.033241Cc34R1
PhysRevResearch.4.033241Cc57R1
PhysRevResearch.4.033241Cc32R1
PhysRevResearch.4.033241Cc38R1
PhysRevResearch.4.033241Cc53R1
PhysRevResearch.4.033241Cc15R1
PhysRevResearch.4.033241Cc13R1
PhysRevResearch.4.033241Cc36R1
PhysRevResearch.4.033241Cc55R1
PhysRevResearch.4.033241Cc19R1
PhysRevResearch.4.033241Cc17R1
PhysRevResearch.4.033241Cc41R1
PhysRevResearch.4.033241Cc22R1
PhysRevResearch.4.033241Cc47R1
PhysRevResearch.4.033241Cc20R1
PhysRevResearch.4.033241Cc49R1
PhysRevResearch.4.033241Cc26R1
PhysRevResearch.4.033241Cc43R1
PhysRevResearch.4.033241Cc24R1
PhysRevResearch.4.033241Cc45R1
PhysRevResearch.4.033241Cc7R1
PhysRevResearch.4.033241Cc5R1
PhysRevResearch.4.033241Cc28R1
PhysRevResearch.4.033241Cc9R1
S. Aubry (PhysRevResearch.4.033241Cc10R1) 1980; 3
PhysRevResearch.4.033241Cc3R1
PhysRevResearch.4.033241Cc1R1
PhysRevResearch.4.033241Cc50R1
PhysRevResearch.4.033241Cc52R1
PhysRevResearch.4.033241Cc12R1
PhysRevResearch.4.033241Cc33R1
PhysRevResearch.4.033241Cc58R1
PhysRevResearch.4.033241Cc31R1
PhysRevResearch.4.033241Cc16R1
PhysRevResearch.4.033241Cc37R1
PhysRevResearch.4.033241Cc54R1
PhysRevResearch.4.033241Cc14R1
PhysRevResearch.4.033241Cc35R1
PhysRevResearch.4.033241Cc56R1
References_xml – ident: PhysRevResearch.4.033241Cc32R1
  doi: 10.1103/PhysRevB.102.115108
– ident: PhysRevResearch.4.033241Cc56R1
  doi: 10.1103/PhysRevB.22.3519
– ident: PhysRevResearch.4.033241Cc15R1
  doi: 10.1103/PhysRevB.104.184202
– ident: PhysRevResearch.4.033241Cc20R1
  doi: 10.1103/PhysRevB.71.104427
– ident: PhysRevResearch.4.033241Cc50R1
  doi: 10.1103/PhysRevB.96.054202
– ident: PhysRevResearch.4.033241Cc58R1
  doi: 10.1103/PhysRevE.102.012134
– ident: PhysRevResearch.4.033241Cc39R1
  doi: 10.1103/PhysRevB.80.155112
– ident: PhysRevResearch.4.033241Cc33R1
  doi: 10.1103/PhysRevE.68.041113
– ident: PhysRevResearch.4.033241Cc41R1
  doi: 10.1038/nature07071
– ident: PhysRevResearch.4.033241Cc7R1
  doi: 10.1103/PhysRevB.96.045138
– ident: PhysRevResearch.4.033241Cc37R1
  doi: 10.1103/PhysRevB.95.054119
– ident: PhysRevResearch.4.033241Cc14R1
  doi: 10.2320/matertrans.MT-MB2020001
– ident: PhysRevResearch.4.033241Cc40R1
  doi: 10.1016/0370-1573(85)90088-2
– ident: PhysRevResearch.4.033241Cc27R1
  doi: 10.1103/PhysRevB.95.024509
– ident: PhysRevResearch.4.033241Cc25R1
  doi: 10.1021/jacs.1c09954
– ident: PhysRevResearch.4.033241Cc43R1
  doi: 10.1103/PhysRevLett.109.106402
– ident: PhysRevResearch.4.033241Cc9R1
  doi: 10.1103/PhysRevA.33.1141
– ident: PhysRevResearch.4.033241Cc35R1
  doi: 10.1103/PhysRevE.94.022122
– ident: PhysRevResearch.4.033241Cc18R1
  doi: 10.1103/PhysRevLett.90.177205
– ident: PhysRevResearch.4.033241Cc34R1
  doi: 10.1016/j.physrep.2018.03.001
– ident: PhysRevResearch.4.033241Cc4R1
  doi: 10.1103/PhysRevB.35.1020
– ident: PhysRevResearch.4.033241Cc1R1
  doi: 10.1016/0378-4371(82)90359-4
– ident: PhysRevResearch.4.033241Cc19R1
  doi: 10.1103/PhysRevLett.93.076407
– ident: PhysRevResearch.4.033241Cc5R1
  doi: 10.1103/PhysRevB.35.9529
– ident: PhysRevResearch.4.033241Cc28R1
  doi: 10.1038/s41467-017-02667-x
– volume: 3
  start-page: 18
  year: 1980
  ident: PhysRevResearch.4.033241Cc10R1
  publication-title: Ann. Israel Phys. Soc
  contributor:
    fullname: S. Aubry
– ident: PhysRevResearch.4.033241Cc54R1
  doi: 10.1103/PhysRev.109.1492
– ident: PhysRevResearch.4.033241Cc42R1
  doi: 10.1103/PhysRevLett.103.013901
– ident: PhysRevResearch.4.033241Cc6R1
  doi: 10.1103/PhysRevB.38.5981
– ident: PhysRevResearch.4.033241Cc22R1
  doi: 10.1103/PhysRevB.92.224409
– ident: PhysRevResearch.4.033241Cc3R1
  doi: 10.1103/PhysRevLett.53.2477
– ident: PhysRevResearch.4.033241Cc29R1
  doi: 10.1103/PhysRevB.100.014510
– ident: PhysRevResearch.4.033241Cc31R1
  doi: 10.7566/JPSJ.89.074703
– ident: PhysRevResearch.4.033241Cc30R1
  doi: 10.1103/PhysRevResearch.1.022002
– ident: PhysRevResearch.4.033241Cc55R1
  doi: 10.1103/PhysRevLett.42.673
– ident: PhysRevResearch.4.033241Cc49R1
  doi: 10.1209/0295-5075/110/57003
– ident: PhysRevResearch.4.033241Cc12R1
  doi: 10.1103/PhysRevB.34.2041
– ident: PhysRevResearch.4.033241Cc47R1
  doi: 10.1103/PhysRevB.83.075105
– ident: PhysRevResearch.4.033241Cc21R1
  doi: 10.1103/PhysRevB.75.212407
– ident: PhysRevResearch.4.033241Cc45R1
  doi: 10.1103/PhysRevA.75.063404
– ident: PhysRevResearch.4.033241Cc36R1
  doi: 10.1063/1.4989492
– ident: PhysRevResearch.4.033241Cc11R1
  doi: 10.1088/0370-1298/68/10/304
– ident: PhysRevResearch.4.033241Cc57R1
  doi: 10.1103/PhysRevE.89.022721
– ident: PhysRevResearch.4.033241Cc38R1
  doi: 10.1103/PhysRevLett.120.247401
– ident: PhysRevResearch.4.033241Cc23R1
  doi: 10.1103/PhysRevB.96.214402
– ident: PhysRevResearch.4.033241Cc53R1
  doi: 10.1103/PhysRevB.101.014205
– ident: PhysRevResearch.4.033241Cc2R1
  doi: 10.1103/PhysRevLett.53.1951
– ident: PhysRevResearch.4.033241Cc26R1
  doi: 10.1073/pnas.2112202118
– ident: PhysRevResearch.4.033241Cc52R1
  doi: 10.1103/PhysRevB.99.224204
– ident: PhysRevResearch.4.033241Cc24R1
  doi: 10.1103/PhysRevB.102.115125
– ident: PhysRevResearch.4.033241Cc48R1
  doi: 10.1103/PhysRevLett.114.146601
– ident: PhysRevResearch.4.033241Cc17R1
  doi: 10.1103/PhysRevB.105.205138
– ident: PhysRevResearch.4.033241Cc13R1
  doi: 10.1103/PhysRevB.40.8225
– ident: PhysRevResearch.4.033241Cc8R1
  doi: 10.1103/RevModPhys.93.045001
– ident: PhysRevResearch.4.033241Cc16R1
  doi: 10.1103/PhysRevB.105.054202
– ident: PhysRevResearch.4.033241Cc46R1
  doi: 10.1103/PhysRevLett.104.070601
– ident: PhysRevResearch.4.033241Cc44R1
  doi: 10.1103/PhysRevB.22.5823
– ident: PhysRevResearch.4.033241Cc51R1
  doi: 10.1103/PhysRevB.96.214201
SSID ssj0002511485
Score 2.3363419
Snippet We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to establish a classification and analysis method for...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 033241
Title Quantum phase transition between hyperuniform density distributions
URI https://doaj.org/article/37d84607f1db4f72905ac116ce0727fe
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27asMwFBVtoNCl9EnTFxq6OpEs6coe2zQhU6Ev6Gb0JEvckNiF_n0l2wlply5djTDiXKNzLj46F6FbI0xucyET6lWacJ7rRIFzCXeZsSoHnTWxi9MX-fiePYxjTM5m1Ff0hLXxwC1wQyZtoEgiPbWa-yAFiVCGUjCOBOr1rjl9idxqpuIZHIUzz8TaukPYMBoqn93n2s824APCgpigP_hoK7a_4ZfJITrohCG-azd0hHZceYz2GoOmWZ2g0VMdMKjneDELvIOrSDGN2wp3Tis8Cx3lsi7jTas5ttGXXn1hG3Nxu5FWq1P0Nhm_jqZJNwAhMUGlVImP2TopWJY6J4XmItfSZMQ6ZkBQ7TmXBHJNIPMUQDsLChS3PFcqJSYIuTPUKz9Kd45wyhmosMwoCBot9RkYKcErw5gSBngf0TUMxaLNuSia_oCw4hd0BS9a6ProPuK1WR-TqpsHoX5FV7_ir_pd_MdLLtF-Gq8lxL9FcIV61bJ212h3Zeub5rv4Bi3Jvzg
link.rule.ids 315,782,786,866,2107,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+phase+transition+between+hyperuniform+density+distributions&rft.jtitle=Physical+review+research&rft.au=Sakai%2C+Shiro&rft.au=Arita%2C+Ryotaro&rft.au=Ohtsuki%2C+Tomi&rft.date=2022-09-26&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevResearch.4.033241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_4_033241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon