Eventful evolution of giant molecular clouds in dynamically evolving spiral arms
The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spir...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 464; no. 1; p. 246 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Oxford University Press
01-01-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spiral arm using a three-dimensional N-body/hydrodynamic simulation of a barred spiral galaxy at parsec-scale resolution. This simulation incorporated self-gravity, molecular hydrogen formation, radiative cooling, heating due to interstellar far-ultraviolet radiation, and stellar feedback by both H ii regions and Type II supernovae. In contrast to a simple expectation based on the traditional spiral model, the GMCs exhibited no systematic evolutionary sequence across the spiral arm. Our simulation showed that the GMCs behaved as highly dynamic objects with eventful lives involving collisional build-up, collision-induced star formation, and destruction via stellar feedback. The GMC lifetimes were predicted to be short, only a few tens of millions years. We also found that at least at the resolutions and with the feedback models used in this study, most of the GMCs without H ii regions were collapsing, but half of the GMCs with H ii regions were expanding owing to the H ii-region feedback from stars within them. Our results support the dynamic and feedback-regulated GMC evolution scenario. Although the simulated GMCs were converging rather than virial equilibrium, they followed the observed scaling relationship well. We also analysed the effects of galactic tides and external pressure on GMC evolution and suggested that GMCs cannot be regarded as isolated systems since their evolution in disc galaxies is complicated because of these environmental effects. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw2378 |