Effects of varying Sm3+ concentration on the structure, morphology and photoluminescence properties of the BaAl2O4 /CaAl2O4/Ca4Al6O13/Ca3Al2O6:x% Sm3+ (0 ≤ x ≤ 1.9) mixed phases using citrate sol-gel method

BaAl2O4/CaAl2O4/Ca4Al6O13/Ca3Al2O6:x% Sm3+ (0 ≤ x ≤ 1.9) (hereafter called BCCC:x% Sm3+) nanophosphors were successfully prepared by citrate sol-gel method. The structure, morphology and photoluminescence properties of the prepared nanophosphors were investigated. X-ray diffraction (XRD) indicated t...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 8; no. 12; p. e12573
Main Authors: Bele, A., Mhlongo, M.R., Koao, L.F., Motaung, T.E., Malevu, T.D., Hlatshwayo, T.T., Mpelane, S., Mlambo, M., Motloung, S.V.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-12-2022
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BaAl2O4/CaAl2O4/Ca4Al6O13/Ca3Al2O6:x% Sm3+ (0 ≤ x ≤ 1.9) (hereafter called BCCC:x% Sm3+) nanophosphors were successfully prepared by citrate sol-gel method. The structure, morphology and photoluminescence properties of the prepared nanophosphors were investigated. X-ray diffraction (XRD) indicated that the nanophosphors composed of the mixed phases of the hexagonal (CaAl2O4, BaAl2O4) and cubic (Ca4Al6O13, Ca3Al2O6) crystal structures. Scanning electron microscopy (SEM) revealed that doping influences the morphology of the prepared nanophosphor. High resolution transmission electron microscopy (HR-TEM) confirmed that the prepared phosphor particles are in the nanoscale range. Photoluminescence (PL) results showed emission peaks originating from the intrinsic defects within the BaAl2O4, CaAl2O4 and Sm3+ transitions. The optimum luminescence intensity was found at 0.7% Sm3+. Commission Internationale de l'éclairage (CIE) shows that the Sm3+ doped samples emitted the orange colour. Citrate sol-gel; Mixed phases; Luminescence; Sm3+.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2022.e12573