Activation of bovine rod outer segment phospholipase C by arrestin

Phospholipase C (PLC) enzyme activity in rod outer segment (ROS) membranes bleached in the presence of ATP and GTP was assayed using exogenously added [3H]phosphatidylinositol 4,5-bisphosphate vesicles as substrate. The addition of the soluble ROS protein arrestin (also known as S-antigen or 48K pro...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 267; no. 25; pp. 17977 - 17982
Main Authors: GHALAYINI, A. J, ANDERSON, R. E
Format: Journal Article
Language:English
Published: Bethesda, MD American Society for Biochemistry and Molecular Biology 05-09-1992
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phospholipase C (PLC) enzyme activity in rod outer segment (ROS) membranes bleached in the presence of ATP and GTP was assayed using exogenously added [3H]phosphatidylinositol 4,5-bisphosphate vesicles as substrate. The addition of the soluble ROS protein arrestin (also known as S-antigen or 48K protein) to ROS membranes activated PLC 2-3.4-fold. This activation was dose-dependent, and maximal activation was observed at an arrestin concentration of congruent to 110-220 nM. PLC activation by arrestin was dependent on ROS protein concentration and free Ca2+. Soluble PLC (s-PLC) enzyme activity present in hypotonic extracts of bleached ROS was also activated 2-4-fold by arrestin. Maximum activation of s-PLC by arrestin was observed at free Ca2+ of 80 nM. Arrestin activation of s-PLC was not affected by urea-treated and extensively washed ROS membranes, suggesting that rhodopsin was not required for the observed effect of arrestin on s-PLC. The results are indicative of a direct interaction of arrestin with s-PLC, resulting in the activation of the latter. Based on these results and the documented binding of arrestin to bleached and phosphorylated rhodopsin, a model for the light activation of PLC in ROS is proposed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)37139-X