A Matlab library for solving quasi-static volume conduction problems using the boundary element method
Abstract The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely a...
Saved in:
Published in: | Computer methods and programs in biomedicine Vol. 88; no. 3; pp. 256 - 263 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Ireland
Elsevier Ireland Ltd
01-12-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely available Matlab BEM source code for solving bioelectromagnetic volume conduction problems and any (quasi-)static potential problems that obey the Laplace equation. The basic principle of the BEM is presented and discretization of the surface integral equation for electric potential is worked through in detail. Contents and design of the library are described, and results of example computations in spherical volume conductors are validated against analytical solutions. Three application examples are also presented. Further information, source code for application examples, and information on obtaining the library are available in the WWW-page of the library: http://biomed.tkk.fi/BEM. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0169-2607 1872-7565 |
DOI: | 10.1016/j.cmpb.2007.09.004 |