Amphipathic Binder Integrating Ultrathin and Highly Ion‐Conductive Sulfide Membrane for Cell‐Level High‐Energy‐Density All‐Solid‐State Batteries

Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular str...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 33; no. 52; pp. e2105505 - n/a
Main Authors: Cao, Daxian, Li, Qiang, Sun, Xiao, Wang, Ying, Zhao, Xianhui, Cakmak, Ercan, Liang, Wentao, Anderson, Alexander, Ozcan, Soydan, Zhu, Hongli
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-12-2021
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually. Utilizing amphipathic ethyl cellulose as a binder, this work fabricates a thin sulfide solid‐state membrane with an ionic conductivity of 1.65 mS cm−1 and an areal resistance of 4.32 Ω cm2. The all‐solid‐state lithium batteries deliver energy densities of 325 Wh kg−1 and 861 Wh L−1 based on the cathode and solid‐state‐electrolyte, and cell‐level energy densities of 175 Wh kg−1 and 670 Wh L−1.
AbstractList Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell-level energy and power densities. Therefore, based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm-2 and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg-1 and 675 Wh L-1, individually.
Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually. Utilizing amphipathic ethyl cellulose as a binder, this work fabricates a thin sulfide solid‐state membrane with an ionic conductivity of 1.65 mS cm−1 and an areal resistance of 4.32 Ω cm2. The all‐solid‐state lithium batteries deliver energy densities of 325 Wh kg−1 and 861 Wh L−1 based on the cathode and solid‐state‐electrolyte, and cell‐level energy densities of 175 Wh kg−1 and 670 Wh L−1.
Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually.
Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5-1.0 mm) and low ion conductance (<25 mS), which limit the cell-level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li PS Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg and 675 Wh L , individually.
Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li 6 PS 5 Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm −2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg −1 and 675 Wh L −1 , individually.
Author Li, Qiang
Zhao, Xianhui
Anderson, Alexander
Zhu, Hongli
Cakmak, Ercan
Liang, Wentao
Sun, Xiao
Wang, Ying
Ozcan, Soydan
Cao, Daxian
Author_xml – sequence: 1
  givenname: Daxian
  orcidid: 0000-0003-1191-5954
  surname: Cao
  fullname: Cao, Daxian
  organization: Northeastern University
– sequence: 2
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: Northeastern University
– sequence: 3
  givenname: Xiao
  surname: Sun
  fullname: Sun, Xiao
  organization: Northeastern University
– sequence: 4
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Northeastern University
– sequence: 5
  givenname: Xianhui
  surname: Zhao
  fullname: Zhao, Xianhui
  organization: Oak Ridge National Laboratory
– sequence: 6
  givenname: Ercan
  surname: Cakmak
  fullname: Cakmak, Ercan
  organization: Oak Ridge National Laboratory
– sequence: 7
  givenname: Wentao
  surname: Liang
  fullname: Liang, Wentao
  organization: Northeastern University
– sequence: 8
  givenname: Alexander
  surname: Anderson
  fullname: Anderson, Alexander
  organization: Northeastern University
– sequence: 9
  givenname: Soydan
  surname: Ozcan
  fullname: Ozcan, Soydan
  organization: Oak Ridge National Laboratory
– sequence: 10
  givenname: Hongli
  surname: Zhu
  fullname: Zhu, Hongli
  email: h.zhu@neu.edu
  organization: Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34655125$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1837859$$D View this record in Osti.gov
BookMark eNqF0UFuEzEUBmALFdG0sGWJLNiwSbA9Y9depmmhkVKxKF1bHs-bxNWMHWxPUXYcgQNwOk6C05QisWFlW_7eLz39J-jIBw8IvaZkRglhH0w7mBkjjBLOCX-GJpQzOq2J4kdoQlTFp0rU8hidpHRHCFGCiBfouKoF55TxCfo5H7YbtzV54yw-d76FiJc-wzqa7Pwa3_Y57j89Nr7FV2696Xd4Gfyv7z8Wwbejze4e8M3Yd64FfA1DE40H3IWIF9D3ha3gHvqHyfK49BDXu3K5AJ9c3uH5g7kJvWv3ZzYZ8LnJGaKD9BI970yf4NXjeYpuP15-WVxNV58_LRfz1dTWNeHTSlZGMU6BNw2jAlojGbWVEESRxghQVHIpugaUoE1roWN1y0hTtKJda1V1it4eckPKTifrMtiNDd6DzZrK6kzyPXp_QNsYvo6Qsh5csmXHsm8Yk2ZcMknPJGOFvvuH3oUx-rKCZoLWjEpViaJmB2VjSClCp7fRDSbuNCV6X67el6ufyi0Dbx5jx2aA9on_abMAdQDfXA-7_8Tp-cX1_G_4byw5uUQ
CitedBy_id crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1002_aenm_202301338
crossref_primary_10_1016_j_ensm_2023_103138
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1002_adfm_202214274
crossref_primary_10_1039_D3IM00089C
crossref_primary_10_1016_j_cjsc_2024_100390
crossref_primary_10_1002_aenm_202400208
crossref_primary_10_1002_aenm_202400802
crossref_primary_10_1021_accountsmr_2c00229
crossref_primary_10_1016_j_jpowsour_2023_233646
crossref_primary_10_1002_aenm_202103932
crossref_primary_10_1016_j_jmat_2024_05_007
crossref_primary_10_3390_batteries9070347
crossref_primary_10_1080_19440049_2023_2283769
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1002_advs_202401889
crossref_primary_10_1039_D3QM00729D
crossref_primary_10_1002_aenm_202302596
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1016_j_indcrop_2023_116247
crossref_primary_10_1002_cssc_202202158
crossref_primary_10_1021_acs_nanolett_2c04140
crossref_primary_10_1002_adma_202401909
crossref_primary_10_1002_adma_202200401
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1021_acs_nanolett_2c04216
crossref_primary_10_1039_D4CS00366G
crossref_primary_10_1002_adfm_202204778
crossref_primary_10_1016_j_ensm_2022_04_017
crossref_primary_10_1016_j_est_2023_108244
crossref_primary_10_1016_j_nanoen_2022_107499
crossref_primary_10_1021_jacs_3c14307
crossref_primary_10_1016_j_nanoen_2023_108168
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1016_j_etran_2023_100272
crossref_primary_10_1016_j_jcomc_2022_100319
crossref_primary_10_1002_adma_202209074
crossref_primary_10_3389_fchem_2022_837978
crossref_primary_10_1016_j_ensm_2022_03_012
crossref_primary_10_1016_j_etran_2024_100319
crossref_primary_10_1016_j_cej_2022_139923
crossref_primary_10_1002_aenm_202200660
crossref_primary_10_1002_adfm_202404192
crossref_primary_10_1021_acsenergylett_3c01840
crossref_primary_10_1039_D3RA03605G
crossref_primary_10_1002_idm2_12045
crossref_primary_10_1557_s43579_023_00423_5
crossref_primary_10_1038_s43246_024_00482_8
crossref_primary_10_1016_j_ensm_2024_103546
crossref_primary_10_1021_acsaem_3c02579
crossref_primary_10_1021_acsaem_4c00547
crossref_primary_10_1016_j_cej_2022_138047
crossref_primary_10_1016_j_ensm_2022_11_025
crossref_primary_10_1002_admi_202101840
crossref_primary_10_1016_j_matt_2022_11_006
crossref_primary_10_1016_j_nanoen_2022_107679
crossref_primary_10_34133_energymatadv_0074
crossref_primary_10_1016_j_ensm_2023_102900
crossref_primary_10_1002_adfm_202307998
crossref_primary_10_1007_s42765_024_00454_0
crossref_primary_10_1016_j_cej_2023_144381
crossref_primary_10_1016_j_jpowsour_2022_231517
Cites_doi 10.1016/j.matt.2020.03.015
10.1016/j.jpowsour.2018.02.062
10.1002/adma.201970311
10.4236/ajac.2018.96023
10.1038/s41563-021-00967-8
10.1039/C9EE03828K
10.1002/9783527632220.ch8
10.1021/acs.nanolett.9b02678
10.1002/aenm.202002689
10.1038/s41598-017-12386-4
10.1002/adma.200502604
10.1038/s41560-020-0565-1
10.1039/C9TA12889A
10.1021/acsaem.9b00290
10.1002/aenm.201500353
10.1039/D0EE02241A
10.3109/03639049509048096
10.1016/j.nanoen.2020.105015
10.1038/s41560-018-0108-1
10.1039/C8TA07240J
10.1016/B978-1-4557-2551-9.00014-1
10.1126/sciadv.abc8641
10.1002/anie.201909805
10.1007/s00226-014-0676-6
10.1016/j.ensm.2017.05.013
10.1016/j.jpowsour.2017.11.031
10.1080/87559129.2020.1741007
10.1021/acs.chemrev.6b00225
10.1021/acsenergylett.0c01905
10.1002/aenm.201802927
10.1038/s41560-020-0575-z
10.1039/C8CS00322J
10.1038/s41563-020-00903-2
10.1021/acsami.9b22968
10.1021/acsenergylett.0c00251
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.202105505
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
PubMed
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1837859
10_1002_adma_202105505
34655125
ADMA202105505
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CBET‐ES‐1924534
– fundername: National Science Foundation
  grantid: CBET-ES-1924534
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4405-383a9251e5bb216eda821c366090ba6e918586fbe961bdcef24d20b5bb91fdc93
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri May 19 02:26:13 EDT 2023
Fri Aug 16 10:49:21 EDT 2024
Thu Oct 10 16:48:29 EDT 2024
Thu Nov 21 21:20:24 EST 2024
Sat Sep 28 08:22:35 EDT 2024
Sat Aug 24 00:58:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords all-solid-state batteries
ion conductive membranes
binders
cathode stabilization
cell-level energy density
sulfide electrolytes
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4405-383a9251e5bb216eda821c366090ba6e918586fbe961bdcef24d20b5bb91fdc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
National Science Foundation (NSF)
AC05-00OR22725; CBET-ES-1924534
ORCID 0000-0003-1191-5954
0000000172724815
0000000311915954
0000000238254589
OpenAccessLink https://www.osti.gov/servlets/purl/1837859
PMID 34655125
PQID 2614218936
PQPubID 2045203
PageCount 13
ParticipantIDs osti_scitechconnect_1837859
proquest_miscellaneous_2582817822
proquest_journals_2614218936
crossref_primary_10_1002_adma_202105505
pubmed_primary_34655125
wiley_primary_10_1002_adma_202105505_ADMA202105505
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
2021; 20
2018; 382
2019; 31
2012
2010
2019; 2
2019; 58
2006; 18
2020; 13
2020; 12
2018 2019; 375 9
2020; 76
2018 2015; 10 5
2018; 47
2021; 14
2020; 8
2018; 6
2018; 9
2020; 5
2018; 3
2020; 3
2015; 49
2021; 11
2019; 20
2020
2020 2020; 5 6
1995; 21
2016; 116
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_10_2
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_12_2
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 20
  start-page: 1121
  year: 2021
  publication-title: Nat. Mater.
– volume: 9
  start-page: 303
  year: 2018
  publication-title: Am. J. Anal. Chem.
– volume: 5
  start-page: 259
  year: 2020
  publication-title: Nat. Energy
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3468
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 2226
  year: 2006
  publication-title: Adv. Mater.
– volume: 47
  start-page: 6505
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 382
  start-page: 160
  year: 2018
  publication-title: J. Power Sources
– volume: 20
  start-page: 1483
  year: 2019
  publication-title: Nano Lett.
– volume: 8
  start-page: 5049
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 12
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 279
  year: 2018
  publication-title: Nat. Energy
– volume: 20
  start-page: 503
  year: 2021
  publication-title: Nat. Mater.
– volume: 3
  start-page: 57
  year: 2020
  publication-title: Matter
– volume: 5 6
  start-page: 299
  year: 2020 2020
  publication-title: Nat. Energy Sci. Adv.
– start-page: 1
  year: 2020
  publication-title: Food Rev. Int.
– volume: 116
  start-page: 9305
  year: 2016
  publication-title: Chem. Rev.
– start-page: 509
  year: 2010
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1429
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 61
  year: 1995
  publication-title: Drug Dev. Ind. Pharm.
– volume: 49
  start-page: 21
  year: 2015
  publication-title: Wood Sci. Technol.
– start-page: 353
  year: 2012
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 10 5
  start-page: 246
  year: 2018 2015
  publication-title: Energy Storage Mater. Adv. Energy Mater.
– volume: 375 9
  start-page: 93
  year: 2018 2019
  publication-title: J. Power Sources Adv. Energy Mater.
– volume: 2
  start-page: 3523
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 718
  year: 2020
  publication-title: ACS Energy Lett.
– ident: e_1_2_9_5_1
  doi: 10.1016/j.matt.2020.03.015
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jpowsour.2018.02.062
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.201970311
– ident: e_1_2_9_18_1
  doi: 10.4236/ajac.2018.96023
– ident: e_1_2_9_26_1
  doi: 10.1038/s41563-021-00967-8
– ident: e_1_2_9_30_1
  doi: 10.1039/C9EE03828K
– ident: e_1_2_9_17_1
  doi: 10.1002/9783527632220.ch8
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.nanolett.9b02678
– ident: e_1_2_9_4_1
  doi: 10.1002/aenm.202002689
– ident: e_1_2_9_19_1
  doi: 10.1038/s41598-017-12386-4
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.200502604
– ident: e_1_2_9_8_1
  doi: 10.1038/s41560-020-0565-1
– ident: e_1_2_9_27_1
  doi: 10.1039/C9TA12889A
– ident: e_1_2_9_24_1
  doi: 10.1021/acsaem.9b00290
– ident: e_1_2_9_1_2
  doi: 10.1002/aenm.201500353
– ident: e_1_2_9_9_1
  doi: 10.1039/D0EE02241A
– ident: e_1_2_9_14_1
  doi: 10.3109/03639049509048096
– ident: e_1_2_9_31_1
  doi: 10.1016/j.nanoen.2020.105015
– ident: e_1_2_9_2_1
  doi: 10.1038/s41560-018-0108-1
– ident: e_1_2_9_22_1
  doi: 10.1039/C8TA07240J
– ident: e_1_2_9_16_1
  doi: 10.1016/B978-1-4557-2551-9.00014-1
– ident: e_1_2_9_10_2
  doi: 10.1126/sciadv.abc8641
– ident: e_1_2_9_32_1
  doi: 10.1002/anie.201909805
– ident: e_1_2_9_21_1
  doi: 10.1007/s00226-014-0676-6
– ident: e_1_2_9_1_1
  doi: 10.1016/j.ensm.2017.05.013
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jpowsour.2017.11.031
– ident: e_1_2_9_15_1
  doi: 10.1080/87559129.2020.1741007
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.chemrev.6b00225
– ident: e_1_2_9_6_1
  doi: 10.1021/acsenergylett.0c01905
– ident: e_1_2_9_12_2
  doi: 10.1002/aenm.201802927
– ident: e_1_2_9_10_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_9_28_1
  doi: 10.1039/C8CS00322J
– ident: e_1_2_9_25_1
  doi: 10.1038/s41563-020-00903-2
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.9b22968
– ident: e_1_2_9_11_1
  doi: 10.1021/acsenergylett.0c00251
SSID ssj0009606
Score 2.6450076
Snippet Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion...
Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5-1.0 mm) and low ion...
Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion...
Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion...
SourceID osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2105505
SubjectTerms all-solid-state batteries
binders
cathode stabilization
cell-level energy density
Cellulose
Dispersion
ENERGY STORAGE
Ethyl cellulose
ion conductive membranes
Lithium
Lithium batteries
Membranes
Molecular structure
Structural stability
sulfide electrolytes
Thermal stability
Thickness
Toluene
Title Amphipathic Binder Integrating Ultrathin and Highly Ion‐Conductive Sulfide Membrane for Cell‐Level High‐Energy‐Density All‐Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105505
https://www.ncbi.nlm.nih.gov/pubmed/34655125
https://www.proquest.com/docview/2614218936
https://search.proquest.com/docview/2582817822
https://www.osti.gov/servlets/purl/1837859
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHdk_tod8fTtKiQqEnE1tWFOno7G5IoCmFbaA3YX2YLjh2ye4ecusj5AHydHmSzsi7ThYKhfZkGY9ASBr7P9boJ4CPlc2cFy5PvS58KlTIUiUPeSozL7QIPq8VbRQ-mR1--a4mU8LkDLv4ez7E8MONPCO-r8nBK7vYv4OGVj5ygzid8BghphgqxD0cxdc76q6Mh2vSYl-qpVAbamPG97erb32VRh16158U57aAjV-g46f_3_Zn8GStPlnZT5fn8CC0L-DxPSbhS7gpcXzn8aBix44IpnjJTtdMCTRg5w3xbH_MW1a1nlGaSHPFTrv29tf1uGuJHovvTzZbNfXcB3YWLrCdbWCojdk4NA2afaY8pVgTb6Zx7yEWJpRJv7xiZbSZdc3c05W0MOshoBjTv4Lz4-m38Um6PsIhdULQGrsqKo0SKhxYy3MZfKV47gopM53ZSgaNckHJ2gYtc-tdqLnwPLNorfPaO128hlHbteEtMM5r54o6Uw4jUlRNilfOCk8ixmHYVifwaTOE5mdP6jA9k5kb6m8z9HcCuzTCBjUGgXIdZRS5pcmJrX-gE9jbDLxZ-_PCYJwpUAzpQibwYXiMnkjLK9iL3QptaAUyJ8WVwJt-wgwNKQhTh1oyAR7nxV9aaMrJWTnc7fxLpV14ROU-82YPRsvLVXgHDxd-9T76yG_lVRaa
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dbtMwFMePoFzALvj-CBtgJCSuoiWO59mXoe3UinZC6iZxZyW2IyqFZNrai93xCDwAT8eTcI7TZlRCQkJc5cPHkmX7JH_bxz8DvCvKxDph09jpzMVC-SRW8pjHMnFCC-_SStFG4cni-PSzGo0Jk5Nv98J0fIh-wo08I3yvycFpQvrwhhpauAAO4nTEI1FM7wiJvZF2cWSfbri7MhyvSct9scb0Lbcx4Ye7-Xf-S4MW_etPmnNXwoZ_0MmD_1D6h3B_I0BZ3vWYR3DLN49h7zcs4RP4kWMTL8NZxZZ9IJ7iJZtusBJowM5rQtp-WTasaByjSJH6mk3b5ue378O2IYAsfkLZYl1XS-fZ3H_FgjaeoTxmQ1_XaDajUKWQEx_GYfsh3owomH51zfJgs2jrpaMryWHWcUBxWP8Uzk_GZ8NJvDnFIbZC0DK7ygqNKsoflSVPpXeF4qnNpEx0UhbSa1QMSlal1zItnfUVF44nJVrrtHJWZ89g0LSNfwGM88rarEqUxUEpCifFC1sKRzrG4sitiuD9tg3NRQfrMB2WmRuqb9PXdwT71MQGZQaxci0FFdmVSQmvf6QjONi2vNm49JXBoaZAPaQzGcHbPhmdkVZYsBbbNdrQImRKoiuC512P6QuSEakO5WQEPHSMv5TQ5KN53j-9_JdMb-Du5Gw-M7Pp6cd9uEfvu0CcAxisLtf-Fdy-cuvXwWF-AWMyGsI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHdgulPTT9rpukVaHQk4ktK4p0dPaDLE1CYBvoTdiSTBZcOyS7h9z6CH2APl2fpDPyrtOFQiE9-WsEQtJIf1mjnwA-FmVinbBp7HTmYqF8Eit5wGOZOKGFd2mlaKPw0ezg9KsajQmT0-_i7_gQ_Q838ozQX5ODX7pq7xYaWrjADeJ0wiNBTB8I1OJEz8-ys1vsrgyna9JqX6ylUGtsY8L3NtNvDEuDFt3rb5JzU8GGIWiy9f-ZfwpPVvKT5V17eQb3fPMcHv8BJXwBP3Os4Hk4qdiyQ6IpXrHpCiqBBuy8JqDtxbxhReMYxYnUN2zaNr--_xi2DeFjsQNls2VdzZ1nJ_4b5rPxDMUxG_q6RrNjClQKKfFhHDYf4s2IQukXNywPNrO2nju6khhmHQUUJ_Uv4Xwy_jI8ildnOMRWCFpkV1mhUUP5_bLkqfSuUDy1mZSJTspCeo16Qcmq9FqmpbO-4sLxpERrnVbO6uwVDJq28W-AcV5Zm1WJsjglRdmkeGFL4UjFWJy3VRF8WlehuexQHaaDMnND5W368o5gm2rYoMggUq6lkCK7MCnB9fd1BDvrijcrh742ONEUqIZ0JiP40H9GV6T1FSzFdok2tASZkuSK4HXXYPqMZMSpQzEZAQ_t4h85NPnoJO-f3t4l0Xt4eDaamOPp6edteESvuyicHRgsrpZ-F-5fu-W74C6_AeZqGWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amphipathic+Binder+Integrating+Ultrathin+and+Highly+Ion%E2%80%90Conductive+Sulfide+Membrane+for+Cell%E2%80%90Level+High%E2%80%90Energy%E2%80%90Density+All%E2%80%90Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cao%2C+Daxian&rft.au=Li%2C+Qiang&rft.au=Sun%2C+Xiao&rft.au=Wang%2C+Ying&rft.date=2021-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202105505&rft.externalDBID=10.1002%252Fadma.202105505&rft.externalDocID=ADMA202105505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon