Amphipathic Binder Integrating Ultrathin and Highly Ion‐Conductive Sulfide Membrane for Cell‐Level High‐Energy‐Density All‐Solid‐State Batteries
Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular str...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 33; no. 52; pp. e2105505 - n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-12-2021
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually.
Utilizing amphipathic ethyl cellulose as a binder, this work fabricates a thin sulfide solid‐state membrane with an ionic conductivity of 1.65 mS cm−1 and an areal resistance of 4.32 Ω cm2. The all‐solid‐state lithium batteries deliver energy densities of 325 Wh kg−1 and 861 Wh L−1 based on the cathode and solid‐state‐electrolyte, and cell‐level energy densities of 175 Wh kg−1 and 670 Wh L−1. |
---|---|
AbstractList | Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell-level energy and power densities. Therefore, based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm-2 and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg-1 and 675 Wh L-1, individually. Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually. Utilizing amphipathic ethyl cellulose as a binder, this work fabricates a thin sulfide solid‐state membrane with an ionic conductivity of 1.65 mS cm−1 and an areal resistance of 4.32 Ω cm2. The all‐solid‐state lithium batteries deliver energy densities of 325 Wh kg−1 and 861 Wh L−1 based on the cathode and solid‐state‐electrolyte, and cell‐level energy densities of 175 Wh kg−1 and 670 Wh L−1. Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually. Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5-1.0 mm) and low ion conductance (<25 mS), which limit the cell-level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li PS Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg and 675 Wh L , individually. Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell‐level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li 6 PS 5 Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm −2 and a remarkable ion conductance of 291 mS (one order higher than the state‐of‐the‐art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell‐level high gravimetric and volumetric energy densities of 175 Wh kg −1 and 675 Wh L −1 , individually. |
Author | Li, Qiang Zhao, Xianhui Anderson, Alexander Zhu, Hongli Cakmak, Ercan Liang, Wentao Sun, Xiao Wang, Ying Ozcan, Soydan Cao, Daxian |
Author_xml | – sequence: 1 givenname: Daxian orcidid: 0000-0003-1191-5954 surname: Cao fullname: Cao, Daxian organization: Northeastern University – sequence: 2 givenname: Qiang surname: Li fullname: Li, Qiang organization: Northeastern University – sequence: 3 givenname: Xiao surname: Sun fullname: Sun, Xiao organization: Northeastern University – sequence: 4 givenname: Ying surname: Wang fullname: Wang, Ying organization: Northeastern University – sequence: 5 givenname: Xianhui surname: Zhao fullname: Zhao, Xianhui organization: Oak Ridge National Laboratory – sequence: 6 givenname: Ercan surname: Cakmak fullname: Cakmak, Ercan organization: Oak Ridge National Laboratory – sequence: 7 givenname: Wentao surname: Liang fullname: Liang, Wentao organization: Northeastern University – sequence: 8 givenname: Alexander surname: Anderson fullname: Anderson, Alexander organization: Northeastern University – sequence: 9 givenname: Soydan surname: Ozcan fullname: Ozcan, Soydan organization: Oak Ridge National Laboratory – sequence: 10 givenname: Hongli surname: Zhu fullname: Zhu, Hongli email: h.zhu@neu.edu organization: Northeastern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34655125$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1837859$$D View this record in Osti.gov |
BookMark | eNqF0UFuEzEUBmALFdG0sGWJLNiwSbA9Y9depmmhkVKxKF1bHs-bxNWMHWxPUXYcgQNwOk6C05QisWFlW_7eLz39J-jIBw8IvaZkRglhH0w7mBkjjBLOCX-GJpQzOq2J4kdoQlTFp0rU8hidpHRHCFGCiBfouKoF55TxCfo5H7YbtzV54yw-d76FiJc-wzqa7Pwa3_Y57j89Nr7FV2696Xd4Gfyv7z8Wwbejze4e8M3Yd64FfA1DE40H3IWIF9D3ha3gHvqHyfK49BDXu3K5AJ9c3uH5g7kJvWv3ZzYZ8LnJGaKD9BI970yf4NXjeYpuP15-WVxNV58_LRfz1dTWNeHTSlZGMU6BNw2jAlojGbWVEESRxghQVHIpugaUoE1roWN1y0hTtKJda1V1it4eckPKTifrMtiNDd6DzZrK6kzyPXp_QNsYvo6Qsh5csmXHsm8Yk2ZcMknPJGOFvvuH3oUx-rKCZoLWjEpViaJmB2VjSClCp7fRDSbuNCV6X67el6ufyi0Dbx5jx2aA9on_abMAdQDfXA-7_8Tp-cX1_G_4byw5uUQ |
CitedBy_id | crossref_primary_10_1016_j_mattod_2023_11_016 crossref_primary_10_1002_aenm_202301338 crossref_primary_10_1016_j_ensm_2023_103138 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1002_adfm_202214274 crossref_primary_10_1039_D3IM00089C crossref_primary_10_1016_j_cjsc_2024_100390 crossref_primary_10_1002_aenm_202400208 crossref_primary_10_1002_aenm_202400802 crossref_primary_10_1021_accountsmr_2c00229 crossref_primary_10_1016_j_jpowsour_2023_233646 crossref_primary_10_1002_aenm_202103932 crossref_primary_10_1016_j_jmat_2024_05_007 crossref_primary_10_3390_batteries9070347 crossref_primary_10_1080_19440049_2023_2283769 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1002_advs_202401889 crossref_primary_10_1039_D3QM00729D crossref_primary_10_1002_aenm_202302596 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1002_inf2_12292 crossref_primary_10_1016_j_indcrop_2023_116247 crossref_primary_10_1002_cssc_202202158 crossref_primary_10_1021_acs_nanolett_2c04140 crossref_primary_10_1002_adma_202401909 crossref_primary_10_1002_adma_202200401 crossref_primary_10_1002_adma_202206013 crossref_primary_10_1021_acs_nanolett_2c04216 crossref_primary_10_1039_D4CS00366G crossref_primary_10_1002_adfm_202204778 crossref_primary_10_1016_j_ensm_2022_04_017 crossref_primary_10_1016_j_est_2023_108244 crossref_primary_10_1016_j_nanoen_2022_107499 crossref_primary_10_1021_jacs_3c14307 crossref_primary_10_1016_j_nanoen_2023_108168 crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1016_j_etran_2023_100272 crossref_primary_10_1016_j_jcomc_2022_100319 crossref_primary_10_1002_adma_202209074 crossref_primary_10_3389_fchem_2022_837978 crossref_primary_10_1016_j_ensm_2022_03_012 crossref_primary_10_1016_j_etran_2024_100319 crossref_primary_10_1016_j_cej_2022_139923 crossref_primary_10_1002_aenm_202200660 crossref_primary_10_1002_adfm_202404192 crossref_primary_10_1021_acsenergylett_3c01840 crossref_primary_10_1039_D3RA03605G crossref_primary_10_1002_idm2_12045 crossref_primary_10_1557_s43579_023_00423_5 crossref_primary_10_1038_s43246_024_00482_8 crossref_primary_10_1016_j_ensm_2024_103546 crossref_primary_10_1021_acsaem_3c02579 crossref_primary_10_1021_acsaem_4c00547 crossref_primary_10_1016_j_cej_2022_138047 crossref_primary_10_1016_j_ensm_2022_11_025 crossref_primary_10_1002_admi_202101840 crossref_primary_10_1016_j_matt_2022_11_006 crossref_primary_10_1016_j_nanoen_2022_107679 crossref_primary_10_34133_energymatadv_0074 crossref_primary_10_1016_j_ensm_2023_102900 crossref_primary_10_1002_adfm_202307998 crossref_primary_10_1007_s42765_024_00454_0 crossref_primary_10_1016_j_cej_2023_144381 crossref_primary_10_1016_j_jpowsour_2022_231517 |
Cites_doi | 10.1016/j.matt.2020.03.015 10.1016/j.jpowsour.2018.02.062 10.1002/adma.201970311 10.4236/ajac.2018.96023 10.1038/s41563-021-00967-8 10.1039/C9EE03828K 10.1002/9783527632220.ch8 10.1021/acs.nanolett.9b02678 10.1002/aenm.202002689 10.1038/s41598-017-12386-4 10.1002/adma.200502604 10.1038/s41560-020-0565-1 10.1039/C9TA12889A 10.1021/acsaem.9b00290 10.1002/aenm.201500353 10.1039/D0EE02241A 10.3109/03639049509048096 10.1016/j.nanoen.2020.105015 10.1038/s41560-018-0108-1 10.1039/C8TA07240J 10.1016/B978-1-4557-2551-9.00014-1 10.1126/sciadv.abc8641 10.1002/anie.201909805 10.1007/s00226-014-0676-6 10.1016/j.ensm.2017.05.013 10.1016/j.jpowsour.2017.11.031 10.1080/87559129.2020.1741007 10.1021/acs.chemrev.6b00225 10.1021/acsenergylett.0c01905 10.1002/aenm.201802927 10.1038/s41560-020-0575-z 10.1039/C8CS00322J 10.1038/s41563-020-00903-2 10.1021/acsami.9b22968 10.1021/acsenergylett.0c00251 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.202105505 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1837859 10_1002_adma_202105505 34655125 ADMA202105505 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CBET‐ES‐1924534 – fundername: National Science Foundation grantid: CBET-ES-1924534 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4405-383a9251e5bb216eda821c366090ba6e918586fbe961bdcef24d20b5bb91fdc93 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri May 19 02:26:13 EDT 2023 Fri Aug 16 10:49:21 EDT 2024 Thu Oct 10 16:48:29 EDT 2024 Thu Nov 21 21:20:24 EST 2024 Sat Sep 28 08:22:35 EDT 2024 Sat Aug 24 00:58:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | all-solid-state batteries ion conductive membranes binders cathode stabilization cell-level energy density sulfide electrolytes |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4405-383a9251e5bb216eda821c366090ba6e918586fbe961bdcef24d20b5bb91fdc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE) National Science Foundation (NSF) AC05-00OR22725; CBET-ES-1924534 |
ORCID | 0000-0003-1191-5954 0000000172724815 0000000311915954 0000000238254589 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1837859 |
PMID | 34655125 |
PQID | 2614218936 |
PQPubID | 2045203 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1837859 proquest_miscellaneous_2582817822 proquest_journals_2614218936 crossref_primary_10_1002_adma_202105505 pubmed_primary_34655125 wiley_primary_10_1002_adma_202105505_ADMA202105505 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 7 2021; 20 2018; 382 2019; 31 2012 2010 2019; 2 2019; 58 2006; 18 2020; 13 2020; 12 2018 2019; 375 9 2020; 76 2018 2015; 10 5 2018; 47 2021; 14 2020; 8 2018; 6 2018; 9 2020; 5 2018; 3 2020; 3 2015; 49 2021; 11 2019; 20 2020 2020 2020; 5 6 1995; 21 2016; 116 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_10_2 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_12_2 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 76 year: 2020 publication-title: Nano Energy – volume: 20 start-page: 1121 year: 2021 publication-title: Nat. Mater. – volume: 9 start-page: 303 year: 2018 publication-title: Am. J. Anal. Chem. – volume: 5 start-page: 259 year: 2020 publication-title: Nat. Energy – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3468 year: 2020 publication-title: ACS Energy Lett. – volume: 18 start-page: 2226 year: 2006 publication-title: Adv. Mater. – volume: 47 start-page: 6505 year: 2018 publication-title: Chem. Soc. Rev. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 382 start-page: 160 year: 2018 publication-title: J. Power Sources – volume: 20 start-page: 1483 year: 2019 publication-title: Nano Lett. – volume: 8 start-page: 5049 year: 2020 publication-title: J. Mater. Chem. A – volume: 14 start-page: 12 year: 2021 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 279 year: 2018 publication-title: Nat. Energy – volume: 20 start-page: 503 year: 2021 publication-title: Nat. Mater. – volume: 3 start-page: 57 year: 2020 publication-title: Matter – volume: 5 6 start-page: 299 year: 2020 2020 publication-title: Nat. Energy Sci. Adv. – start-page: 1 year: 2020 publication-title: Food Rev. Int. – volume: 116 start-page: 9305 year: 2016 publication-title: Chem. Rev. – start-page: 509 year: 2010 – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 13 start-page: 1429 year: 2020 publication-title: Energy Environ. Sci. – volume: 21 start-page: 61 year: 1995 publication-title: Drug Dev. Ind. Pharm. – volume: 49 start-page: 21 year: 2015 publication-title: Wood Sci. Technol. – start-page: 353 year: 2012 – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 10 5 start-page: 246 year: 2018 2015 publication-title: Energy Storage Mater. Adv. Energy Mater. – volume: 375 9 start-page: 93 year: 2018 2019 publication-title: J. Power Sources Adv. Energy Mater. – volume: 2 start-page: 3523 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 718 year: 2020 publication-title: ACS Energy Lett. – ident: e_1_2_9_5_1 doi: 10.1016/j.matt.2020.03.015 – ident: e_1_2_9_7_1 doi: 10.1016/j.jpowsour.2018.02.062 – ident: e_1_2_9_3_1 doi: 10.1002/adma.201970311 – ident: e_1_2_9_18_1 doi: 10.4236/ajac.2018.96023 – ident: e_1_2_9_26_1 doi: 10.1038/s41563-021-00967-8 – ident: e_1_2_9_30_1 doi: 10.1039/C9EE03828K – ident: e_1_2_9_17_1 doi: 10.1002/9783527632220.ch8 – ident: e_1_2_9_23_1 doi: 10.1021/acs.nanolett.9b02678 – ident: e_1_2_9_4_1 doi: 10.1002/aenm.202002689 – ident: e_1_2_9_19_1 doi: 10.1038/s41598-017-12386-4 – ident: e_1_2_9_29_1 doi: 10.1002/adma.200502604 – ident: e_1_2_9_8_1 doi: 10.1038/s41560-020-0565-1 – ident: e_1_2_9_27_1 doi: 10.1039/C9TA12889A – ident: e_1_2_9_24_1 doi: 10.1021/acsaem.9b00290 – ident: e_1_2_9_1_2 doi: 10.1002/aenm.201500353 – ident: e_1_2_9_9_1 doi: 10.1039/D0EE02241A – ident: e_1_2_9_14_1 doi: 10.3109/03639049509048096 – ident: e_1_2_9_31_1 doi: 10.1016/j.nanoen.2020.105015 – ident: e_1_2_9_2_1 doi: 10.1038/s41560-018-0108-1 – ident: e_1_2_9_22_1 doi: 10.1039/C8TA07240J – ident: e_1_2_9_16_1 doi: 10.1016/B978-1-4557-2551-9.00014-1 – ident: e_1_2_9_10_2 doi: 10.1126/sciadv.abc8641 – ident: e_1_2_9_32_1 doi: 10.1002/anie.201909805 – ident: e_1_2_9_21_1 doi: 10.1007/s00226-014-0676-6 – ident: e_1_2_9_1_1 doi: 10.1016/j.ensm.2017.05.013 – ident: e_1_2_9_12_1 doi: 10.1016/j.jpowsour.2017.11.031 – ident: e_1_2_9_15_1 doi: 10.1080/87559129.2020.1741007 – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemrev.6b00225 – ident: e_1_2_9_6_1 doi: 10.1021/acsenergylett.0c01905 – ident: e_1_2_9_12_2 doi: 10.1002/aenm.201802927 – ident: e_1_2_9_10_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_9_28_1 doi: 10.1039/C8CS00322J – ident: e_1_2_9_25_1 doi: 10.1038/s41563-020-00903-2 – ident: e_1_2_9_20_1 doi: 10.1021/acsami.9b22968 – ident: e_1_2_9_11_1 doi: 10.1021/acsenergylett.0c00251 |
SSID | ssj0009606 |
Score | 2.6450076 |
Snippet | Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion... Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5-1.0 mm) and low ion... Current sulfide solid‐state electrolyte (SE) membranes utilized in all‐solid‐state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion... Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion... |
SourceID | osti proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2105505 |
SubjectTerms | all-solid-state batteries binders cathode stabilization cell-level energy density Cellulose Dispersion ENERGY STORAGE Ethyl cellulose ion conductive membranes Lithium Lithium batteries Membranes Molecular structure Structural stability sulfide electrolytes Thermal stability Thickness Toluene |
Title | Amphipathic Binder Integrating Ultrathin and Highly Ion‐Conductive Sulfide Membrane for Cell‐Level High‐Energy‐Density All‐Solid‐State Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105505 https://www.ncbi.nlm.nih.gov/pubmed/34655125 https://www.proquest.com/docview/2614218936 https://search.proquest.com/docview/2582817822 https://www.osti.gov/servlets/purl/1837859 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHdk_tod8fTtKiQqEnE1tWFOno7G5IoCmFbaA3YX2YLjh2ye4ecusj5AHydHmSzsi7ThYKhfZkGY9ASBr7P9boJ4CPlc2cFy5PvS58KlTIUiUPeSozL7QIPq8VbRQ-mR1--a4mU8LkDLv4ez7E8MONPCO-r8nBK7vYv4OGVj5ygzid8BghphgqxD0cxdc76q6Mh2vSYl-qpVAbamPG97erb32VRh16158U57aAjV-g46f_3_Zn8GStPlnZT5fn8CC0L-DxPSbhS7gpcXzn8aBix44IpnjJTtdMCTRg5w3xbH_MW1a1nlGaSHPFTrv29tf1uGuJHovvTzZbNfXcB3YWLrCdbWCojdk4NA2afaY8pVgTb6Zx7yEWJpRJv7xiZbSZdc3c05W0MOshoBjTv4Lz4-m38Um6PsIhdULQGrsqKo0SKhxYy3MZfKV47gopM53ZSgaNckHJ2gYtc-tdqLnwPLNorfPaO128hlHbteEtMM5r54o6Uw4jUlRNilfOCk8ixmHYVifwaTOE5mdP6jA9k5kb6m8z9HcCuzTCBjUGgXIdZRS5pcmJrX-gE9jbDLxZ-_PCYJwpUAzpQibwYXiMnkjLK9iL3QptaAUyJ8WVwJt-wgwNKQhTh1oyAR7nxV9aaMrJWTnc7fxLpV14ROU-82YPRsvLVXgHDxd-9T76yG_lVRaa |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dbtMwFMePoFzALvj-CBtgJCSuoiWO59mXoe3UinZC6iZxZyW2IyqFZNrai93xCDwAT8eTcI7TZlRCQkJc5cPHkmX7JH_bxz8DvCvKxDph09jpzMVC-SRW8pjHMnFCC-_SStFG4cni-PSzGo0Jk5Nv98J0fIh-wo08I3yvycFpQvrwhhpauAAO4nTEI1FM7wiJvZF2cWSfbri7MhyvSct9scb0Lbcx4Ye7-Xf-S4MW_etPmnNXwoZ_0MmD_1D6h3B_I0BZ3vWYR3DLN49h7zcs4RP4kWMTL8NZxZZ9IJ7iJZtusBJowM5rQtp-WTasaByjSJH6mk3b5ue378O2IYAsfkLZYl1XS-fZ3H_FgjaeoTxmQ1_XaDajUKWQEx_GYfsh3owomH51zfJgs2jrpaMryWHWcUBxWP8Uzk_GZ8NJvDnFIbZC0DK7ygqNKsoflSVPpXeF4qnNpEx0UhbSa1QMSlal1zItnfUVF44nJVrrtHJWZ89g0LSNfwGM88rarEqUxUEpCifFC1sKRzrG4sitiuD9tg3NRQfrMB2WmRuqb9PXdwT71MQGZQaxci0FFdmVSQmvf6QjONi2vNm49JXBoaZAPaQzGcHbPhmdkVZYsBbbNdrQImRKoiuC512P6QuSEakO5WQEPHSMv5TQ5KN53j-9_JdMb-Du5Gw-M7Pp6cd9uEfvu0CcAxisLtf-Fdy-cuvXwWF-AWMyGsI |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHdgulPTT9rpukVaHQk4ktK4p0dPaDLE1CYBvoTdiSTBZcOyS7h9z6CH2APl2fpDPyrtOFQiE9-WsEQtJIf1mjnwA-FmVinbBp7HTmYqF8Eit5wGOZOKGFd2mlaKPw0ezg9KsajQmT0-_i7_gQ_Q838ozQX5ODX7pq7xYaWrjADeJ0wiNBTB8I1OJEz8-ys1vsrgyna9JqX6ylUGtsY8L3NtNvDEuDFt3rb5JzU8GGIWiy9f-ZfwpPVvKT5V17eQb3fPMcHv8BJXwBP3Os4Hk4qdiyQ6IpXrHpCiqBBuy8JqDtxbxhReMYxYnUN2zaNr--_xi2DeFjsQNls2VdzZ1nJ_4b5rPxDMUxG_q6RrNjClQKKfFhHDYf4s2IQukXNywPNrO2nju6khhmHQUUJ_Uv4Xwy_jI8ildnOMRWCFpkV1mhUUP5_bLkqfSuUDy1mZSJTspCeo16Qcmq9FqmpbO-4sLxpERrnVbO6uwVDJq28W-AcV5Zm1WJsjglRdmkeGFL4UjFWJy3VRF8WlehuexQHaaDMnND5W368o5gm2rYoMggUq6lkCK7MCnB9fd1BDvrijcrh742ONEUqIZ0JiP40H9GV6T1FSzFdok2tASZkuSK4HXXYPqMZMSpQzEZAQ_t4h85NPnoJO-f3t4l0Xt4eDaamOPp6edteESvuyicHRgsrpZ-F-5fu-W74C6_AeZqGWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amphipathic+Binder+Integrating+Ultrathin+and+Highly+Ion%E2%80%90Conductive+Sulfide+Membrane+for+Cell%E2%80%90Level+High%E2%80%90Energy%E2%80%90Density+All%E2%80%90Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cao%2C+Daxian&rft.au=Li%2C+Qiang&rft.au=Sun%2C+Xiao&rft.au=Wang%2C+Ying&rft.date=2021-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202105505&rft.externalDBID=10.1002%252Fadma.202105505&rft.externalDocID=ADMA202105505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |