Biodistribution of Biomimetic Drug Carriers, Mononuclear Cells, and Extracellular Vesicles, in Nonhuman Primates

Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte‐based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte‐derived EVs are investigated in adult rhesus macaques u...

Full description

Saved in:
Bibliographic Details
Published in:Advanced biology Vol. 6; no. 2; pp. e2101293 - n/a
Main Authors: Haney, Matthew J., Yuan, Hong, Shipley, Steven T., Wu, Zhanhong, Zhao, Yuling, Pate, Kelly, Frank, Jonathan E., Massoud, Nicole, Stewart, Paul W., Perlmutter, Joel S., Batrakova, Elena V.
Format: Journal Article
Language:English
Published: Germany 01-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte‐based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte‐derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64Cu‐labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64Cu‐labeled drug carriers, and standardized uptake values (SUVmean and SUVmax) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery. Living cells and EVs are evaluated for their potential for CNS drug delivery in rhesus macaques using longitudinal PET/MRI imaging. The data indicate that the optimal carrier depends on the administration route. Smaller carriers, EVs are superior for systemic administration; larger vehicles, such as cells, are more advantageous for local administration due to their lower clearance from the brain tissues.
AbstractList Abstract Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte‐based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte‐derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64 Cu‐labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64 Cu‐labeled drug carriers, and standardized uptake values (SUV mean and SUV max ) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery.
Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte-derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. Cu-labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of Cu-labeled drug carriers, and standardized uptake values (SUV and SUV ) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery.
Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte‐based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte‐derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64Cu‐labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64Cu‐labeled drug carriers, and standardized uptake values (SUVmean and SUVmax) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery. Living cells and EVs are evaluated for their potential for CNS drug delivery in rhesus macaques using longitudinal PET/MRI imaging. The data indicate that the optimal carrier depends on the administration route. Smaller carriers, EVs are superior for systemic administration; larger vehicles, such as cells, are more advantageous for local administration due to their lower clearance from the brain tissues.
Discovery of novel drug delivery systems to transport therapeutics to the brain remains a key task for successful treatment of neurodegenerative disorders. In this regard, living cells, immunocytes, and immunocyte derived extracellular vesicles (EVs) have unique features to avoid rapid clearance by the reticuloendothelial system, cross biological barriers, target disease tissues with inflammation, and deliver their cargo. Herein, we investigated biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs) and monocyte derived EVs in adult rhesus macaques using longitudinal PET/MRI imaging. 64 Cu-labeled drug carriers were introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images were acquired at 1h, 24h, and 48h post injection of 64 Cu-labeled drug carriers, and standardized uptake values (SUV mean and SUV max ) in the main organs were estimated. The brain retention for both types of carriers increased based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produced higher brain retention compared to IT injection of EVs. Accordingly, SUV max brain values at 48h post IT injection were 71.5 ± 7.9 and 25.5 ± 6.9 for PBMCs and EVs, respectively. In contrast, EVs showed superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrated no cytotoxic effects of either carrier. Together, these preliminary results suggest that living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery and should be considered as an important factor. Natural drug carriers, living cells and EVs are evaluated for their potential to be employed for drug delivery to the brain in rhesus macaques using longitudinal PET/MRI imaging. The obtained data indicate that the optimal drug delivery system depends on the route of administration. The smaller carriers, such as EVs, are superior for systemic administration; the larger vehicles, such as living cells, are more advantageous for local administration due to their slower clearance from the brain tissues. In this work, we evaluated natural drug carriers, immunocytes, and immunocyte-derived extracellular vesicles (EVs) for their potential to be employed for drug delivery to the brain in rhesus macaques using longitudinal PET/MRI imaging. We report here for the first time that the administration route can define the optimal drug delivery vehicle to the brain. Specifically, when systemic administration is chosen, smaller carriers, such as EVs are superior, as they are able to cross the biological barriers and appear in larger quantities in the brain compared to living cells. However, when intrathecal administration is selected, larger vehicles, such as cells are more advantageous due to their lower clearance from the brain tissues.
Author Yuan, Hong
Wu, Zhanhong
Haney, Matthew J.
Shipley, Steven T.
Perlmutter, Joel S.
Zhao, Yuling
Stewart, Paul W.
Pate, Kelly
Batrakova, Elena V.
Massoud, Nicole
Frank, Jonathan E.
AuthorAffiliation 2 Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
7 School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
6 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
3 Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
5 Division of Comparative Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
1 Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
4 Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
AuthorAffiliation_xml – name: 4 Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– name: 1 Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– name: 6 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– name: 7 School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
– name: 5 Division of Comparative Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
– name: 2 Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– name: 3 Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Author_xml – sequence: 1
  givenname: Matthew J.
  surname: Haney
  fullname: Haney, Matthew J.
  organization: Hill
– sequence: 2
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
  organization: University of North Carolina at Chapel Hill
– sequence: 3
  givenname: Steven T.
  surname: Shipley
  fullname: Shipley, Steven T.
  organization: University of North Carolina at Chapel Hill
– sequence: 4
  givenname: Zhanhong
  surname: Wu
  fullname: Wu, Zhanhong
  organization: University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Yuling
  surname: Zhao
  fullname: Zhao, Yuling
  organization: Hill
– sequence: 6
  givenname: Kelly
  surname: Pate
  fullname: Pate, Kelly
  organization: Johns Hopkins University
– sequence: 7
  givenname: Jonathan E.
  surname: Frank
  fullname: Frank, Jonathan E.
  organization: University of North Carolina at Chapel Hill
– sequence: 8
  givenname: Nicole
  surname: Massoud
  fullname: Massoud, Nicole
  organization: University of North Carolina at Chapel Hill
– sequence: 9
  givenname: Paul W.
  surname: Stewart
  fullname: Stewart, Paul W.
  organization: University of North Carolina at Chapel Hill
– sequence: 10
  givenname: Joel S.
  surname: Perlmutter
  fullname: Perlmutter, Joel S.
  organization: Washington University in St. Louis
– sequence: 11
  givenname: Elena V.
  orcidid: 0000-0002-9386-3790
  surname: Batrakova
  fullname: Batrakova, Elena V.
  email: batrakov@ad.unc.edu
  organization: Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34939369$$D View this record in MEDLINE/PubMed
BookMark eNqFUMlOwzAQtRCIpfTKEfkDaPGSxskFCdqySGwH4Go5zqQYJXZlJ0D_HleFUk6cxjNv8dM7QNvWWUDoiJIhJYSdqrIwQ0YYJZTlfAvtM0HogNA8295476F-CG8kCkaUMyp20R5Pcp7zNN9H8wvjShNab4quNc5iV-F4akwDrdF44rsZHivvDfhwgu9cTNDpGpTHY6jreFK2xNPP1isd966OwAsEEykRMxbfO_vaNcriR28a1UI4RDuVqgP0v2cPPV9On8bXg9uHq5vx-e1AJwnhg4wKUlU0SZXIRVmwPIUqg6QUmYaqTFkh0rTgCWMiGfGiqLROGVEMmAYYMaF4D52tfOdd0UCpwcaMtZwvY_iFdMrIv4g1r3Lm3mWWsVGasWgwXBlo70LwUK21lMhl_XJZv1zXHwXHmz-u6T9lR0K-InyYGhb_2MnzycXNr_kX7JGWJg
CitedBy_id crossref_primary_10_1002_jev2_12368
crossref_primary_10_1002_adfm_202204791
crossref_primary_10_2147_IJN_S446895
crossref_primary_10_1002_adma_202403199
crossref_primary_10_1016_j_addr_2023_114827
crossref_primary_10_1021_acs_langmuir_2c00200
Cites_doi 10.1371/journal.pone.0106867
10.1002/0471143030.cb0322s30
10.2217/nnm.10.7
10.1371/journal.pone.0245835
10.1038/s41598-020-68874-7
10.3390/pharmaceutics12121171
10.1016/j.cca.2019.10.022
10.1093/ilar/ilx021
10.1038/mt.2011.164
10.2217/nnm.11.156
10.1016/j.jconrel.2019.10.027
10.1007/s11481-019-09884-9
10.1021/nn404945r
10.2217/nnm.10.129
10.1016/j.nano.2017.09.011
10.1002/adhm.201801271
10.3402/jev.v4.26316
10.3390/cells9051273
10.1517/17425247.2011.559457
10.2217/nnm.13.115
10.1093/ilar/ilx006
10.1016/j.apsb.2016.02.001
10.1016/j.btre.2021.e00616
10.1016/j.nano.2015.10.012
10.1016/j.jconrel.2015.03.033
10.1002/adhm.202001375
10.1371/journal.pone.0061852
10.1016/j.jconrel.2018.08.035
10.1007/s12640-021-00390-6
10.1002/adma.201805557
10.1111/j.1476-5381.2011.01426.x
10.1038/nbt.1807
10.1016/j.biomaterials.2017.07.011
10.1007/s00702-017-1708-9
10.2217/nnm.11.32
10.1021/bc700184b
ContentType Journal Article
Copyright 2021 The Authors. Advanced Biology published by Wiley‐VCH GmbH
2021 The Authors. Advanced Biology published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Biology published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1002/adbi.202101293
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2701-0198
EndPage n/a
ExternalDocumentID 10_1002_adbi_202101293
34939369
ADBI202101293
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  funderid: 1R01NS112019
– fundername: M.J. Fox Foundation
  funderid: MJFF‐009726
– fundername: National Institutes of Health
  funderid: 1RO1 NS102412
– fundername: Eshelman Institute for Innovation
  funderid: EII UNC 38‐124
– fundername: Eshelman Institute for Innovation, University of North Carolina at Chapel Hill
  funderid: EII UNC 38‐124
– fundername: NINDS NIH HHS
  grantid: R01 NS102412
– fundername: NINDS NIH HHS
  grantid: R01 NS112019
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AANLZ
AAPDX
ACCFJ
ACCZN
ACPOU
ACXQS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
SUPJJ
WIN
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c4403-8170ff146a797db296ef8e4d78cefd62b766b34227453bbfcc620a2e2cee527a3
IEDL.DBID 33P
ISSN 2701-0198
IngestDate Tue Sep 17 21:30:46 EDT 2024
Fri Aug 23 02:18:09 EDT 2024
Sat Sep 28 08:18:11 EDT 2024
Sat Aug 24 00:57:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords monocytes
brain bioavailability
extracellular vesicles
drug delivery system
nonhuman primates
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Advanced Biology published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4403-8170ff146a797db296ef8e4d78cefd62b766b34227453bbfcc620a2e2cee527a3
Notes Investigation: HY, STS, ZW, MJH, YZ, KP, JEF, NM
Writing—review & editing: EVB, PWS, JSP
Conceptualization: EVB, HY, STS
Methodology: HY, STS, KP, JSP
Writing—original draft: EVB
Author contributions
ORCID 0000-0002-9386-3790
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadbi.202101293
PMID 34939369
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825682
crossref_primary_10_1002_adbi_202101293
pubmed_primary_34939369
wiley_primary_10_1002_adbi_202101293_ADBI202101293
PublicationCentury 2000
PublicationDate February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced biology
PublicationTitleAlternate Adv Biol (Weinh)
PublicationYear 2022
References 2019; 8
2007; 18
2018; 287
2006; 30
2015; 4
2018; 125
2020; 500
2020; 15
2015; 207
2020; 12
2020; 10
2013; 8
2011; 19
2011; 6
2021; 30
2011; 8
2016; 12
2016; 6
2021; 16
2021; 10
2017; 58
2021; 39
2020; 9
2018; 30
2011; S4
2017; 142
2019; 315
2014; 9
2012; 7
2014; 8
2010; 5
2011; 29
2018; 14
2011; 164
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Zhao Y. (e_1_2_9_7_1) 2011; 4
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 58
  start-page: 190
  year: 2017
  publication-title: ILAR J.
– volume: 14
  start-page: 195
  year: 2018
  publication-title: Nanomedicine
– volume: 18
  start-page: 1498
  year: 2007
  publication-title: Bioconjugate Chem.
– volume: 6
  start-page: 1215
  year: 2011
  publication-title: Nanomedicine
– volume: 6
  start-page: 287
  year: 2016
  publication-title: Acta Pharm. Sin. B
– volume: 58
  start-page: 106
  year: 2017
  publication-title: ILAR J.
– volume: 7
  start-page: 815
  year: 2012
  publication-title: Nanomedicine
– volume: 125
  start-page: 365
  year: 2018
  publication-title: J. Neural Transm. (Vienna)
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 9
  start-page: 1273
  year: 2020
  publication-title: Cells
– volume: 30
  year: 2006
  publication-title: Curr. Protoc. Cell Biol.
– volume: 287
  start-page: 156
  year: 2018
  publication-title: J. Controlled Release
– volume: 6
  start-page: 25
  year: 2011
  publication-title: Nanomedicine
– volume: 207
  start-page: 18
  year: 2015
  publication-title: J. Controlled Release
– volume: 9
  start-page: 1403
  year: 2014
  publication-title: Nanomedicine
– volume: 5
  start-page: 379
  year: 2010
  publication-title: Nanomedicine
– volume: 12
  start-page: 655
  year: 2016
  publication-title: Nanomedicine
– volume: 315
  start-page: 139
  year: 2019
  publication-title: J. Controlled Release
– volume: 8
  start-page: 483
  year: 2014
  publication-title: ACS Nano
– volume: 30
  year: 2021
  publication-title: Biotechnol. Rep.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 12
  start-page: 1171
  year: 2020
  publication-title: Pharmaceutics
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 415
  year: 2011
  publication-title: Expert Opin. Drug Delivery
– volume: S4
  start-page: 003
  year: 2011
  publication-title: J. Nanomed. Nanotechnol.
– volume: 164
  start-page: 1357
  year: 2011
  publication-title: Br. J. Pharmacol.
– volume: 19
  start-page: 1769
  year: 2011
  publication-title: Mol. Ther.
– volume: 9
  year: 2014
  publication-title: PLoS One
– volume: 4
  year: 2015
  publication-title: J. Extracell. Vesicles
– volume: 142
  start-page: 1
  year: 2017
  publication-title: Biomaterials
– volume: 39
  start-page: 1418
  year: 2021
  publication-title: Neurotoxic. Res.
– volume: 16
  year: 2021
  publication-title: PLoS One
– volume: 500
  start-page: 226
  year: 2020
  publication-title: Clin. Chim. Acta
– volume: 10
  year: 2020
  publication-title: Sci. Rep.
– volume: 15
  start-page: 487
  year: 2020
  publication-title: J. Neuroimmune Pharmacol.
– volume: 29
  start-page: 341
  year: 2011
  publication-title: Nat. Biotechnol.
– ident: e_1_2_9_12_1
  doi: 10.1371/journal.pone.0106867
– ident: e_1_2_9_36_1
  doi: 10.1002/0471143030.cb0322s30
– ident: e_1_2_9_2_1
  doi: 10.2217/nnm.10.7
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0245835
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598-020-68874-7
– ident: e_1_2_9_26_1
  doi: 10.3390/pharmaceutics12121171
– ident: e_1_2_9_18_1
  doi: 10.1016/j.cca.2019.10.022
– ident: e_1_2_9_27_1
  doi: 10.1093/ilar/ilx021
– ident: e_1_2_9_3_1
  doi: 10.1038/mt.2011.164
– ident: e_1_2_9_8_1
  doi: 10.2217/nnm.11.156
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jconrel.2019.10.027
– ident: e_1_2_9_25_1
  doi: 10.1007/s11481-019-09884-9
– ident: e_1_2_9_34_1
  doi: 10.1021/nn404945r
– ident: e_1_2_9_5_1
  doi: 10.2217/nnm.10.129
– ident: e_1_2_9_24_1
  doi: 10.1016/j.nano.2017.09.011
– ident: e_1_2_9_17_1
  doi: 10.1002/adhm.201801271
– ident: e_1_2_9_35_1
  doi: 10.3402/jev.v4.26316
– ident: e_1_2_9_19_1
  doi: 10.3390/cells9051273
– ident: e_1_2_9_6_1
  doi: 10.1517/17425247.2011.559457
– ident: e_1_2_9_11_1
  doi: 10.2217/nnm.13.115
– ident: e_1_2_9_29_1
  doi: 10.1093/ilar/ilx006
– ident: e_1_2_9_14_1
  doi: 10.1016/j.apsb.2016.02.001
– ident: e_1_2_9_31_1
  doi: 10.1016/j.btre.2021.e00616
– ident: e_1_2_9_23_1
  doi: 10.1016/j.nano.2015.10.012
– volume: 4
  start-page: 003
  year: 2011
  ident: e_1_2_9_7_1
  publication-title: J. Nanomed. Nanotechnol.
  contributor:
    fullname: Zhao Y.
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jconrel.2015.03.033
– ident: e_1_2_9_21_1
  doi: 10.1002/adhm.202001375
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pone.0061852
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jconrel.2018.08.035
– ident: e_1_2_9_33_1
  doi: 10.1007/s12640-021-00390-6
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201805557
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1476-5381.2011.01426.x
– ident: e_1_2_9_4_1
  doi: 10.1038/nbt.1807
– ident: e_1_2_9_15_1
  doi: 10.1016/j.biomaterials.2017.07.011
– ident: e_1_2_9_28_1
  doi: 10.1007/s00702-017-1708-9
– ident: e_1_2_9_10_1
  doi: 10.2217/nnm.11.32
– ident: e_1_2_9_1_1
  doi: 10.1021/bc700184b
SSID ssj0002513217
Score 2.2850773
Snippet Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution...
Abstract Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the...
Discovery of novel drug delivery systems to transport therapeutics to the brain remains a key task for successful treatment of neurodegenerative disorders. In...
SourceID pubmedcentral
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2101293
SubjectTerms Animals
Biomimetics
brain bioavailability
Drug Carriers - metabolism
drug delivery system
extracellular vesicles
Extracellular Vesicles - metabolism
Leukocytes, Mononuclear
Macaca mulatta
monocytes
nonhuman primates
Positron Emission Tomography Computed Tomography
Tissue Distribution
Title Biodistribution of Biomimetic Drug Carriers, Mononuclear Cells, and Extracellular Vesicles, in Nonhuman Primates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadbi.202101293
https://www.ncbi.nlm.nih.gov/pubmed/34939369
https://pubmed.ncbi.nlm.nih.gov/PMC8825682
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAiYWHeJWXPCCxEDWcnTgZS1vEhJB4iC2yExsiQVqlVOLnc-eUQFiQYIxjO5bvfA_n7jvGTpRK0Ax2OrAx2ECmQgdaGhk4GYXnNlYCcrpwu7pV14_JaEwwOW0Wf4MP0V640cnw8poOuDaz_hdoqC5Mif4dEEBVSnCf6Cr4HA5x016yoPIW4KvugvJuc5p8AjeG0O_O0FFMrTb6GSn53YL1Kuhy_f-L32BrC_OTDxp-2WRLttpi04tyUhCA7qL2FZ84jk2v5StlOPJRPX_iQ11TbbvZGUcpMKkIBVnXfGhfXrBJVwUfv-PS6TcAxbXyBzvz8XZnvKz49aTypQD5DUFboG27ze4vx3fDq2BRiSHIpQxFQCh-zqFQ1SpVhYE0ti6xslBJbl0Rg1FxbIQEdHEjYYzL8xhCDRZQBUegtNhhK7g2u8e4TvIwdEkeaRwQulCjT4UTaKFk4Zw0PXb6SYZs2gBuZA20MmS0a1m7az222xCn7SeQ16hAYY-pDtnaDoSl3X1Tlc8eUxsdjShOoMfAk-2XT2cDVKTt0_5fBh2wVaBMCh8AfshW3uq5PWLLs2J-7Hn4A98G8l0
link.rule.ids 230,315,782,786,887,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4a7AAX2LSNFdjmA9IuRGTPjp0cSynqNKiQxhC3yElsFglS1FKJP5_3nDajuyBNO8axHcvP9vuR5-8DODAmJTPY28hpdJHKpI2sKlTkVRJ_c9pILDngNvppxtfpyZBhcvrLuzAtPkQXcOOdEc5r3uAckD76gxpqq6ImBw8ZoSqTa_BaaZUxe4OUF12YhdS3xMC7iyY4zlm6hG6M8Wi1ixXV1Omjv3Mln9uwQQmdbv-H4b-BrYUFKvrtknkLr1zzDu6P60nFGLoL-isx8YKK7uo7vuQoTqbzGzGwU6a3mx0KOggmDQMh26kYuNtbKrJNJYaPNHb-E8CpreLKzULK3aGoGzGeNIENUFwwugWZt-_h1-nwcjCKFmQMUalULCMG8vOezlVrMlMVmGnnU6cqk5bOVxoLo3UhFZKXm8ii8GWpMbbokLRwgsbKD7BOY3MfQdi0jGOflomlBrGPLblV1IGVRlXeq6IHX5dyyO9bzI28RVfGnGct72atBzutdLp6kpYbcxT2wKzIravAcNqrb5r6d4DVJl8j0Sn2AIPcXvh03idd2j3t_kujL7Axujw_y8--j3_swSbyxYqQD74P6w_TufsEa7Nq_jks6Ccd8fZ-
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiEulIrXtoX6gNQLEenYiZMj3YdArVYrtUXcIie2IRJkV7tdqT-_M86SdrkglWMc27E843k4M98AnGqdkRnsTeRSdJHKpYmMKlXkVRJ_dqmWWPGF2-V3Pb7JBkOGyemy-Ft8iO7CjU9GkNd8wGfWn_8FDTW2rMm_QwaoyuUGvFZsi3MSh5x0tyykvSWGsruog9-cZ4_IjTGer0-xppk6dfQ0VPJfEzbooNGbl69-F3ZW9qe4aBnmLbxyzR7MvtRTywi6q-JXYuoFNT3UD5ziKAbz5a3omzkXt1ucCRID04ZhkM1c9N39PTWZxorhb1o6_wfgwFZx7RYh4O5M1I0YT5tQC1BMGNuCjNt9-Dka_uhfRqtSDFGlVCwjhvHznqSq0bm2Jeap85lTVmeV8zbFUqdpKRWSj5vIsvRVlWJs0CHp4AS1kQewSWtzRyBMVsWxz6rE0IDYx4acKprASK2s96rswadHMhSzFnGjaLGVseBdK7pd68FhS5yunyRm4wqFPdBrZOs6MJj2-pumvgug2uRpJGmGPcBAtmc-XVyQJu2e3v3PoI-wNRmMim9X46_vYRs5qyIEg3-AzV_zpTuGjYVdngR2_gM_LvUt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodistribution+of+Biomimetic+Drug+Carriers%2C+Mononuclear+Cells%2C+and+Extracellular+Vesicles%2C+in+Nonhuman+Primates&rft.jtitle=Advanced+biology&rft.au=Haney%2C+Matthew+J.&rft.au=Yuan%2C+Hong&rft.au=Shipley%2C+Steven+T.&rft.au=Wu%2C+Zhanhong&rft.date=2022-02-01&rft.issn=2701-0198&rft.eissn=2701-0198&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadbi.202101293&rft.externalDBID=10.1002%252Fadbi.202101293&rft.externalDocID=ADBI202101293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2701-0198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2701-0198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2701-0198&client=summon