Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes

Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transforma...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 34; no. 20; pp. e2201152 - n/a
Main Authors: Cheng, Chen, Chen, Chi, Chu, Shiyong, Hu, Haolv, Yan, Tianran, Xia, Xiao, Feng, Xuefei, Guo, Jinghua, Sun, Dan, Wu, Jinpeng, Guo, Shaohua, Zhang, Liang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-05-2022
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry. Instead of activating the oxygen oxidation activity by construction of overwhelming nonbonding oxygen states, it is more crucial to enhance the reversibility of lattice oxygen redox reactions of layered battery electrodes through modulating transition metal (TM) O covalency, which concurrently suppresses the phase transition and irreversible TM migration, thus leading to the improved structural stability and electrochemical performance.
AbstractList Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na 0.6 Mg 0.15 Mn 0.7 Cu 0.15 O 2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry.
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry.
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na Mg Mn Cu O electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry.
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry. Instead of activating the oxygen oxidation activity by construction of overwhelming nonbonding oxygen states, it is more crucial to enhance the reversibility of lattice oxygen redox reactions of layered battery electrodes through modulating transition metal (TM) O covalency, which concurrently suppresses the phase transition and irreversible TM migration, thus leading to the improved structural stability and electrochemical performance.
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na0.6 Mg0.15 Mn0.7 Cu0.15 O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. Finally, these results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry.
Author Cheng, Chen
Chu, Shiyong
Zhang, Liang
Feng, Xuefei
Guo, Jinghua
Hu, Haolv
Wu, Jinpeng
Yan, Tianran
Sun, Dan
Chen, Chi
Xia, Xiao
Guo, Shaohua
Author_xml – sequence: 1
  givenname: Chen
  surname: Cheng
  fullname: Cheng, Chen
  organization: Soochow University
– sequence: 2
  givenname: Chi
  surname: Chen
  fullname: Chen, Chi
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Shiyong
  surname: Chu
  fullname: Chu, Shiyong
  organization: Nanjing University
– sequence: 4
  givenname: Haolv
  surname: Hu
  fullname: Hu, Haolv
  organization: Soochow University
– sequence: 5
  givenname: Tianran
  surname: Yan
  fullname: Yan, Tianran
  organization: Soochow University
– sequence: 6
  givenname: Xiao
  surname: Xia
  fullname: Xia, Xiao
  organization: Soochow University
– sequence: 7
  givenname: Xuefei
  surname: Feng
  fullname: Feng, Xuefei
  organization: Lawrence Berkeley National Laboratory
– sequence: 8
  givenname: Jinghua
  surname: Guo
  fullname: Guo, Jinghua
  organization: Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Dan
  surname: Sun
  fullname: Sun, Dan
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Jinpeng
  surname: Wu
  fullname: Wu, Jinpeng
  email: jinpengwu@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 11
  givenname: Shaohua
  surname: Guo
  fullname: Guo, Shaohua
  email: shguo@nju.edu.cn
  organization: Nanjing University
– sequence: 12
  givenname: Liang
  orcidid: 0000-0002-3446-3172
  surname: Zhang
  fullname: Zhang, Liang
  email: liangzhang2019@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35315130$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1958131$$D View this record in Osti.gov
BookMark eNqFkU1vEzEQhi1URNPClSOy4MJlg-31etfHEMKHlKgSCmfL651NXG3sYntL98aRO_-QX4KrhCJxwdLYh3nm0VjvBTpz3gFCzymZU0LYG90d9JwRxgilFXuEZvmmBSeyOkMzIsuqkII35-gixmtCiBREPEHnZVXSipZkhn6s3F47Y90Opz3gz3ALIdrWDjZN2Pd4rVOyBvDV3bQDl_udv8PbffDjbo83vhsHnaDD26BdtMl6hzeQ9PDr-8_TxNLf6gGcmXDvQ9ZNEDL_NmshTHg1gEnBdxCfose9HiI8O72X6Mv71Xb5sVhfffi0XKwLwzlhBQfRMui0qbu6YloKWfaMtG1PW96Utag7oKKtpSRtUwJrtWi06CXUpKk4F6y8RC-PXh-TVdHYBGZvvHN5EUVl1dCSZuj1EboJ_usIMamDjQaGQTvwY1RMcNrkoiSjr_5Br_0YXP5CpvKRUjKeqfmRMsHHGKBXN8EedJgUJeo-SHUfpHoIMg-8OGnH9gDdA_4nuQzII_DNDjD9R6cW7zaLv_Lf9C6tFQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_108353
crossref_primary_10_1021_acsami_2c20720
crossref_primary_10_1021_acs_analchem_4c01399
crossref_primary_10_1002_adma_202312159
crossref_primary_10_1016_j_jechem_2023_06_009
crossref_primary_10_1016_j_ensm_2023_102952
crossref_primary_10_1021_acsnano_3c03952
crossref_primary_10_1021_acsaem_3c02290
crossref_primary_10_1016_j_apsusc_2023_156469
crossref_primary_10_1021_acs_chemmater_2c02474
crossref_primary_10_1002_advs_202206442
crossref_primary_10_1007_s12598_023_02422_w
crossref_primary_10_1021_acsami_2c22670
crossref_primary_10_1007_s12274_023_6133_9
crossref_primary_10_1016_j_jallcom_2022_168138
crossref_primary_10_1021_jacs_3c00879
crossref_primary_10_1016_j_scib_2023_01_010
crossref_primary_10_1002_adma_202312300
crossref_primary_10_1038_s41560_023_01425_2
crossref_primary_10_1021_acsami_3c18606
crossref_primary_10_1021_jacs_3c08070
crossref_primary_10_1021_acs_nanolett_3c01890
crossref_primary_10_1021_acsaem_3c00263
crossref_primary_10_1021_acssuschemeng_3c05369
crossref_primary_10_1039_D3CS00550J
crossref_primary_10_1002_adma_202307938
crossref_primary_10_1016_j_cej_2023_143145
crossref_primary_10_1002_aenm_202300384
crossref_primary_10_1016_j_ensm_2022_07_030
crossref_primary_10_1021_acsami_3c05516
crossref_primary_10_1021_acs_jpcc_4c00811
crossref_primary_10_1002_adfm_202305470
crossref_primary_10_1002_adfm_202214770
crossref_primary_10_1002_adma_202209556
crossref_primary_10_1039_D2SC06772B
crossref_primary_10_1002_adfm_202304617
crossref_primary_10_1016_j_ensm_2024_103549
crossref_primary_10_1016_j_apcatb_2023_123331
crossref_primary_10_1021_acsami_3c10991
crossref_primary_10_1021_acs_inorgchem_3c00344
crossref_primary_10_1002_adfm_202300602
crossref_primary_10_1002_adfm_202403442
crossref_primary_10_1002_smll_202306695
crossref_primary_10_1016_j_ensm_2024_103622
crossref_primary_10_1002_adfm_202215155
crossref_primary_10_1021_acsami_3c06375
crossref_primary_10_1002_idm2_12087
crossref_primary_10_1002_smll_202300878
crossref_primary_10_1039_D3QM00326D
crossref_primary_10_1002_sstr_202200340
crossref_primary_10_1021_acsami_3c16320
crossref_primary_10_1002_adma_202306533
crossref_primary_10_1039_D4TA00380B
Cites_doi 10.1038/s41560-019-0439-6
10.1016/j.ensm.2020.07.012
10.1002/anie.201911698
10.1016/j.jpowsour.2018.04.018
10.1002/adma.201701054
10.1038/s41560-018-0222-0
10.1021/acs.chemmater.0c00245
10.1126/sciadv.aar6018
10.1039/D0SC05427E
10.1021/acs.chemmater.7b01146
10.1002/aenm.202001207
10.1002/adma.201904816
10.1103/PhysRevB.47.14103
10.1016/j.joule.2021.02.004
10.1038/s41560-018-0207-z
10.1002/aenm.201301453
10.1016/j.ensm.2018.10.025
10.1002/adfm.201910327
10.1038/s41467-021-25074-9
10.1002/anie.202003972
10.1021/cm901452z
10.1021/acsami.9b13013
10.1038/nchem.2524
10.1002/anie.202108109
10.1002/adfm.201901912
10.1149/1.1407247
10.1021/acsami.9b19204
10.1016/j.nanoen.2021.106252
10.1038/s41467-021-22523-3
10.1002/adma.201901808
10.1016/j.ensm.2020.03.016
10.1002/smtd.202101524
10.1021/acs.accounts.0c00104
10.1002/aenm.201901181
10.1016/j.matt.2020.12.004
10.1038/s41560-018-0097-0
10.1103/PhysRevB.38.11938
10.1002/aenm.201800606
10.1364/JOSAB.6.000483
10.1038/451652a
10.1016/j.joule.2020.06.003
10.1103/PhysRevB.83.081106
10.1002/aenm.201903785
10.1149/2.088406jes
10.1038/s41560-021-00780-2
10.1038/s41563-018-0276-1
10.1039/D0CP01257B
10.1038/nmat3699
10.1016/j.ensm.2020.11.034
10.1002/smtd.202000422
10.1016/j.joule.2018.11.014
10.1038/s41586-019-1854-3
10.1002/adfm.202005164
10.1149/1945-7111/abf96e
10.1016/j.nanoen.2022.106958
10.1039/D1EE01037A
10.1002/anie.202112508
10.1002/aenm.202003227
10.1016/j.joule.2021.04.006
10.1002/adfm.201806706
10.1021/acscentsci.9b01166
10.1002/anie.202001349
10.1021/jp202489s
10.1038/s41467-018-05802-4
10.1016/j.ensm.2020.11.013
10.1002/aenm.201802379
10.3390/condmat4010005
10.1103/PhysRevB.40.5715
10.1002/adma.202008194
10.1016/j.nanoen.2020.104474
10.1038/s41467-017-02041-x
10.1021/jacs.9b01855
10.1021/acs.jpcc.1c07386
10.1002/aenm.202001111
10.1039/D0CC01442G
10.1126/sciadv.aaw3871
10.1039/C4EE00465E
10.1002/smll.202000656
10.1021/acs.chemmater.9b01821
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.202201152
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1958131
10_1002_adma_202201152
35315130
ADMA202201152
Genre article
Journal Article
GrantInformation_xml – fundername: TLS
  funderid: 20A
– fundername: BSRF
  funderid: 1W1B
– fundername: Suzhou Science and Technology Project‐Prospective Application Research Program
  funderid: SYG202109
– fundername: National Natural Science Foundation of China
  funderid: 11905154
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190814
– fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials
  funderid: 111
– fundername: ALS
  funderid: 8.0.1
– fundername: NSRL
  funderid: 11U
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: SSRF
  funderid: 11B
– fundername: Suzhou Science and Technology Project-Prospective Application Research Program
  grantid: SYG202109
– fundername: SSRF
  grantid: 11B
– fundername: BSRF
  grantid: 1W1B
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190814
– fundername: NSRL
  grantid: 11U
– fundername: National Natural Science Foundation of China
  grantid: 11905154
– fundername: Gusu Innovative and Entrepreneurial Talent
  grantid: ZXL2019245
– fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials
  grantid: 111
– fundername: Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy
  grantid: DE-AC02-05CH11231
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4402-4e6b2edac7d752a9693f20bbf1b483767de16b7990b83e2ba68a6f9e708544623
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Thu May 18 22:34:28 EDT 2023
Fri Aug 16 23:38:35 EDT 2024
Thu Oct 10 16:36:08 EDT 2024
Thu Nov 21 21:20:30 EST 2024
Sat Sep 28 08:19:30 EDT 2024
Sat Aug 24 00:59:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords metal-oxygen covalency
lattice oxygen redox
structural stability
RIXS
layered electrodes
Na-ion batteries
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4402-4e6b2edac7d752a9693f20bbf1b483767de16b7990b83e2ba68a6f9e708544623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231; 11905154; BK20190814; ZXL2019245
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
National Natural Science Foundation of China (NSFC)
Gusu Innovative and Entrepreneurial Talent
Natural Science Foundation of Jiangsu Province
ORCID 0000-0002-3446-3172
0000000234463172
OpenAccessLink https://www.osti.gov/servlets/purl/1958131
PMID 35315130
PQID 2666699924
PQPubID 2045203
PageCount 12
ParticipantIDs osti_scitechconnect_1958131
proquest_miscellaneous_2641864110
proquest_journals_2666699924
crossref_primary_10_1002_adma_202201152
pubmed_primary_35315130
wiley_primary_10_1002_adma_202201152_ADMA202201152
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 1989; 40
1993; 47
2011; 115
2017; 8
2021; 5
2019; 4
2021; 88
2019 2020; 31 32
2021; 125
1989; 6
1988; 38
2020 2020; 32 16
2011; 83
2020; 59
2019; 18
2020 2018 2019 2018 2019; 10 4 58 8 31
2020; 12
2017; 29
2020; 10
2020 2019; 6 11
2013 2019; 12 29
2021 2019; 6 4
2010; 22
2021; 35
2018; 9
2018; 8
2020; 4
2018; 3
2018 2017; 3 29
2014; 4
2021; 12
2021; 11
2020; 53
2020 2020 2020 2022; 6 69 28 94
2022; 6
2019 2020 2019 2020 2019 2021 2020 2021 2021 2020 2001; 29 30 9 56 141 12 59 12 60 30 148
2021 2021; 168 35
2016 2019 2019; 8 31 20
2021 2018; 4 3
2014; 161
2020 2021 2021 2019; 577 14 5 3
2020; 22
2021; 60
2008; 451
2014; 7
2018 2021; 389 33
e_1_2_7_5_2
e_1_2_7_19_9
e_1_2_7_5_1
e_1_2_7_19_8
e_1_2_7_3_2
e_1_2_7_19_7
e_1_2_7_3_1
e_1_2_7_19_6
e_1_2_7_9_2
e_1_2_7_19_5
e_1_2_7_9_1
e_1_2_7_19_4
e_1_2_7_19_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_18_5
e_1_2_7_8_1
e_1_2_7_18_4
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_19_11
e_1_2_7_19_10
e_1_2_7_30_1
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2091
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1387
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 22
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 1616
  year: 2020
  publication-title: Joule
– volume: 3
  start-page: 690
  year: 2018
  publication-title: Nat. Energy
– volume: 40
  start-page: 5715
  year: 1989
  publication-title: Phys. Rev. B
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 29
  start-page: 373
  year: 2018 2017
  publication-title: Nat. Energy Adv. Mater.
– volume: 577 14 5 3
  start-page: 502 4858 975 518
  year: 2020 2021 2021 2019
  publication-title: Nature Energy Environ. Sci. Joule Joule
– volume: 5
  start-page: 1267
  year: 2021
  publication-title: Joule
– volume: 83
  year: 2011
  publication-title: Phys. Rev. B
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 59
  start-page: 8681
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 483
  year: 1989
  publication-title: J. Opt. Soc. Am. B
– volume: 4
  start-page: 5
  year: 2019
  publication-title: Condens. Matter
– volume: 168 35
  start-page: 388
  year: 2021 2021
  publication-title: J. Electrochem. Soc. Energy Storage Mater.
– volume: 115
  start-page: 5461
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 6 69 28 94
  start-page: 232 300
  year: 2020 2020 2020 2022
  publication-title: ACS Cent. Sci. Nano Energy Energy Storage Mater. Nano Energy
– volume: 12
  start-page: 3617
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 256
  year: 2019
  publication-title: Nat. Mater.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 6 11
  year: 2020 2019
  publication-title: Sci. Adv. ACS Appl. Mater. Interfaces
– volume: 6 4
  start-page: 781 639
  year: 2021 2019
  publication-title: Nat. Energy Nat. Energy
– volume: 29 30 9 56 141 12 59 12 60 30 148
  start-page: 6293 6680 1062 2256
  year: 2019 2020 2019 2020 2019 2021 2020 2021 2021 2020 2001
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Energy Mater. Chem. Commun. J. Am. Chem. Soc. Chem. Sci. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed. Adv. Funct. Mater. J. Electrochem. Soc.
– volume: 38
  year: 1988
  publication-title: Phys. Rev. B
– volume: 4 3
  start-page: 490 619
  year: 2021 2018
  publication-title: Matter Nat. Energy
– volume: 29
  start-page: 6684
  year: 2017
  publication-title: Chem. Mater.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 12 29
  start-page: 827
  year: 2013 2019
  publication-title: Nat. Mater. Adv. Funct. Mater.
– volume: 47
  year: 1993
  publication-title: Phys. Rev. B
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 35
  start-page: 99
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 32 16
  start-page: 234
  year: 2020 2020
  publication-title: Energy Storage Mater. Small
– volume: 31 32
  start-page: 7864 5502
  year: 2019 2020
  publication-title: Chem. Mater. Chem. Mater.
– volume: 10 4 58 8 31
  year: 2020 2018 2019 2018 2019
  publication-title: Adv. Energy Mater. Sci. Adv. Angew. Chem., Int. Ed. Adv. Energy Mater. Adv. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 9
  start-page: 3285
  year: 2018
  publication-title: Nat. Commun.
– volume: 8 31 20
  start-page: 692 395
  year: 2016 2019 2019
  publication-title: Nat. Chem. Adv. Mater. Energy Storage Mater.
– volume: 53
  start-page: 1436
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 4903
  year: 2021
  publication-title: Nat. Commun.
– volume: 389 33
  start-page: 188
  year: 2018 2021
  publication-title: J. Power Sources Adv. Mater.
– ident: e_1_2_7_32_2
  doi: 10.1038/s41560-019-0439-6
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ensm.2020.07.012
– ident: e_1_2_7_18_3
  doi: 10.1002/anie.201911698
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jpowsour.2018.04.018
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.201701054
– ident: e_1_2_7_5_2
  doi: 10.1038/s41560-018-0222-0
– ident: e_1_2_7_44_2
  doi: 10.1021/acs.chemmater.0c00245
– ident: e_1_2_7_18_2
  doi: 10.1126/sciadv.aar6018
– ident: e_1_2_7_19_6
  doi: 10.1039/D0SC05427E
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.chemmater.7b01146
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.202001207
– ident: e_1_2_7_18_5
  doi: 10.1002/adma.201904816
– ident: e_1_2_7_27_1
  doi: 10.1103/PhysRevB.47.14103
– ident: e_1_2_7_11_3
  doi: 10.1016/j.joule.2021.02.004
– ident: e_1_2_7_25_1
  doi: 10.1038/s41560-018-0207-z
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201301453
– ident: e_1_2_7_8_3
  doi: 10.1016/j.ensm.2018.10.025
– ident: e_1_2_7_19_10
  doi: 10.1002/adfm.201910327
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-021-25074-9
– ident: e_1_2_7_19_7
  doi: 10.1002/anie.202003972
– ident: e_1_2_7_2_1
  doi: 10.1021/cm901452z
– ident: e_1_2_7_6_2
  doi: 10.1021/acsami.9b13013
– ident: e_1_2_7_8_1
  doi: 10.1038/nchem.2524
– ident: e_1_2_7_19_9
  doi: 10.1002/anie.202108109
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201901912
– ident: e_1_2_7_19_11
  doi: 10.1149/1.1407247
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.9b19204
– ident: e_1_2_7_12_1
  doi: 10.1016/j.nanoen.2021.106252
– ident: e_1_2_7_19_8
  doi: 10.1038/s41467-021-22523-3
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.201901808
– ident: e_1_2_7_9_3
  doi: 10.1016/j.ensm.2020.03.016
– ident: e_1_2_7_28_1
  doi: 10.1002/smtd.202101524
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.accounts.0c00104
– ident: e_1_2_7_19_3
  doi: 10.1002/aenm.201901181
– ident: e_1_2_7_5_1
  doi: 10.1016/j.matt.2020.12.004
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-018-0097-0
– ident: e_1_2_7_24_1
  doi: 10.1103/PhysRevB.38.11938
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201800606
– ident: e_1_2_7_23_1
  doi: 10.1364/JOSAB.6.000483
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2020.06.003
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRevB.83.081106
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.201903785
– ident: e_1_2_7_38_1
  doi: 10.1149/2.088406jes
– ident: e_1_2_7_32_1
  doi: 10.1038/s41560-021-00780-2
– ident: e_1_2_7_36_1
  doi: 10.1038/s41563-018-0276-1
– ident: e_1_2_7_41_1
  doi: 10.1039/D0CP01257B
– ident: e_1_2_7_10_1
  doi: 10.1038/nmat3699
– ident: e_1_2_7_39_2
  doi: 10.1016/j.ensm.2020.11.034
– ident: e_1_2_7_14_1
  doi: 10.1002/smtd.202000422
– ident: e_1_2_7_11_4
  doi: 10.1016/j.joule.2018.11.014
– ident: e_1_2_7_11_1
  doi: 10.1038/s41586-019-1854-3
– ident: e_1_2_7_19_2
  doi: 10.1002/adfm.202005164
– ident: e_1_2_7_39_1
  doi: 10.1149/1945-7111/abf96e
– ident: e_1_2_7_9_4
  doi: 10.1016/j.nanoen.2022.106958
– ident: e_1_2_7_11_2
  doi: 10.1039/D1EE01037A
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.202112508
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.202003227
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2021.04.006
– ident: e_1_2_7_10_2
  doi: 10.1002/adfm.201806706
– ident: e_1_2_7_9_1
  doi: 10.1021/acscentsci.9b01166
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202001349
– ident: e_1_2_7_46_1
  doi: 10.1021/jp202489s
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-018-05802-4
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ensm.2020.11.013
– ident: e_1_2_7_18_4
  doi: 10.1002/aenm.201802379
– ident: e_1_2_7_29_1
  doi: 10.3390/condmat4010005
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevB.40.5715
– ident: e_1_2_7_30_2
  doi: 10.1002/adma.202008194
– ident: e_1_2_7_9_2
  doi: 10.1016/j.nanoen.2020.104474
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-017-02041-x
– ident: e_1_2_7_19_5
  doi: 10.1021/jacs.9b01855
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jpcc.1c07386
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.202001111
– ident: e_1_2_7_19_4
  doi: 10.1039/D0CC01442G
– ident: e_1_2_7_6_1
  doi: 10.1126/sciadv.aaw3871
– ident: e_1_2_7_21_1
  doi: 10.1039/C4EE00465E
– ident: e_1_2_7_33_2
  doi: 10.1002/smll.202000656
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.chemmater.9b01821
SSID ssj0009606
Score 2.639255
Snippet Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional...
SourceID osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2201152
SubjectTerms Covalence
Electrochemical analysis
Electrodes
Electronegativity
ENERGY STORAGE
Inelastic scattering
lattice oxygen redox
layered electrodes
metal-oxygen covalency
Na-ion batteries
Oxidation
Oxygen
Rechargeable batteries
RIXS
structural stability
Transition metals
Title Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201152
https://www.ncbi.nlm.nih.gov/pubmed/35315130
https://www.proquest.com/docview/2666699924
https://search.proquest.com/docview/2641864110
https://www.osti.gov/servlets/purl/1958131
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RPbWHAi2F8CVXqsQpInG8TnJcwSIOLFQtSNwsO3bglFTdXYm9ceTOP-SXMGPvBlZCQmoPkRI5jizPjOc5nnkD8MNkBToNnsc1L0VMiCAuNO_Hia5E5lLtap_Hffo7P78ujodEk9Nl8Qd-iO6HG1mGX6_JwLUZH76QhmrreYM4ebA-LcK4VfA5HNnPF9Zd6Ytr0mFfXEpRLFgbE3643H3JK_VatK63EOcygPUe6GT1_8e-Bp_n6JMNgrqsw4prvsCnV5yEX-Fh2NwSB0dzwxAbsl_Ox234ENoZa2t2picUL8cu7maoe9hu2zt2Gar9sFFrqRyYs8z7QB8OxkYOAf7T_eO8x1GLyk0JnwzxMn5uRtVCWeD5nLFhKMtj3XgDrk6Gl0en8bxcQ1wJ3IXGwknDndVVbvM-16Uss5onxtSpIdp6mVuXSpOj-zNF5rjRstCyLl2OqA83pTz7Br2mbdwWMAQxAj-DilRxoXll8hpVrTS1QIkmFY_gYCEu9SewcqjAv8wVza3q5jaCHZKmQjxBpLgVRQ9VE0UUO2mWRrC7ELKa2-5YIWSREnEzFxF875rR6ugoRTeundI7Ii3wSpMINoNydAPJcFnrIzSIgHsdeGeEanA8GnRP2__SaQc-0n2Iw9yF3uTv1O3Bh7Gd7nt7eAZC6wol
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CcgAOg_Ez2wAjIXGKljiukxyrrVOntds0isTNsmNnnBJEW2m9cdyd_5C_ZO_ZbUalSUgThxwSx5Zlv-f32X7vewCfTFag0eB5XPNSxIQI4kLzfpzoSmQu1a72cdyjL_npt-JwSDQ5g3UsTOCH6A7cSDP8ek0KTgfS-7esodp64iBOJqyPq_AjIVEaKYojO7_l3ZU-vSZd98Ullq95GxO-v1l_wy71WtSvuzDnJoT1Nujo2X_o_XPYWgFQNggSsw0PXPMCnv5FS_gSrofNd6LhaC4ZwkN24bzrhveiXbK2ZmM9J5c5dna1RPHDcttesWlI-MMmraWMYM4ybwa9RxibOMT4f379XtU4aFG-KeaTIWTG5paUMJQFqs8lG4bMPNbNXsHXo-H0YBSvMjbElcCNaCycNNxZXeU273NdyjKreWJMnRpirpe5dak0OVpAU2SOGy0LLevS5Qj8cF_Ks9fQa9rGvQWGOEZgMyhLFReaVyavUdpKUwuc0qTiEXxez5f6EYg5VKBg5orGVnVjG8EuTadCSEG8uBU5EFVzRSw7aZZGsLeeZbVS35lC1CIlQmcuIvjYFaPi0W2Kbly7oH9EWuCTJhG8CdLRdSTDla2P6CAC7oXgHz1Ug8PJoHvbuU-lD_B4NJ2M1fj49GQXntD34Ja5B735z4V7Bw9ndvHeK8cND9oOTQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48H6EFjASEqeoie11kuOqu6siuqWCInGz7Ngpp6Rid6XujSN3_mF_SWfs3bQrVUKCQw6JY8vyzHg-2-NvAN5bUaLT4EXa8EqmhAjS0vBhmplaCp8b34R73Adfi6Pv5XhCNDn9Lf7ID9FvuJFlhPmaDPzMNXtXpKHGBd4gTh5siJPwHYlYnNjzhTi-ot1VIbsmnfallZLlhrYx43vb9bfc0qBD87oJcm4j2OCCpg__v_OP4MEafrJR1JfHcMu3T-D-NVLCp_B70v4gEo72lCE4ZF98CNwIMbQr1jXs0CwoYI59Pl-h8mG5687ZSUz3w2ado3xg3rHgBEM8GJt5RPgXv_6sa-x3qN1045MhYMbmVpQulEWizxWbxLw8zs-fwbfp5GT_IF3na0hricvQVHpluXemLlwx5KZSlWh4Zm2TW-KtV4XzubIF-j9bCs-tUaVRTeULhH24KuXiOQzarvUvgSGKkdgMalLNpeG1LRrUtco2EiWa1TyBDxtx6bNIy6EjATPXNLa6H9sEdkiaGgEFseLWFD5ULzRx7OQiT2B3I2S9Nt65RsyiFAJnLhN41xej2dFZiml9t6R_ZF7ik2cJvIjK0XdE4Lw2RGyQAA868Jce6tF4NurfXv1Lpbdw93g81Ycfjz7twD36HGMyd2Gw-Ln0r-H23C3fBNO4BLT8DPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Reversibility+of+Lattice+Oxygen+Redox+Through+Modulated+Transition+Metal%E2%80%93Oxygen+Covalency+for+Layered+Battery+Electrodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Chen&rft.au=Chen%2C+Chi&rft.au=Chu%2C+Shiyong&rft.au=Hu%2C+Haolv&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201152&rft.externalDBID=10.1002%252Fadma.202201152&rft.externalDocID=ADMA202201152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon