Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transforma...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 34; no. 20; pp. e2201152 - n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-05-2022
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry.
Instead of activating the oxygen oxidation activity by construction of overwhelming nonbonding oxygen states, it is more crucial to enhance the reversibility of lattice oxygen redox reactions of layered battery electrodes through modulating transition metal (TM) O covalency, which concurrently suppresses the phase transition and irreversible TM migration, thus leading to the improved structural stability and electrochemical performance. |
---|---|
AbstractList | Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na
0.6
Mg
0.15
Mn
0.7
Cu
0.15
O
2
electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry. Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry. Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na Mg Mn Cu O electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry. Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry. Instead of activating the oxygen oxidation activity by construction of overwhelming nonbonding oxygen states, it is more crucial to enhance the reversibility of lattice oxygen redox reactions of layered battery electrodes through modulating transition metal (TM) O covalency, which concurrently suppresses the phase transition and irreversible TM migration, thus leading to the improved structural stability and electrochemical performance. Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na0.6 Mg0.15 Mn0.7 Cu0.15 O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. Finally, these results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry. |
Author | Cheng, Chen Chu, Shiyong Zhang, Liang Feng, Xuefei Guo, Jinghua Hu, Haolv Wu, Jinpeng Yan, Tianran Sun, Dan Chen, Chi Xia, Xiao Guo, Shaohua |
Author_xml | – sequence: 1 givenname: Chen surname: Cheng fullname: Cheng, Chen organization: Soochow University – sequence: 2 givenname: Chi surname: Chen fullname: Chen, Chi organization: Chinese Academy of Sciences – sequence: 3 givenname: Shiyong surname: Chu fullname: Chu, Shiyong organization: Nanjing University – sequence: 4 givenname: Haolv surname: Hu fullname: Hu, Haolv organization: Soochow University – sequence: 5 givenname: Tianran surname: Yan fullname: Yan, Tianran organization: Soochow University – sequence: 6 givenname: Xiao surname: Xia fullname: Xia, Xiao organization: Soochow University – sequence: 7 givenname: Xuefei surname: Feng fullname: Feng, Xuefei organization: Lawrence Berkeley National Laboratory – sequence: 8 givenname: Jinghua surname: Guo fullname: Guo, Jinghua organization: Lawrence Berkeley National Laboratory – sequence: 9 givenname: Dan surname: Sun fullname: Sun, Dan organization: Chinese Academy of Sciences – sequence: 10 givenname: Jinpeng surname: Wu fullname: Wu, Jinpeng email: jinpengwu@tsinghua.edu.cn organization: Tsinghua University – sequence: 11 givenname: Shaohua surname: Guo fullname: Guo, Shaohua email: shguo@nju.edu.cn organization: Nanjing University – sequence: 12 givenname: Liang orcidid: 0000-0002-3446-3172 surname: Zhang fullname: Zhang, Liang email: liangzhang2019@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35315130$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1958131$$D View this record in Osti.gov |
BookMark | eNqFkU1vEzEQhi1URNPClSOy4MJlg-31etfHEMKHlKgSCmfL651NXG3sYntL98aRO_-QX4KrhCJxwdLYh3nm0VjvBTpz3gFCzymZU0LYG90d9JwRxgilFXuEZvmmBSeyOkMzIsuqkII35-gixmtCiBREPEHnZVXSipZkhn6s3F47Y90Opz3gz3ALIdrWDjZN2Pd4rVOyBvDV3bQDl_udv8PbffDjbo83vhsHnaDD26BdtMl6hzeQ9PDr-8_TxNLf6gGcmXDvQ9ZNEDL_NmshTHg1gEnBdxCfose9HiI8O72X6Mv71Xb5sVhfffi0XKwLwzlhBQfRMui0qbu6YloKWfaMtG1PW96Utag7oKKtpSRtUwJrtWi06CXUpKk4F6y8RC-PXh-TVdHYBGZvvHN5EUVl1dCSZuj1EboJ_usIMamDjQaGQTvwY1RMcNrkoiSjr_5Br_0YXP5CpvKRUjKeqfmRMsHHGKBXN8EedJgUJeo-SHUfpHoIMg-8OGnH9gDdA_4nuQzII_DNDjD9R6cW7zaLv_Lf9C6tFQ |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_108353 crossref_primary_10_1021_acsami_2c20720 crossref_primary_10_1021_acs_analchem_4c01399 crossref_primary_10_1002_adma_202312159 crossref_primary_10_1016_j_jechem_2023_06_009 crossref_primary_10_1016_j_ensm_2023_102952 crossref_primary_10_1021_acsnano_3c03952 crossref_primary_10_1021_acsaem_3c02290 crossref_primary_10_1016_j_apsusc_2023_156469 crossref_primary_10_1021_acs_chemmater_2c02474 crossref_primary_10_1002_advs_202206442 crossref_primary_10_1007_s12598_023_02422_w crossref_primary_10_1021_acsami_2c22670 crossref_primary_10_1007_s12274_023_6133_9 crossref_primary_10_1016_j_jallcom_2022_168138 crossref_primary_10_1021_jacs_3c00879 crossref_primary_10_1016_j_scib_2023_01_010 crossref_primary_10_1002_adma_202312300 crossref_primary_10_1038_s41560_023_01425_2 crossref_primary_10_1021_acsami_3c18606 crossref_primary_10_1021_jacs_3c08070 crossref_primary_10_1021_acs_nanolett_3c01890 crossref_primary_10_1021_acsaem_3c00263 crossref_primary_10_1021_acssuschemeng_3c05369 crossref_primary_10_1039_D3CS00550J crossref_primary_10_1002_adma_202307938 crossref_primary_10_1016_j_cej_2023_143145 crossref_primary_10_1002_aenm_202300384 crossref_primary_10_1016_j_ensm_2022_07_030 crossref_primary_10_1021_acsami_3c05516 crossref_primary_10_1021_acs_jpcc_4c00811 crossref_primary_10_1002_adfm_202305470 crossref_primary_10_1002_adfm_202214770 crossref_primary_10_1002_adma_202209556 crossref_primary_10_1039_D2SC06772B crossref_primary_10_1002_adfm_202304617 crossref_primary_10_1016_j_ensm_2024_103549 crossref_primary_10_1016_j_apcatb_2023_123331 crossref_primary_10_1021_acsami_3c10991 crossref_primary_10_1021_acs_inorgchem_3c00344 crossref_primary_10_1002_adfm_202300602 crossref_primary_10_1002_adfm_202403442 crossref_primary_10_1002_smll_202306695 crossref_primary_10_1016_j_ensm_2024_103622 crossref_primary_10_1002_adfm_202215155 crossref_primary_10_1021_acsami_3c06375 crossref_primary_10_1002_idm2_12087 crossref_primary_10_1002_smll_202300878 crossref_primary_10_1039_D3QM00326D crossref_primary_10_1002_sstr_202200340 crossref_primary_10_1021_acsami_3c16320 crossref_primary_10_1002_adma_202306533 crossref_primary_10_1039_D4TA00380B |
Cites_doi | 10.1038/s41560-019-0439-6 10.1016/j.ensm.2020.07.012 10.1002/anie.201911698 10.1016/j.jpowsour.2018.04.018 10.1002/adma.201701054 10.1038/s41560-018-0222-0 10.1021/acs.chemmater.0c00245 10.1126/sciadv.aar6018 10.1039/D0SC05427E 10.1021/acs.chemmater.7b01146 10.1002/aenm.202001207 10.1002/adma.201904816 10.1103/PhysRevB.47.14103 10.1016/j.joule.2021.02.004 10.1038/s41560-018-0207-z 10.1002/aenm.201301453 10.1016/j.ensm.2018.10.025 10.1002/adfm.201910327 10.1038/s41467-021-25074-9 10.1002/anie.202003972 10.1021/cm901452z 10.1021/acsami.9b13013 10.1038/nchem.2524 10.1002/anie.202108109 10.1002/adfm.201901912 10.1149/1.1407247 10.1021/acsami.9b19204 10.1016/j.nanoen.2021.106252 10.1038/s41467-021-22523-3 10.1002/adma.201901808 10.1016/j.ensm.2020.03.016 10.1002/smtd.202101524 10.1021/acs.accounts.0c00104 10.1002/aenm.201901181 10.1016/j.matt.2020.12.004 10.1038/s41560-018-0097-0 10.1103/PhysRevB.38.11938 10.1002/aenm.201800606 10.1364/JOSAB.6.000483 10.1038/451652a 10.1016/j.joule.2020.06.003 10.1103/PhysRevB.83.081106 10.1002/aenm.201903785 10.1149/2.088406jes 10.1038/s41560-021-00780-2 10.1038/s41563-018-0276-1 10.1039/D0CP01257B 10.1038/nmat3699 10.1016/j.ensm.2020.11.034 10.1002/smtd.202000422 10.1016/j.joule.2018.11.014 10.1038/s41586-019-1854-3 10.1002/adfm.202005164 10.1149/1945-7111/abf96e 10.1016/j.nanoen.2022.106958 10.1039/D1EE01037A 10.1002/anie.202112508 10.1002/aenm.202003227 10.1016/j.joule.2021.04.006 10.1002/adfm.201806706 10.1021/acscentsci.9b01166 10.1002/anie.202001349 10.1021/jp202489s 10.1038/s41467-018-05802-4 10.1016/j.ensm.2020.11.013 10.1002/aenm.201802379 10.3390/condmat4010005 10.1103/PhysRevB.40.5715 10.1002/adma.202008194 10.1016/j.nanoen.2020.104474 10.1038/s41467-017-02041-x 10.1021/jacs.9b01855 10.1021/acs.jpcc.1c07386 10.1002/aenm.202001111 10.1039/D0CC01442G 10.1126/sciadv.aaw3871 10.1039/C4EE00465E 10.1002/smll.202000656 10.1021/acs.chemmater.9b01821 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.202201152 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1958131 10_1002_adma_202201152 35315130 ADMA202201152 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: TLS funderid: 20A – fundername: BSRF funderid: 1W1B – fundername: Suzhou Science and Technology Project‐Prospective Application Research Program funderid: SYG202109 – fundername: National Natural Science Foundation of China funderid: 11905154 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190814 – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials funderid: 111 – fundername: ALS funderid: 8.0.1 – fundername: NSRL funderid: 11U – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: SSRF funderid: 11B – fundername: Suzhou Science and Technology Project-Prospective Application Research Program grantid: SYG202109 – fundername: SSRF grantid: 11B – fundername: BSRF grantid: 1W1B – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20190814 – fundername: NSRL grantid: 11U – fundername: National Natural Science Foundation of China grantid: 11905154 – fundername: Gusu Innovative and Entrepreneurial Talent grantid: ZXL2019245 – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials grantid: 111 – fundername: Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy grantid: DE-AC02-05CH11231 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4402-4e6b2edac7d752a9693f20bbf1b483767de16b7990b83e2ba68a6f9e708544623 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Thu May 18 22:34:28 EDT 2023 Fri Aug 16 23:38:35 EDT 2024 Thu Oct 10 16:36:08 EDT 2024 Thu Nov 21 21:20:30 EST 2024 Sat Sep 28 08:19:30 EDT 2024 Sat Aug 24 00:59:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | metal-oxygen covalency lattice oxygen redox structural stability RIXS layered electrodes Na-ion batteries |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4402-4e6b2edac7d752a9693f20bbf1b483767de16b7990b83e2ba68a6f9e708544623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231; 11905154; BK20190814; ZXL2019245 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division National Natural Science Foundation of China (NSFC) Gusu Innovative and Entrepreneurial Talent Natural Science Foundation of Jiangsu Province |
ORCID | 0000-0002-3446-3172 0000000234463172 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1958131 |
PMID | 35315130 |
PQID | 2666699924 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1958131 proquest_miscellaneous_2641864110 proquest_journals_2666699924 crossref_primary_10_1002_adma_202201152 pubmed_primary_35315130 wiley_primary_10_1002_adma_202201152_ADMA202201152 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1989; 40 1993; 47 2011; 115 2017; 8 2021; 5 2019; 4 2021; 88 2019 2020; 31 32 2021; 125 1989; 6 1988; 38 2020 2020; 32 16 2011; 83 2020; 59 2019; 18 2020 2018 2019 2018 2019; 10 4 58 8 31 2020; 12 2017; 29 2020; 10 2020 2019; 6 11 2013 2019; 12 29 2021 2019; 6 4 2010; 22 2021; 35 2018; 9 2018; 8 2020; 4 2018; 3 2018 2017; 3 29 2014; 4 2021; 12 2021; 11 2020; 53 2020 2020 2020 2022; 6 69 28 94 2022; 6 2019 2020 2019 2020 2019 2021 2020 2021 2021 2020 2001; 29 30 9 56 141 12 59 12 60 30 148 2021 2021; 168 35 2016 2019 2019; 8 31 20 2021 2018; 4 3 2014; 161 2020 2021 2021 2019; 577 14 5 3 2020; 22 2021; 60 2008; 451 2014; 7 2018 2021; 389 33 e_1_2_7_5_2 e_1_2_7_19_9 e_1_2_7_5_1 e_1_2_7_19_8 e_1_2_7_3_2 e_1_2_7_19_7 e_1_2_7_3_1 e_1_2_7_19_6 e_1_2_7_9_2 e_1_2_7_19_5 e_1_2_7_9_1 e_1_2_7_19_4 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_18_5 e_1_2_7_8_1 e_1_2_7_18_4 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_19_11 e_1_2_7_19_10 e_1_2_7_30_1 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2091 year: 2017 publication-title: Nat. Commun. – volume: 7 start-page: 1387 year: 2014 publication-title: Energy Environ. Sci. – volume: 22 year: 2020 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 1616 year: 2020 publication-title: Joule – volume: 3 start-page: 690 year: 2018 publication-title: Nat. Energy – volume: 40 start-page: 5715 year: 1989 publication-title: Phys. Rev. B – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 29 start-page: 373 year: 2018 2017 publication-title: Nat. Energy Adv. Mater. – volume: 577 14 5 3 start-page: 502 4858 975 518 year: 2020 2021 2021 2019 publication-title: Nature Energy Environ. Sci. Joule Joule – volume: 5 start-page: 1267 year: 2021 publication-title: Joule – volume: 83 year: 2011 publication-title: Phys. Rev. B – volume: 6 year: 2022 publication-title: Small Methods – volume: 59 start-page: 8681 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 483 year: 1989 publication-title: J. Opt. Soc. Am. B – volume: 4 start-page: 5 year: 2019 publication-title: Condens. Matter – volume: 168 35 start-page: 388 year: 2021 2021 publication-title: J. Electrochem. Soc. Energy Storage Mater. – volume: 115 start-page: 5461 year: 2011 publication-title: J. Phys. Chem. A – volume: 6 69 28 94 start-page: 232 300 year: 2020 2020 2020 2022 publication-title: ACS Cent. Sci. Nano Energy Energy Storage Mater. Nano Energy – volume: 12 start-page: 3617 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 256 year: 2019 publication-title: Nat. Mater. – volume: 161 year: 2014 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 6 11 year: 2020 2019 publication-title: Sci. Adv. ACS Appl. Mater. Interfaces – volume: 6 4 start-page: 781 639 year: 2021 2019 publication-title: Nat. Energy Nat. Energy – volume: 29 30 9 56 141 12 59 12 60 30 148 start-page: 6293 6680 1062 2256 year: 2019 2020 2019 2020 2019 2021 2020 2021 2021 2020 2001 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Energy Mater. Chem. Commun. J. Am. Chem. Soc. Chem. Sci. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed. Adv. Funct. Mater. J. Electrochem. Soc. – volume: 38 year: 1988 publication-title: Phys. Rev. B – volume: 4 3 start-page: 490 619 year: 2021 2018 publication-title: Matter Nat. Energy – volume: 29 start-page: 6684 year: 2017 publication-title: Chem. Mater. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 88 year: 2021 publication-title: Nano Energy – volume: 12 29 start-page: 827 year: 2013 2019 publication-title: Nat. Mater. Adv. Funct. Mater. – volume: 47 year: 1993 publication-title: Phys. Rev. B – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 35 start-page: 99 year: 2021 publication-title: Energy Storage Mater. – volume: 32 16 start-page: 234 year: 2020 2020 publication-title: Energy Storage Mater. Small – volume: 31 32 start-page: 7864 5502 year: 2019 2020 publication-title: Chem. Mater. Chem. Mater. – volume: 10 4 58 8 31 year: 2020 2018 2019 2018 2019 publication-title: Adv. Energy Mater. Sci. Adv. Angew. Chem., Int. Ed. Adv. Energy Mater. Adv. Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 9 start-page: 3285 year: 2018 publication-title: Nat. Commun. – volume: 8 31 20 start-page: 692 395 year: 2016 2019 2019 publication-title: Nat. Chem. Adv. Mater. Energy Storage Mater. – volume: 53 start-page: 1436 year: 2020 publication-title: Acc. Chem. Res. – volume: 12 start-page: 4903 year: 2021 publication-title: Nat. Commun. – volume: 389 33 start-page: 188 year: 2018 2021 publication-title: J. Power Sources Adv. Mater. – ident: e_1_2_7_32_2 doi: 10.1038/s41560-019-0439-6 – ident: e_1_2_7_33_1 doi: 10.1016/j.ensm.2020.07.012 – ident: e_1_2_7_18_3 doi: 10.1002/anie.201911698 – ident: e_1_2_7_30_1 doi: 10.1016/j.jpowsour.2018.04.018 – ident: e_1_2_7_3_2 doi: 10.1002/adma.201701054 – ident: e_1_2_7_5_2 doi: 10.1038/s41560-018-0222-0 – ident: e_1_2_7_44_2 doi: 10.1021/acs.chemmater.0c00245 – ident: e_1_2_7_18_2 doi: 10.1126/sciadv.aar6018 – ident: e_1_2_7_19_6 doi: 10.1039/D0SC05427E – ident: e_1_2_7_43_1 doi: 10.1021/acs.chemmater.7b01146 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.202001207 – ident: e_1_2_7_18_5 doi: 10.1002/adma.201904816 – ident: e_1_2_7_27_1 doi: 10.1103/PhysRevB.47.14103 – ident: e_1_2_7_11_3 doi: 10.1016/j.joule.2021.02.004 – ident: e_1_2_7_25_1 doi: 10.1038/s41560-018-0207-z – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201301453 – ident: e_1_2_7_8_3 doi: 10.1016/j.ensm.2018.10.025 – ident: e_1_2_7_19_10 doi: 10.1002/adfm.201910327 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-021-25074-9 – ident: e_1_2_7_19_7 doi: 10.1002/anie.202003972 – ident: e_1_2_7_2_1 doi: 10.1021/cm901452z – ident: e_1_2_7_6_2 doi: 10.1021/acsami.9b13013 – ident: e_1_2_7_8_1 doi: 10.1038/nchem.2524 – ident: e_1_2_7_19_9 doi: 10.1002/anie.202108109 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201901912 – ident: e_1_2_7_19_11 doi: 10.1149/1.1407247 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.9b19204 – ident: e_1_2_7_12_1 doi: 10.1016/j.nanoen.2021.106252 – ident: e_1_2_7_19_8 doi: 10.1038/s41467-021-22523-3 – ident: e_1_2_7_8_2 doi: 10.1002/adma.201901808 – ident: e_1_2_7_9_3 doi: 10.1016/j.ensm.2020.03.016 – ident: e_1_2_7_28_1 doi: 10.1002/smtd.202101524 – ident: e_1_2_7_7_1 doi: 10.1021/acs.accounts.0c00104 – ident: e_1_2_7_19_3 doi: 10.1002/aenm.201901181 – ident: e_1_2_7_5_1 doi: 10.1016/j.matt.2020.12.004 – ident: e_1_2_7_3_1 doi: 10.1038/s41560-018-0097-0 – ident: e_1_2_7_24_1 doi: 10.1103/PhysRevB.38.11938 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201800606 – ident: e_1_2_7_23_1 doi: 10.1364/JOSAB.6.000483 – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_20_1 doi: 10.1016/j.joule.2020.06.003 – ident: e_1_2_7_26_1 doi: 10.1103/PhysRevB.83.081106 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.201903785 – ident: e_1_2_7_38_1 doi: 10.1149/2.088406jes – ident: e_1_2_7_32_1 doi: 10.1038/s41560-021-00780-2 – ident: e_1_2_7_36_1 doi: 10.1038/s41563-018-0276-1 – ident: e_1_2_7_41_1 doi: 10.1039/D0CP01257B – ident: e_1_2_7_10_1 doi: 10.1038/nmat3699 – ident: e_1_2_7_39_2 doi: 10.1016/j.ensm.2020.11.034 – ident: e_1_2_7_14_1 doi: 10.1002/smtd.202000422 – ident: e_1_2_7_11_4 doi: 10.1016/j.joule.2018.11.014 – ident: e_1_2_7_11_1 doi: 10.1038/s41586-019-1854-3 – ident: e_1_2_7_19_2 doi: 10.1002/adfm.202005164 – ident: e_1_2_7_39_1 doi: 10.1149/1945-7111/abf96e – ident: e_1_2_7_9_4 doi: 10.1016/j.nanoen.2022.106958 – ident: e_1_2_7_11_2 doi: 10.1039/D1EE01037A – ident: e_1_2_7_40_1 doi: 10.1002/anie.202112508 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.202003227 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2021.04.006 – ident: e_1_2_7_10_2 doi: 10.1002/adfm.201806706 – ident: e_1_2_7_9_1 doi: 10.1021/acscentsci.9b01166 – ident: e_1_2_7_37_1 doi: 10.1002/anie.202001349 – ident: e_1_2_7_46_1 doi: 10.1021/jp202489s – ident: e_1_2_7_4_1 doi: 10.1038/s41467-018-05802-4 – ident: e_1_2_7_16_1 doi: 10.1016/j.ensm.2020.11.013 – ident: e_1_2_7_18_4 doi: 10.1002/aenm.201802379 – ident: e_1_2_7_29_1 doi: 10.3390/condmat4010005 – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevB.40.5715 – ident: e_1_2_7_30_2 doi: 10.1002/adma.202008194 – ident: e_1_2_7_9_2 doi: 10.1016/j.nanoen.2020.104474 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-017-02041-x – ident: e_1_2_7_19_5 doi: 10.1021/jacs.9b01855 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jpcc.1c07386 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.202001111 – ident: e_1_2_7_19_4 doi: 10.1039/D0CC01442G – ident: e_1_2_7_6_1 doi: 10.1126/sciadv.aaw3871 – ident: e_1_2_7_21_1 doi: 10.1039/C4EE00465E – ident: e_1_2_7_33_2 doi: 10.1002/smll.202000656 – ident: e_1_2_7_44_1 doi: 10.1021/acs.chemmater.9b01821 |
SSID | ssj0009606 |
Score | 2.639255 |
Snippet | Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional... |
SourceID | osti proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2201152 |
SubjectTerms | Covalence Electrochemical analysis Electrodes Electronegativity ENERGY STORAGE Inelastic scattering lattice oxygen redox layered electrodes metal-oxygen covalency Na-ion batteries Oxidation Oxygen Rechargeable batteries RIXS structural stability Transition metals |
Title | Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201152 https://www.ncbi.nlm.nih.gov/pubmed/35315130 https://www.proquest.com/docview/2666699924 https://search.proquest.com/docview/2641864110 https://www.osti.gov/servlets/purl/1958131 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RPbWHAi2F8CVXqsQpInG8TnJcwSIOLFQtSNwsO3bglFTdXYm9ceTOP-SXMGPvBlZCQmoPkRI5jizPjOc5nnkD8MNkBToNnsc1L0VMiCAuNO_Hia5E5lLtap_Hffo7P78ujodEk9Nl8Qd-iO6HG1mGX6_JwLUZH76QhmrreYM4ebA-LcK4VfA5HNnPF9Zd6Ytr0mFfXEpRLFgbE3643H3JK_VatK63EOcygPUe6GT1_8e-Bp_n6JMNgrqsw4prvsCnV5yEX-Fh2NwSB0dzwxAbsl_Ox234ENoZa2t2picUL8cu7maoe9hu2zt2Gar9sFFrqRyYs8z7QB8OxkYOAf7T_eO8x1GLyk0JnwzxMn5uRtVCWeD5nLFhKMtj3XgDrk6Gl0en8bxcQ1wJ3IXGwknDndVVbvM-16Uss5onxtSpIdp6mVuXSpOj-zNF5rjRstCyLl2OqA83pTz7Br2mbdwWMAQxAj-DilRxoXll8hpVrTS1QIkmFY_gYCEu9SewcqjAv8wVza3q5jaCHZKmQjxBpLgVRQ9VE0UUO2mWRrC7ELKa2-5YIWSREnEzFxF875rR6ugoRTeundI7Ii3wSpMINoNydAPJcFnrIzSIgHsdeGeEanA8GnRP2__SaQc-0n2Iw9yF3uTv1O3Bh7Gd7nt7eAZC6wol |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CcgAOg_Ez2wAjIXGKljiukxyrrVOntds0isTNsmNnnBJEW2m9cdyd_5C_ZO_ZbUalSUgThxwSx5Zlv-f32X7vewCfTFag0eB5XPNSxIQI4kLzfpzoSmQu1a72cdyjL_npt-JwSDQ5g3UsTOCH6A7cSDP8ek0KTgfS-7esodp64iBOJqyPq_AjIVEaKYojO7_l3ZU-vSZd98Ullq95GxO-v1l_wy71WtSvuzDnJoT1Nujo2X_o_XPYWgFQNggSsw0PXPMCnv5FS_gSrofNd6LhaC4ZwkN24bzrhveiXbK2ZmM9J5c5dna1RPHDcttesWlI-MMmraWMYM4ybwa9RxibOMT4f379XtU4aFG-KeaTIWTG5paUMJQFqs8lG4bMPNbNXsHXo-H0YBSvMjbElcCNaCycNNxZXeU273NdyjKreWJMnRpirpe5dak0OVpAU2SOGy0LLevS5Qj8cF_Ks9fQa9rGvQWGOEZgMyhLFReaVyavUdpKUwuc0qTiEXxez5f6EYg5VKBg5orGVnVjG8EuTadCSEG8uBU5EFVzRSw7aZZGsLeeZbVS35lC1CIlQmcuIvjYFaPi0W2Kbly7oH9EWuCTJhG8CdLRdSTDla2P6CAC7oXgHz1Ug8PJoHvbuU-lD_B4NJ2M1fj49GQXntD34Ja5B735z4V7Bw9ndvHeK8cND9oOTQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48H6EFjASEqeoie11kuOqu6siuqWCInGz7Ngpp6Rid6XujSN3_mF_SWfs3bQrVUKCQw6JY8vyzHg-2-NvAN5bUaLT4EXa8EqmhAjS0vBhmplaCp8b34R73Adfi6Pv5XhCNDn9Lf7ID9FvuJFlhPmaDPzMNXtXpKHGBd4gTh5siJPwHYlYnNjzhTi-ot1VIbsmnfallZLlhrYx43vb9bfc0qBD87oJcm4j2OCCpg__v_OP4MEafrJR1JfHcMu3T-D-NVLCp_B70v4gEo72lCE4ZF98CNwIMbQr1jXs0CwoYI59Pl-h8mG5687ZSUz3w2ado3xg3rHgBEM8GJt5RPgXv_6sa-x3qN1045MhYMbmVpQulEWizxWbxLw8zs-fwbfp5GT_IF3na0hricvQVHpluXemLlwx5KZSlWh4Zm2TW-KtV4XzubIF-j9bCs-tUaVRTeULhH24KuXiOQzarvUvgSGKkdgMalLNpeG1LRrUtco2EiWa1TyBDxtx6bNIy6EjATPXNLa6H9sEdkiaGgEFseLWFD5ULzRx7OQiT2B3I2S9Nt65RsyiFAJnLhN41xej2dFZiml9t6R_ZF7ik2cJvIjK0XdE4Lw2RGyQAA868Jce6tF4NurfXv1Lpbdw93g81Ycfjz7twD36HGMyd2Gw-Ln0r-H23C3fBNO4BLT8DPM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Reversibility+of+Lattice+Oxygen+Redox+Through+Modulated+Transition+Metal%E2%80%93Oxygen+Covalency+for+Layered+Battery+Electrodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Chen&rft.au=Chen%2C+Chi&rft.au=Chu%2C+Shiyong&rft.au=Hu%2C+Haolv&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201152&rft.externalDBID=10.1002%252Fadma.202201152&rft.externalDocID=ADMA202201152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |