Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD

Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth Vol. 297; no. 1; pp. 44 - 51
Main Authors: Kadoiwa, Kaoru, Ono, Kenichi, Ohkura, Yuji
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15-12-2006
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.
AbstractList Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann-Matano analysis for different composition ratios (x) of (1-x)InP-xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (x) for the (1 - x)InP-xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial-substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as 'pileups', and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.
Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration.
Author Ono, Kenichi
Kadoiwa, Kaoru
Ohkura, Yuji
Author_xml – sequence: 1
  givenname: Kaoru
  surname: Kadoiwa
  fullname: Kadoiwa, Kaoru
  email: kadoiwa.kaoru@eb.MitsubishiElectric.co.jp
– sequence: 2
  givenname: Kenichi
  surname: Ono
  fullname: Ono, Kenichi
– sequence: 3
  givenname: Yuji
  surname: Ohkura
  fullname: Ohkura, Yuji
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18346268$$DView record in Pascal Francis
BookMark eNqFkEFPGzEUhK2KSg20fwH5Qm-7PNubXfsGSoGmoiIH6IGL5bXfJo4Sm9obEP--jpKqx17mXeZ7o5lTchJiQELOGdQMWHu5rtc2vedlijUHaGtQNXD5gUyY7EQ1BeAnZFKUV8Ab-Ymc5rwGKCSDCfnxHKjzw7DLPgba48q8-pioGem4QjoPd-Y6Ly7nYUFXOGKKPhQdjEVa8t4CLVxY0p8Ps1_fPpOPg9lk_HK8Z-Tp9uZx9r26f7ibz67vK9sINVZK9RKmneuZkw30yFvbmB4M4z0MYgrClRKd7JyQTKDqVQvKNb10bcemTHBxRr4e_r6k-HuHedRbny1uNiZg3GXNpWokdE0xtgejTTHnhIN-SX5r0rtmoPfT6bX-O53eT6dB6TJdAS-OCSZbsxmSCdbnf7QUTcvbve_q4MNS99Vj0tl6DBadT2hH7aL_X9QfImeIWg
CODEN JCRGAE
CitedBy_id crossref_primary_10_7567_1347_4065_ab2c33
crossref_primary_10_1002_sia_5677
crossref_primary_10_1016_j_solmat_2024_112863
crossref_primary_10_1016_j_jcrysgro_2008_07_034
crossref_primary_10_1002_pip_3503
crossref_primary_10_1063_1_4868056
crossref_primary_10_1016_j_ijleo_2019_02_011
crossref_primary_10_1016_j_jallcom_2015_07_267
crossref_primary_10_1016_j_jcrysgro_2017_09_017
crossref_primary_10_1109_LPT_2012_2203799
Cites_doi 10.1016/0022-0248(84)90404-4
10.1063/1.343140
10.1063/1.368696
10.1063/1.338028
10.1016/0022-0248(94)91042-1
10.1143/JJAP.35.557
10.1063/1.341381
ContentType Journal Article
Copyright 2006 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2006.09.028
DatabaseName Pascal-Francis
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-5002
EndPage 51
ExternalDocumentID 10_1016_j_jcrysgro_2006_09_028
18346268
S0022024806008669
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
08R
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323
ISSN 0022-0248
IngestDate Fri Oct 25 11:12:04 EDT 2024
Thu Sep 26 18:05:29 EDT 2024
Sun Oct 22 16:04:39 EDT 2023
Fri Feb 23 02:25:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 78.66.Fd
78.40.Fy
A1. Diffusion
78.20.Ci
78.20.Bh
A3. Metalorganic vapor phase epitaxy
B2. Semiconducting III-V materials
Inorganic compounds
Epitaxial layers
Zinc additions
Thick films
Composition effect
Doping profiles
Crystal growth from vapors
Experimental study
Laser diodes
MOCVD
CVD
Interfaces
Secondary ion mass spectra
78.40.Fy; 78.20.Ci; 78.20.Bh; 78.66.Fd
Ionization
Al. Diffusion; A3. Metalorganic vapor phase epitaxy; B2. Semiconducting III-V materials
Heterojunctions
Modelling
Diffusion coefficient
Diffusion
Depth profiles
Heterostructures
Heterointerface
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28948074
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_28948074
crossref_primary_10_1016_j_jcrysgro_2006_09_028
pascalfrancis_primary_18346268
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2006_09_028
PublicationCentury 2000
PublicationDate 2006-12-15
PublicationDateYYYYMMDD 2006-12-15
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kadoiwa, Kato, Motoda, Mori, Fujii, Ochi, Yasuda, Sonoda, Murotani (bib1) 1993
Gao (bib8) 1988; 64
Kadoiwa, Kato, Motoda, Ishida, Fujii, Hayafuji, Tsugami, Sonoda, Takamiya, Mitsui (bib2) 1994; 145
van Gurp, Boudewijn, Kempeners, Tjaden (bib4) 1987; 61
Nelson, Westbrook (bib3) 1984; 68
van Gurp, van Dongen, Fontijn, Jacobs, Tjaden (bib5) 1989; 65
Peiner, Hansen, Lübbe, Schlachetzki (bib6) 1995; 35
Otsuka, Kito, Ishino, Matsui, Toujou (bib7) 1998; 84
Kadoiwa (10.1016/j.jcrysgro.2006.09.028_bib1) 1993
Nelson (10.1016/j.jcrysgro.2006.09.028_bib3) 1984; 68
van Gurp (10.1016/j.jcrysgro.2006.09.028_bib5) 1989; 65
Gao (10.1016/j.jcrysgro.2006.09.028_bib8) 1988; 64
Otsuka (10.1016/j.jcrysgro.2006.09.028_bib7) 1998; 84
Kadoiwa (10.1016/j.jcrysgro.2006.09.028_bib2) 1994; 145
van Gurp (10.1016/j.jcrysgro.2006.09.028_bib4) 1987; 61
Peiner (10.1016/j.jcrysgro.2006.09.028_bib6) 1995; 35
References_xml – start-page: 699
  year: 1993
  ident: bib1
  publication-title: Proc. IPRM
  contributor:
    fullname: Murotani
– volume: 35
  start-page: 557
  year: 1995
  ident: bib6
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Schlachetzki
– volume: 61
  start-page: 1846
  year: 1987
  ident: bib4
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Tjaden
– volume: 65
  start-page: 553
  year: 1989
  ident: bib5
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Tjaden
– volume: 84
  start-page: 4239
  year: 1998
  ident: bib7
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Toujou
– volume: 145
  start-page: 147
  year: 1994
  ident: bib2
  publication-title: J. Crystal Growth
  contributor:
    fullname: Mitsui
– volume: 68
  start-page: 102
  year: 1984
  ident: bib3
  publication-title: J. Crystal Growth
  contributor:
    fullname: Westbrook
– volume: 64
  start-page: 3760
  year: 1988
  ident: bib8
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Gao
– volume: 68
  start-page: 102
  year: 1984
  ident: 10.1016/j.jcrysgro.2006.09.028_bib3
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(84)90404-4
  contributor:
    fullname: Nelson
– volume: 65
  start-page: 553
  year: 1989
  ident: 10.1016/j.jcrysgro.2006.09.028_bib5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343140
  contributor:
    fullname: van Gurp
– volume: 84
  start-page: 4239
  year: 1998
  ident: 10.1016/j.jcrysgro.2006.09.028_bib7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368696
  contributor:
    fullname: Otsuka
– volume: 61
  start-page: 1846
  year: 1987
  ident: 10.1016/j.jcrysgro.2006.09.028_bib4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.338028
  contributor:
    fullname: van Gurp
– volume: 145
  start-page: 147
  year: 1994
  ident: 10.1016/j.jcrysgro.2006.09.028_bib2
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(94)91042-1
  contributor:
    fullname: Kadoiwa
– volume: 35
  start-page: 557
  year: 1995
  ident: 10.1016/j.jcrysgro.2006.09.028_bib6
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.35.557
  contributor:
    fullname: Peiner
– start-page: 699
  year: 1993
  ident: 10.1016/j.jcrysgro.2006.09.028_bib1
  publication-title: Proc. IPRM
  contributor:
    fullname: Kadoiwa
– volume: 64
  start-page: 3760
  year: 1988
  ident: 10.1016/j.jcrysgro.2006.09.028_bib8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.341381
  contributor:
    fullname: Gao
SSID ssj0001610
Score 1.9102877
Snippet Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 44
SubjectTerms A1. Diffusion
A3. Metalorganic vapor phase epitaxy
B2. Semiconducting III-V materials
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lasers
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
Optics
Physics
Semiconductor lasers; laser diodes
Title Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD
URI https://dx.doi.org/10.1016/j.jcrysgro.2006.09.028
https://search.proquest.com/docview/28948074
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbY9gAIIRhMjMvwA29TNsdOYuex6grbEDCJgcZeIjuxWYuUTk0jxL_n-JJ0XZkAIV6iysql8fl8_Pk43zkIvUo557AsoFFScRUlZUIixYyOZCqN5pLKTFg18uFH_v5MHIyS0WK7YNH2Xy0NbWBrq5z9C2v3N4UG-A02hyNYHY5_ZPfz2hU9aW0UrBfhB8kieIM3ctCcwN2P6hMgidCpU5swYmYkjO-vdkm-27rowbsPw88HNzDXcvajsRpKe_68Dye_leAevweF2XTW9uFbV9zbCoDG5cW4b7341roSR7tf2sn4WuwhppFXX_qA2IoophcI2FRpforxflVwFqWELDle6r_MXUKYd6M-JWSYkH1C2hVX76MOk72JfWl44bCxlO-RoDZfTqNtd6Wp_Vcks8u4LF9DGxScE_jGjcHR6Oy4n7-BA5Mux7y94Iqu_NdPu4nS3LuUDQw04yukrEz2jsGcPkD3gwHxwGPmIbql6010e9hV_NtEd68kp3yEjs9r3CMJd0jCco4BSTggaR9whK_hCDscYYcj7HD0GH16PTodHkah8kZUAkGdR3muBBD5SsWVSIjSNCsTqYiMqSKGpYRVjuXwCvge07myaQurRIkqg4EfM8q20Ho9rfUThLWhippYw7AHsm5SRalIDdNMcqD6km-j_a7zikufYKXovjycFF1322qpWUHyArp7G-VdHxeBJnr6VwA0fnvtzpJRFo8ULIG1PZzwsrNSAb1vd89kradtU1CR2_QLydN_ePwzdGcxjJ6j9fms1S_QWlO1OwGFPwETlqKA
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn+diffusion+behavior+at+the+InGaAsP%2FInP+heterointerface+grown+using+MOCVD&rft.jtitle=Journal+of+crystal+growth&rft.au=Kadoiwa%2C+Kaoru&rft.au=Ono%2C+Kenichi&rft.au=Ohkura%2C+Yuji&rft.date=2006-12-15&rft.pub=Elsevier+B.V&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=297&rft.issue=1&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jcrysgro.2006.09.028&rft.externalDocID=S0022024806008669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon