Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD
Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction i...
Saved in:
Published in: | Journal of crystal growth Vol. 297; no. 1; pp. 44 - 51 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-12-2006
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios (
x) of (1−
x)InP–
xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (
x) for the (1−
x)InP–
xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties.
Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (
x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration. |
---|---|
AbstractList | Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann-Matano analysis for different composition ratios (x) of (1-x)InP-xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio (x) for the (1 - x)InP-xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial-substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as 'pileups', and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios (x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration. Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as part of the doping profile control for laser diodes. It was found that the Zn doping profile has specific discontinuity at the heterojunction in InGaAsP/InP heterostructures. Using secondary ionization mass spectrometer (SIMS) and Boltzmann–Matano analysis for different composition ratios ( x) of (1− x)InP– xInGaAs epitaxial layers grown on Zn-doped InP substrates, it was found that the Zn diffusion coefficients were proportional to the square of the concentration in the InP and InGaAsP layers. The Zn diffusion coefficient strongly depends on the component ratio ( x) for the (1− x)InP– xInGaAs layer. It was concluded that this diffusion property is based on the higher stability of the substitutional Zn content in the InGaAs layer compared to that in the InP layer. The dependence of the Zn diffusion coefficient on Zn concentration in the InGaAsP/InP layers is explained based on the main diffusion source being Zn at the interstitial sites. The thermal equilibrium between Zn-interstitial and Zn-substitutional (interstitial–substitutional model) describes these Zn diffusion properties. Marked Zn concentrations at InGaAsP/InP heterojunctions are referred to as “pileups”, and are affirmed due to the difference in physical properties between InP and InGaAs. With different composition ratios ( x) of InP/InGaAsP layer growth, pre-control of the Zn concentration and strict limitations on the growth conditions before diffusion are indispensable for lasers requiring a precisely controlled doping concentration. |
Author | Ono, Kenichi Kadoiwa, Kaoru Ohkura, Yuji |
Author_xml | – sequence: 1 givenname: Kaoru surname: Kadoiwa fullname: Kadoiwa, Kaoru email: kadoiwa.kaoru@eb.MitsubishiElectric.co.jp – sequence: 2 givenname: Kenichi surname: Ono fullname: Ono, Kenichi – sequence: 3 givenname: Yuji surname: Ohkura fullname: Ohkura, Yuji |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18346268$$DView record in Pascal Francis |
BookMark | eNqFkEFPGzEUhK2KSg20fwH5Qm-7PNubXfsGSoGmoiIH6IGL5bXfJo4Sm9obEP--jpKqx17mXeZ7o5lTchJiQELOGdQMWHu5rtc2vedlijUHaGtQNXD5gUyY7EQ1BeAnZFKUV8Ab-Ymc5rwGKCSDCfnxHKjzw7DLPgba48q8-pioGem4QjoPd-Y6Ly7nYUFXOGKKPhQdjEVa8t4CLVxY0p8Ps1_fPpOPg9lk_HK8Z-Tp9uZx9r26f7ibz67vK9sINVZK9RKmneuZkw30yFvbmB4M4z0MYgrClRKd7JyQTKDqVQvKNb10bcemTHBxRr4e_r6k-HuHedRbny1uNiZg3GXNpWokdE0xtgejTTHnhIN-SX5r0rtmoPfT6bX-O53eT6dB6TJdAS-OCSZbsxmSCdbnf7QUTcvbve_q4MNS99Vj0tl6DBadT2hH7aL_X9QfImeIWg |
CODEN | JCRGAE |
CitedBy_id | crossref_primary_10_7567_1347_4065_ab2c33 crossref_primary_10_1002_sia_5677 crossref_primary_10_1016_j_solmat_2024_112863 crossref_primary_10_1016_j_jcrysgro_2008_07_034 crossref_primary_10_1002_pip_3503 crossref_primary_10_1063_1_4868056 crossref_primary_10_1016_j_ijleo_2019_02_011 crossref_primary_10_1016_j_jallcom_2015_07_267 crossref_primary_10_1016_j_jcrysgro_2017_09_017 crossref_primary_10_1109_LPT_2012_2203799 |
Cites_doi | 10.1016/0022-0248(84)90404-4 10.1063/1.343140 10.1063/1.368696 10.1063/1.338028 10.1016/0022-0248(94)91042-1 10.1143/JJAP.35.557 10.1063/1.341381 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier B.V. – notice: 2007 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jcrysgro.2006.09.028 |
DatabaseName | Pascal-Francis CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-5002 |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_jcrysgro_2006_09_028 18346268 S0022024806008669 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSQ SSZ T5K TN5 VH1 WUQ XPP ZMT ~02 ~G- 08R ABPIF ABPTK IQODW AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323 |
ISSN | 0022-0248 |
IngestDate | Fri Oct 25 11:12:04 EDT 2024 Thu Sep 26 18:05:29 EDT 2024 Sun Oct 22 16:04:39 EDT 2023 Fri Feb 23 02:25:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 78.66.Fd 78.40.Fy A1. Diffusion 78.20.Ci 78.20.Bh A3. Metalorganic vapor phase epitaxy B2. Semiconducting III-V materials Inorganic compounds Epitaxial layers Zinc additions Thick films Composition effect Doping profiles Crystal growth from vapors Experimental study Laser diodes MOCVD CVD Interfaces Secondary ion mass spectra 78.40.Fy; 78.20.Ci; 78.20.Bh; 78.66.Fd Ionization Al. Diffusion; A3. Metalorganic vapor phase epitaxy; B2. Semiconducting III-V materials Heterojunctions Modelling Diffusion coefficient Diffusion Depth profiles Heterostructures Heterointerface |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-99b8057db1d840be26c4ab0a12b0f3503d006787d3813e9b9609d4b8d67151323 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28948074 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_28948074 crossref_primary_10_1016_j_jcrysgro_2006_09_028 pascalfrancis_primary_18346268 elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2006_09_028 |
PublicationCentury | 2000 |
PublicationDate | 2006-12-15 |
PublicationDateYYYYMMDD | 2006-12-15 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of crystal growth |
PublicationYear | 2006 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kadoiwa, Kato, Motoda, Mori, Fujii, Ochi, Yasuda, Sonoda, Murotani (bib1) 1993 Gao (bib8) 1988; 64 Kadoiwa, Kato, Motoda, Ishida, Fujii, Hayafuji, Tsugami, Sonoda, Takamiya, Mitsui (bib2) 1994; 145 van Gurp, Boudewijn, Kempeners, Tjaden (bib4) 1987; 61 Nelson, Westbrook (bib3) 1984; 68 van Gurp, van Dongen, Fontijn, Jacobs, Tjaden (bib5) 1989; 65 Peiner, Hansen, Lübbe, Schlachetzki (bib6) 1995; 35 Otsuka, Kito, Ishino, Matsui, Toujou (bib7) 1998; 84 Kadoiwa (10.1016/j.jcrysgro.2006.09.028_bib1) 1993 Nelson (10.1016/j.jcrysgro.2006.09.028_bib3) 1984; 68 van Gurp (10.1016/j.jcrysgro.2006.09.028_bib5) 1989; 65 Gao (10.1016/j.jcrysgro.2006.09.028_bib8) 1988; 64 Otsuka (10.1016/j.jcrysgro.2006.09.028_bib7) 1998; 84 Kadoiwa (10.1016/j.jcrysgro.2006.09.028_bib2) 1994; 145 van Gurp (10.1016/j.jcrysgro.2006.09.028_bib4) 1987; 61 Peiner (10.1016/j.jcrysgro.2006.09.028_bib6) 1995; 35 |
References_xml | – start-page: 699 year: 1993 ident: bib1 publication-title: Proc. IPRM contributor: fullname: Murotani – volume: 35 start-page: 557 year: 1995 ident: bib6 publication-title: Jpn. J. Appl. Phys. contributor: fullname: Schlachetzki – volume: 61 start-page: 1846 year: 1987 ident: bib4 publication-title: J. Appl. Phys. contributor: fullname: Tjaden – volume: 65 start-page: 553 year: 1989 ident: bib5 publication-title: J. Appl. Phys. contributor: fullname: Tjaden – volume: 84 start-page: 4239 year: 1998 ident: bib7 publication-title: J. Appl. Phys. contributor: fullname: Toujou – volume: 145 start-page: 147 year: 1994 ident: bib2 publication-title: J. Crystal Growth contributor: fullname: Mitsui – volume: 68 start-page: 102 year: 1984 ident: bib3 publication-title: J. Crystal Growth contributor: fullname: Westbrook – volume: 64 start-page: 3760 year: 1988 ident: bib8 publication-title: J. Appl. Phys. contributor: fullname: Gao – volume: 68 start-page: 102 year: 1984 ident: 10.1016/j.jcrysgro.2006.09.028_bib3 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(84)90404-4 contributor: fullname: Nelson – volume: 65 start-page: 553 year: 1989 ident: 10.1016/j.jcrysgro.2006.09.028_bib5 publication-title: J. Appl. Phys. doi: 10.1063/1.343140 contributor: fullname: van Gurp – volume: 84 start-page: 4239 year: 1998 ident: 10.1016/j.jcrysgro.2006.09.028_bib7 publication-title: J. Appl. Phys. doi: 10.1063/1.368696 contributor: fullname: Otsuka – volume: 61 start-page: 1846 year: 1987 ident: 10.1016/j.jcrysgro.2006.09.028_bib4 publication-title: J. Appl. Phys. doi: 10.1063/1.338028 contributor: fullname: van Gurp – volume: 145 start-page: 147 year: 1994 ident: 10.1016/j.jcrysgro.2006.09.028_bib2 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(94)91042-1 contributor: fullname: Kadoiwa – volume: 35 start-page: 557 year: 1995 ident: 10.1016/j.jcrysgro.2006.09.028_bib6 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.35.557 contributor: fullname: Peiner – start-page: 699 year: 1993 ident: 10.1016/j.jcrysgro.2006.09.028_bib1 publication-title: Proc. IPRM contributor: fullname: Kadoiwa – volume: 64 start-page: 3760 year: 1988 ident: 10.1016/j.jcrysgro.2006.09.028_bib8 publication-title: J. Appl. Phys. doi: 10.1063/1.341381 contributor: fullname: Gao |
SSID | ssj0001610 |
Score | 1.9102877 |
Snippet | Zinc (Zn) diffusion through MOCVD-fabricated InP and InGaAsP layers, and the corresponding Zn doping profile at the heterojunction interface were studied as... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 44 |
SubjectTerms | A1. Diffusion A3. Metalorganic vapor phase epitaxy B2. Semiconducting III-V materials Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science; rheology Exact sciences and technology Fundamental areas of phenomenology (including applications) Lasers Materials science Methods of deposition of films and coatings; film growth and epitaxy Optics Physics Semiconductor lasers; laser diodes |
Title | Zn diffusion behavior at the InGaAsP/InP heterointerface grown using MOCVD |
URI | https://dx.doi.org/10.1016/j.jcrysgro.2006.09.028 https://search.proquest.com/docview/28948074 |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbY9gAIIRhMjMvwA29TNsdOYuex6grbEDCJgcZeIjuxWYuUTk0jxL_n-JJ0XZkAIV6iysql8fl8_Pk43zkIvUo557AsoFFScRUlZUIixYyOZCqN5pLKTFg18uFH_v5MHIyS0WK7YNH2Xy0NbWBrq5z9C2v3N4UG-A02hyNYHY5_ZPfz2hU9aW0UrBfhB8kieIM3ctCcwN2P6hMgidCpU5swYmYkjO-vdkm-27rowbsPw88HNzDXcvajsRpKe_68Dye_leAevweF2XTW9uFbV9zbCoDG5cW4b7341roSR7tf2sn4WuwhppFXX_qA2IoophcI2FRpforxflVwFqWELDle6r_MXUKYd6M-JWSYkH1C2hVX76MOk72JfWl44bCxlO-RoDZfTqNtd6Wp_Vcks8u4LF9DGxScE_jGjcHR6Oy4n7-BA5Mux7y94Iqu_NdPu4nS3LuUDQw04yukrEz2jsGcPkD3gwHxwGPmIbql6010e9hV_NtEd68kp3yEjs9r3CMJd0jCco4BSTggaR9whK_hCDscYYcj7HD0GH16PTodHkah8kZUAkGdR3muBBD5SsWVSIjSNCsTqYiMqSKGpYRVjuXwCvge07myaQurRIkqg4EfM8q20Ho9rfUThLWhippYw7AHsm5SRalIDdNMcqD6km-j_a7zikufYKXovjycFF1322qpWUHyArp7G-VdHxeBJnr6VwA0fnvtzpJRFo8ULIG1PZzwsrNSAb1vd89kradtU1CR2_QLydN_ePwzdGcxjJ6j9fms1S_QWlO1OwGFPwETlqKA |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn+diffusion+behavior+at+the+InGaAsP%2FInP+heterointerface+grown+using+MOCVD&rft.jtitle=Journal+of+crystal+growth&rft.au=Kadoiwa%2C+Kaoru&rft.au=Ono%2C+Kenichi&rft.au=Ohkura%2C+Yuji&rft.date=2006-12-15&rft.pub=Elsevier+B.V&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=297&rft.issue=1&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jcrysgro.2006.09.028&rft.externalDocID=S0022024806008669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon |