Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells

Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materi...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 27; pp. e1900854 - n/a
Main Authors: Said, Ahmed Ali, Xie, Jian, Zhang, Qichun
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs. Organic n‐type materials as electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs) have attracted many scientists' attention, not only because of their several advantages, including easy synthesis, tunable frontier molecular orbitals, decent electron mobility, and reasonable chemical/thermal stability, but also because of their ability to make large‐scale solution‐processing p–i–n PSCs possible.
AbstractList Organic n-type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene-based molecules, and n-type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p-i-n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p-i-n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p-i-n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n-type materials as ETLs for more efficient p-i-n PSCs.
Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs. Organic n‐type materials as electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs) have attracted many scientists' attention, not only because of their several advantages, including easy synthesis, tunable frontier molecular orbitals, decent electron mobility, and reasonable chemical/thermal stability, but also because of their ability to make large‐scale solution‐processing p–i–n PSCs possible.
Abstract Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs.
Author Said, Ahmed Ali
Zhang, Qichun
Xie, Jian
Author_xml – sequence: 1
  givenname: Ahmed Ali
  surname: Said
  fullname: Said, Ahmed Ali
  organization: Nanyang Technological University
– sequence: 2
  givenname: Jian
  surname: Xie
  fullname: Xie, Jian
  organization: Nanyang Technological University
– sequence: 3
  givenname: Qichun
  orcidid: 0000-0003-1854-8659
  surname: Zhang
  fullname: Zhang, Qichun
  email: qczhang@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31069952$$D View this record in MEDLINE/PubMed
BookMark eNqF0LtPwzAQBnALFdFSWBmRJRaWFr-TjKgqDymoFY-FJXKSS5WS2sVOivjvMRSKxMJ0N_zu0-k7RD1jDSB0QsmYEsIu_KppxozQhJBYij00oIrykYpZ0tvtlPTRofdLQjhlIjpAfU6JShLJBuj5HgowLZ47u3DgPa4NnrmFNnWBpw0UrbMGPzpt_Nq6Ft_pFlytmy93azbgWijxHJzd-Je6BfxgG-3wBJrGH6H9Kkg4_p5D9HQ1fZzcjNLZ9e3kMh0VgidilMdlLKSmiggieEUjpaTKcyFzgJxXeVIWnJUxKA0lSIjKiBQglKKSs0pFhA_R-TZ37exrB77NVrUvwgfagO18xhinCWVSsEDP_tCl7ZwJ3wWlpFShSRnUeKsKZ713UGVrV6-0e88oyT5bzz5bz3ath4PT79guX0G54z81B5BswVvdwPs_cdnDXZr-hn8Auh2QEg
CitedBy_id crossref_primary_10_1002_adma_202302146
crossref_primary_10_1002_ente_202300991
crossref_primary_10_1002_solr_202400178
crossref_primary_10_1039_D1NR00839K
crossref_primary_10_1021_acsami_1c21081
crossref_primary_10_1039_D0TA03548C
crossref_primary_10_1021_acsaem_0c01484
crossref_primary_10_1002_cssc_202000728
crossref_primary_10_1002_solr_202000816
crossref_primary_10_1021_acsami_1c05284
crossref_primary_10_1039_D2MA00385F
crossref_primary_10_1039_D3TC03183G
crossref_primary_10_1039_D1MA00355K
crossref_primary_10_1007_s40843_021_1771_5
crossref_primary_10_1002_solr_202200296
crossref_primary_10_1021_acs_energyfuels_1c03692
crossref_primary_10_1002_adfm_202001073
crossref_primary_10_1002_inf2_12345
crossref_primary_10_1021_acsenergylett_1c02807
crossref_primary_10_1016_j_nanoen_2020_105712
crossref_primary_10_1021_jacsau_2c00151
crossref_primary_10_1016_j_solener_2020_03_062
crossref_primary_10_1021_acsaem_2c00430
crossref_primary_10_1002_solr_202101086
crossref_primary_10_1016_j_matchemphys_2020_124060
crossref_primary_10_1039_D1NJ01464A
crossref_primary_10_1021_acsami_2c08733
crossref_primary_10_1002_eom2_12094
crossref_primary_10_3390_en13236335
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1002_smll_202403193
crossref_primary_10_1021_acsami_9b12829
crossref_primary_10_1039_D0CP02367A
crossref_primary_10_1002_hlca_202000173
crossref_primary_10_1002_smtd_201900552
crossref_primary_10_1039_D2TA08827D
crossref_primary_10_1039_D3TC02243A
crossref_primary_10_1002_asia_202000262
crossref_primary_10_1002_chem_201905303
crossref_primary_10_1080_25740881_2020_1861289
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1002_smll_202101226
crossref_primary_10_1007_s10853_023_08439_x
crossref_primary_10_1039_D2TC02911A
crossref_primary_10_1007_s11771_021_4885_5
crossref_primary_10_1021_acsomega_2c03775
crossref_primary_10_1039_D1TA08424K
crossref_primary_10_1149_2162_8777_abefaf
crossref_primary_10_1016_j_jpowsour_2022_231038
crossref_primary_10_1016_j_nanoen_2020_104844
crossref_primary_10_1002_est2_665
crossref_primary_10_1002_inf2_12120
crossref_primary_10_1007_s10853_020_05567_6
crossref_primary_10_1039_D0TA06500E
crossref_primary_10_1021_acsaem_2c03720
crossref_primary_10_1109_ACCESS_2023_3267971
crossref_primary_10_1002_solr_202100236
crossref_primary_10_1016_j_ccr_2023_215502
crossref_primary_10_1016_j_molstruc_2023_136932
crossref_primary_10_1039_D0TC04271D
crossref_primary_10_1021_acsenergylett_4c00306
crossref_primary_10_1002_smsc_202100086
crossref_primary_10_1039_D2NJ02202H
crossref_primary_10_1002_aenm_202302191
crossref_primary_10_1155_2021_9920442
crossref_primary_10_3390_en16010471
crossref_primary_10_1016_j_cej_2021_129375
crossref_primary_10_1039_D0NR02562C
crossref_primary_10_1155_2022_5288400
crossref_primary_10_1016_j_jssc_2021_122872
crossref_primary_10_1039_D2RA07580F
crossref_primary_10_1002_adfm_202002808
crossref_primary_10_1039_C9QM00656G
crossref_primary_10_1016_j_trechm_2019_11_002
crossref_primary_10_1016_j_cej_2022_137051
crossref_primary_10_1002_adfm_202109968
crossref_primary_10_1021_acsami_0c10717
crossref_primary_10_1007_s11708_022_0826_8
crossref_primary_10_1016_j_mtener_2024_101514
crossref_primary_10_1002_smll_202208243
crossref_primary_10_1002_er_7942
crossref_primary_10_1016_j_jssc_2020_121571
crossref_primary_10_1021_acsami_0c11164
crossref_primary_10_1080_15567036_2023_2192182
crossref_primary_10_1016_j_materresbull_2024_112677
crossref_primary_10_1016_j_cej_2022_138037
crossref_primary_10_1021_jacs_0c09647
crossref_primary_10_1002_admi_202100776
crossref_primary_10_1021_acsaem_1c04059
crossref_primary_10_1021_acsami_1c04601
crossref_primary_10_1039_D0EE02043E
crossref_primary_10_1016_j_cej_2023_148277
crossref_primary_10_1016_j_spmi_2020_106549
crossref_primary_10_1016_j_mtcomm_2024_109260
crossref_primary_10_3390_polym14040823
crossref_primary_10_1021_acs_jpclett_1c03061
crossref_primary_10_1039_D0TC04175K
crossref_primary_10_1016_j_solener_2023_112185
crossref_primary_10_1109_TED_2023_3235870
crossref_primary_10_1155_2020_8877744
crossref_primary_10_1002_celc_202101483
crossref_primary_10_1021_acs_chemmater_9b02601
crossref_primary_10_1016_j_mtener_2023_101473
crossref_primary_10_1038_s41377_021_00515_8
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1007_s12034_022_02805_2
crossref_primary_10_1039_D1CP02704B
crossref_primary_10_1002_aenm_201902253
crossref_primary_10_1021_acsami_2c02250
crossref_primary_10_1002_eom2_12272
crossref_primary_10_3788_LOP221066
crossref_primary_10_1021_acsami_2c01960
crossref_primary_10_1039_D2NJ02274E
crossref_primary_10_1051_epjpv_2021004
crossref_primary_10_1002_solr_202000425
crossref_primary_10_3390_polym13132110
crossref_primary_10_1021_acsaem_0c01085
crossref_primary_10_3390_ijms231911792
crossref_primary_10_1002_sstr_202200012
crossref_primary_10_1016_j_cej_2021_129730
crossref_primary_10_1016_j_mtcomm_2022_104090
crossref_primary_10_1002_adma_202005504
crossref_primary_10_1039_D0QM00983K
crossref_primary_10_1109_JPHOTOV_2020_3048249
crossref_primary_10_1109_JPHOTOV_2021_3077445
crossref_primary_10_1021_acsaem_0c00535
crossref_primary_10_1039_C9SC05694G
crossref_primary_10_1007_s11426_021_1084_y
crossref_primary_10_1002_adfm_202008300
crossref_primary_10_1021_acsaem_9b02392
crossref_primary_10_1021_acsami_1c21479
crossref_primary_10_1039_D2QM01369J
crossref_primary_10_1016_j_mtener_2022_101031
crossref_primary_10_1002_aenm_202000183
crossref_primary_10_1039_D3CP04322C
crossref_primary_10_1016_j_mseb_2023_116911
crossref_primary_10_1109_LED_2019_2956346
crossref_primary_10_1149_2162_8777_ac255e
crossref_primary_10_1080_10408436_2022_2041395
crossref_primary_10_1002_ente_202100691
crossref_primary_10_1021_acssuschemeng_0c03087
crossref_primary_10_1039_C9TC03877A
crossref_primary_10_1039_D0NR03408H
crossref_primary_10_1021_acs_jpclett_1c01074
crossref_primary_10_1039_D3LF00183K
crossref_primary_10_1109_ACCESS_2021_3070112
crossref_primary_10_1002_adfm_202201933
crossref_primary_10_1002_cjoc_202300105
crossref_primary_10_1002_adfm_202011242
crossref_primary_10_1021_acsaem_9b01154
crossref_primary_10_1002_chem_202401283
crossref_primary_10_1002_adfm_201905021
crossref_primary_10_1016_j_dyepig_2019_108031
crossref_primary_10_1021_acsomega_3c04452
crossref_primary_10_1002_adma_202402143
crossref_primary_10_1039_D1NR04170C
crossref_primary_10_1021_acsenergylett_2c00476
crossref_primary_10_1002_eom2_12127
crossref_primary_10_1002_chem_202301337
crossref_primary_10_1002_admi_202100506
crossref_primary_10_1002_smll_201905731
crossref_primary_10_1016_j_apsadv_2023_100394
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_1109_ACCESS_2021_3114383
crossref_primary_10_1016_j_carbon_2022_04_046
crossref_primary_10_1021_acsaem_1c01836
crossref_primary_10_1002_eem2_12347
crossref_primary_10_1002_aesr_202100218
crossref_primary_10_1002_er_6909
crossref_primary_10_1002_smll_202207445
crossref_primary_10_1039_D1TC02407H
crossref_primary_10_1080_00268976_2023_2200497
crossref_primary_10_1038_s41467_024_44974_0
crossref_primary_10_1088_1402_4896_ad4b6a
crossref_primary_10_1021_acsaem_1c01886
crossref_primary_10_1002_sus2_25
crossref_primary_10_1039_D0TC05725H
crossref_primary_10_3389_fchem_2022_886522
crossref_primary_10_1007_s11664_022_10203_x
crossref_primary_10_1021_acsenergylett_9b01539
crossref_primary_10_1038_s41467_022_34203_x
crossref_primary_10_1007_s13204_022_02745_7
crossref_primary_10_1002_solr_202000299
crossref_primary_10_1039_D1CP04863E
crossref_primary_10_1016_j_orgel_2022_106719
crossref_primary_10_1021_acsenergylett_0c01609
crossref_primary_10_1166_sam_2022_4302
crossref_primary_10_6023_cjoc202107063
crossref_primary_10_1021_acs_jpcc_1c02225
crossref_primary_10_1007_s00521_023_08230_8
crossref_primary_10_1002_asia_201901452
crossref_primary_10_1002_aenm_202202713
crossref_primary_10_1021_acsphotonics_0c00677
crossref_primary_10_1021_acssuschemeng_4c01587
crossref_primary_10_1134_S0022476622110178
crossref_primary_10_1515_nanoph_2021_0034
crossref_primary_10_1063_5_0074039
crossref_primary_10_1021_acsmaterialslett_2c00045
crossref_primary_10_1016_j_mencom_2023_04_030
crossref_primary_10_1002_aenm_202000910
crossref_primary_10_1039_D2TC02182J
crossref_primary_10_1007_s40820_021_00683_7
crossref_primary_10_1007_s12598_021_01812_2
crossref_primary_10_1021_acsaelm_3c00900
crossref_primary_10_1016_j_rser_2021_111689
crossref_primary_10_1021_acsaem_0c00680
crossref_primary_10_1016_j_cej_2024_152899
crossref_primary_10_1016_j_cinorg_2023_100026
crossref_primary_10_1021_acsami_1c03000
crossref_primary_10_1039_D1TC03246A
crossref_primary_10_1021_acs_analchem_1c04750
Cites_doi 10.1016/j.orgel.2017.10.028
10.1002/cssc.201801908
10.1002/anie.201706895
10.1126/science.aan2301
10.1021/acsami.6b08771
10.1016/j.solmat.2013.01.010
10.1021/jo500400d
10.1002/aenm.201100429
10.1002/advs.201500353
10.1002/solr.201700046
10.1021/jo5027707
10.1038/ncomms8081
10.1021/nn5036476
10.1039/B615857A
10.1016/j.jpowsour.2016.11.047
10.1126/science.1243167
10.1038/nphoton.2013.341
10.1039/c2cc32048g
10.1002/adma.201601745
10.1016/j.solmat.2016.07.037
10.1038/nenergy.2015.1
10.1002/chem.200601298
10.1103/PhysRevLett.107.256805
10.1038/nphoton.2016.3
10.1002/asia.201600856
10.1039/C5RA27620A
10.1039/C8TA06081A
10.1002/aenm.201702872
10.1002/aenm.201700522
10.1039/C7TA01764B
10.1021/acsami.5b00113
10.1021/acsami.7b10365
10.1002/aenm.201401692
10.1039/C7TA02617J
10.1002/adma.201301327
10.1063/1.4864260
10.1038/s41467-018-04028-8
10.1002/aenm.201502101
10.1002/cssc.201501673
10.1002/adma.201305172
10.1002/asia.201300208
10.1039/b907991m
10.1021/ja103173m
10.1021/acsami.6b10803
10.1016/j.nanoen.2017.11.014
10.1039/C0JM02354J
10.1038/ncomms12806
10.1039/C5TA10574A
10.1002/aenm.201401616
10.1126/science.aap9282
10.1016/j.orgel.2016.01.002
10.1002/aenm.201602120
10.1021/acsami.8b15130
10.1021/cm101937p
10.1039/C4CS00458B
10.1016/j.mtener.2018.05.017
10.1126/science.1243982
10.1002/aenm.201500279
10.1021/acsami.6b14375
10.1021/am506785k
10.1002/adma.201001402
10.1039/C7TA06900F
10.1002/aenm.201200103
10.1016/j.orgel.2018.06.049
10.1039/C8TA05636F
10.1039/C7TA06335K
10.1039/C5CC01642H
10.1039/C8TA06730A
10.1038/ncomms6784
10.1039/C5CC05253J
10.1063/1.5036643
10.1021/jo5021163
10.1016/j.solmat.2017.04.043
10.1002/asia.201301547
10.1126/science.aaa9272
10.1016/j.nanoen.2016.04.057
10.1021/acsami.5b01606
10.1002/asia.201000659
10.1016/j.cplett.2012.03.061
10.1103/PhysRevApplied.2.034007
10.1039/C8TA00492G
10.1126/science.aaa5333
10.1016/j.nanoen.2016.10.026
10.1021/acsami.7b00902
10.1039/C7TC03368K
10.1039/C8QO00788H
10.1002/chem.201304071
10.1039/C7NJ04978A
10.1016/j.solmat.2016.05.026
10.1021/acs.chemrev.6b00160
10.1002/adfm.201800346
10.1021/acs.chemmater.7b01318
10.1002/smll.201402767
10.1039/c2jm30470h
10.1039/C5TA03093E
10.1039/C3EE43161D
10.1021/ja064934k
10.1038/nphys3357
10.1016/j.rser.2017.05.095
10.1039/c3cs60388a
10.1002/adma.201404152
10.1016/S1369-7021(12)70019-6
10.1002/anie.201510990
10.1126/science.1228604
10.1016/j.nanoen.2016.08.048
10.1016/j.ica.2017.05.056
10.1021/es103860a
10.1021/jz500279b
10.1038/ncomms8348
10.1039/C6RA22023A
10.1002/smll.201101686
10.1002/cssc.201702374
10.1002/chem.201403472
10.1021/ja809598r
10.1002/advs.201600027
10.1039/C5TA10696F
10.1016/j.jssc.2018.10.045
10.1002/smll.201803339
10.1002/aenm.201600457
10.1021/acs.accounts.5b00199
10.1002/ajoc.201800385
10.1039/C5NJ02957K
10.1039/C6EE01337F
10.1039/C6TA08526A
10.1039/C3TA14236A
10.1039/C6TB02052F
10.1002/ange.200462962
10.1021/acs.nanolett.5b00787
10.1002/cssc.201701827
10.1002/tcr.201600015
10.1039/C5TC02080H
10.1002/advs.201500014
10.1039/C6TC05066B
10.1039/C4EE01216J
10.1002/adma.201300580
10.1039/C4CC08706B
10.1039/C2JM15322J
10.1039/c1nr10867k
10.1021/acs.jpclett.6b00215
10.1002/asia.201600293
10.1002/adma.201204543
10.1016/j.joule.2017.11.006
10.1039/C5TA09080F
10.1021/acsami.8b12675
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201900854
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_201900854
31069952
SMLL201900854
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Jilin University
– fundername: State Key Laboratory of Supramolecular Structure and Materials
– fundername: MOE
  funderid: 2017‐T2‐1‐021; 2018‐T2‐1‐070
– fundername: MOE
  grantid: 2017-T2-1-021
– fundername: MOE
  grantid: 2018-T2-1-070
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4394-b8d845a1604043f176656bb45beeb3fb9dc32d8e6aede5e7d70ce4661532f6703
IEDL.DBID 33P
ISSN 1613-6810
IngestDate Sat Aug 17 03:56:45 EDT 2024
Thu Oct 10 16:17:18 EDT 2024
Fri Aug 23 01:08:53 EDT 2024
Wed Oct 16 00:50:23 EDT 2024
Sat Aug 24 01:11:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords n-type polymers
modified fullerene materials
electron transport materials
organic n-type small molecules
inverted perovskite solar cells
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-b8d845a1604043f176656bb45beeb3fb9dc32d8e6aede5e7d70ce4661532f6703
Notes Dedicated to Professor Yongfang Li, Professor Yuliang Li, and Professor Yunqi Liu on the occasion of their 70th birthdays
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-1854-8659
PMID 31069952
PQID 2265562015
PQPubID 1046358
PageCount 23
ParticipantIDs proquest_miscellaneous_2231912542
proquest_journals_2265562015
crossref_primary_10_1002_smll_201900854
pubmed_primary_31069952
wiley_primary_10_1002_smll_201900854_SMLL201900854
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 80
2017; 1
2013; 25
2018; 360
2018; 124
2014; 26
2008; 37
2016; 30
2015; 80
2015; 348
2012; 15
2013; 8
2018; 43
2017; 356
2018; 42
2017; 9
2014; 20
2018; 7
2018; 6
2018; 9
2015; 48
2018; 8
2014; 5
2018; 2
2018; 5
2014; 2
2013; 112
2016; 157
2016; 40
2011; 21
2011; 23
2016; 116
2014; 9
2014; 8
2014; 7
2019; 270
2012; 22
2012; 535
2017; 169
2006; 128
2012; 338
2016; 45
2017; 339
2015; 2
2015; 15
2018; 28
2015; 6
2015; 5
2011; 1
2015; 3
2015; 51
2010; 39
2015; 11
2005; 117
2016; 10
2013; 342
2017; 29
2018; 61
2009; 131
2011; 3
2016; 16
2011; 6
2015; 7
2007; 13
2014; 115
2014; 43
2016; 11
2016; 55
2016; 4
2016; 6
2016; 7
2012; 2
2016; 1
2015; 27
2011; 107
2010; 46
2016; 3
2017; 56
2010; 132
2018
2014; 79
2018; 52
2011; 45
2012; 48
2018; 11
2016; 28
2018; 10
2016; 26
2016; 8
2016; 9
2017; 468
2012; 8
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
Li G. (e_1_2_7_45_1) 2010; 46
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 7
  start-page: 399
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1015
  year: 2015
  publication-title: Adv. Mater.
– volume: 80
  start-page: 109
  year: 2015
  publication-title: J. Org. Chem.
– volume: 23
  start-page: 268
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 168
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 38970
  year: 2018
  publication-title: ACS Appl. ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 16868
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 265
  year: 2012
  publication-title: Small
– volume: 21
  start-page: 1953
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 128
  year: 2014
  publication-title: Nat. Photonics
– volume: 6
  start-page: 1502101
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 4443
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 14648
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 7
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 856
  year: 2011
  publication-title: Chem. ‐ Asian J.
– volume: 45
  start-page: 2353
  year: 2011
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 1834
  year: 2015
  publication-title: Chem. Commun.
– volume: 39
  start-page: 2500
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 157
  start-page: 79
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 34612
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  start-page: 8852
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 11881
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 2444
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 12811
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 18852
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 264
  year: 2018
  publication-title: Mater. Today Energy
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 10
  year: 2015
  publication-title: Small
– volume: 4
  start-page: 3667
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1700046
  year: 2017
  publication-title: Sol. RRL
– volume: 10
  start-page: 196
  year: 2016
  publication-title: Nat. Photonics
– volume: 6
  start-page: 19923
  year: 2016
  publication-title: RSC Adv.
– volume: 7
  start-page: 12806
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2419
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 15495
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 2572
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 36
  year: 2012
  publication-title: Mater. Today
– volume: 11
  start-page: 415
  year: 2018
  publication-title: ChemSusChem
– volume: 128
  start-page: 13042
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1600457
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1401692
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 80
  start-page: 3030
  year: 2015
  publication-title: J. Org. Chem.
– volume: 11
  start-page: 582
  year: 2015
  publication-title: Nat. Phys.
– volume: 9
  start-page: 1625
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1201
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1700522
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1602120
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1600027
  year: 2016
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2845
  year: 2018
  publication-title: Org. Chem. Front.
– volume: 468
  start-page: 146
  year: 2017
  publication-title: Inorg. Chim. Acta
– volume: 5
  start-page: 1401616
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 10786
  year: 2016
  publication-title: Adv. Mater.
– volume: 37
  start-page: 331
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 034007
  year: 2014
  publication-title: Phys. Rev. Appl.
– volume: 5
  start-page: 20720
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7081
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 20615
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 2756
  year: 2015
  publication-title: Nano Lett.
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  start-page: 1758
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 79
  start-page: 4438
  year: 2014
  publication-title: J. Org. Chem.
– volume: 7
  start-page: 3994
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 10983
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1500353
  year: 2016
  publication-title: Adv. Sci.
– volume: 5
  start-page: 1275
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 1574
  year: 2013
  publication-title: Chem. ‐ Asian J.
– volume: 7
  start-page: 905
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 18044
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 535
  start-page: 100
  year: 2012
  publication-title: Chem. Phys. Lett.
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 11
  start-page: 2135
  year: 2016
  publication-title: Chem. ‐ Asian J.
– volume: 8
  start-page: 1702872
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1
  year: 2016
  publication-title: ChemSusChem
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 115
  start-page: 054515
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 330
  year: 2016
  publication-title: Nano Energy
– volume: 169
  start-page: 78
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 20
  start-page: 14207
  year: 2014
  publication-title: Chem. ‐ Eur. J.
– volume: 61
  start-page: 113
  year: 2018
  publication-title: Org. Electron.
– volume: 1
  start-page: 15001
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 10777
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 1800346
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1246
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 72
  year: 2018
  publication-title: Nano Energy
– volume: 112
  start-page: 6
  year: 2013
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 48
  start-page: 5974
  year: 2012
  publication-title: Chem. Commun.
– volume: 6
  start-page: 112512
  year: 2016
  publication-title: RSC Adv.
– volume: 4
  start-page: 7060
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 29
  start-page: 4172
  year: 2017
  publication-title: Chem. Mater.
– volume: 9
  start-page: 36070
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 1518
  year: 2016
  publication-title: Chem. Rec.
– volume: 8
  start-page: 9815
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 1489
  year: 2016
  publication-title: Chem. ‐ Asian J.
– volume: 157
  start-page: 510
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 4088
  year: 2011
  publication-title: Nanoscale
– volume: 51
  start-page: 8126
  year: 2015
  publication-title: Chem. Commun.
– volume: 10
  start-page: 36549
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 7339
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1500014
  year: 2015
  publication-title: Adv. Sci.
– volume: 51
  start-page: 17413
  year: 2015
  publication-title: Chem. Commun.
– volume: 25
  start-page: 3727
  year: 2013
  publication-title: Adv. Mater.
– volume: 23
  start-page: 326
  year: 2011
  publication-title: Chem. Mater.
– volume: 3
  start-page: 10055
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 2294
  year: 2018
  publication-title: Asian J. Org. Chem.
– volume: 25
  start-page: 2457
  year: 2013
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1525
  year: 2014
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 116
  start-page: 11685
  year: 2016
  publication-title: Chem. Rev.
– volume: 4
  start-page: 640
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 2803
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 13
  start-page: 3537
  year: 2007
  publication-title: Chem. ‐ Eur. J.
– volume: 11
  start-page: 1
  year: 2018
  publication-title: ChemSusChem
– volume: 9
  start-page: 1136
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 2642
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 325
  year: 2010
  publication-title: Chem. Commun.
– volume: 7
  start-page: 28049
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1500279
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 779
  year: 2014
  publication-title: Chem. ‐ Asian J.
– volume: 25
  start-page: 4425
  year: 2013
  publication-title: Adv. Mater.
– volume: 30
  start-page: 341
  year: 2016
  publication-title: Nano Energy
– volume: 8
  start-page: 33592
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1803339
  year: 2018
  publication-title: Small
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 117
  start-page: 2760
  year: 2005
  publication-title: Angew. Chem.
– volume: 339
  start-page: 27
  year: 2017
  publication-title: J. Power Sources
– volume: 6
  start-page: 7348
  year: 2015
  publication-title: Nat. Commun.
– volume: 52
  start-page: 200
  year: 2018
  publication-title: Org. Electron.
– volume: 1
  start-page: 1148
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 1584
  year: 2014
  publication-title: Adv. Mater.
– volume: 80
  start-page: 1321
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 55
  start-page: 1
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 42
  start-page: 2896
  year: 2018
  publication-title: New J. Chem.
– volume: 22
  start-page: 10416
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 40
  start-page: 2829
  year: 2016
  publication-title: New J. Chem.
– volume: 124
  start-page: 065306
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 13632
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 107
  start-page: 256805
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 348
  start-page: 683
  year: 2015
  publication-title: Science
– volume: 30
  start-page: 281
  year: 2016
  publication-title: Org. Electron.
– volume: 11
  start-page: 3882
  year: 2018
  publication-title: ChemSusChem
– volume: 270
  start-page: 51
  year: 2019
  publication-title: J. Solid State Chem.
– ident: e_1_2_7_93_1
  doi: 10.1016/j.orgel.2017.10.028
– ident: e_1_2_7_22_1
  doi: 10.1002/cssc.201801908
– ident: e_1_2_7_95_1
  doi: 10.1002/anie.201706895
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.6b08771
– ident: e_1_2_7_89_1
  doi: 10.1016/j.solmat.2013.01.010
– ident: e_1_2_7_118_1
  doi: 10.1021/jo500400d
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.201100429
– ident: e_1_2_7_61_1
  doi: 10.1002/advs.201500353
– ident: e_1_2_7_96_1
  doi: 10.1002/solr.201700046
– ident: e_1_2_7_115_1
  doi: 10.1021/jo5027707
– ident: e_1_2_7_26_1
  doi: 10.1038/ncomms8081
– ident: e_1_2_7_23_1
  doi: 10.1021/nn5036476
– ident: e_1_2_7_99_1
  doi: 10.1039/B615857A
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jpowsour.2016.11.047
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1243167
– ident: e_1_2_7_13_1
  doi: 10.1038/nphoton.2013.341
– ident: e_1_2_7_112_1
  doi: 10.1039/c2cc32048g
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201601745
– ident: e_1_2_7_133_1
  doi: 10.1016/j.solmat.2016.07.037
– ident: e_1_2_7_31_1
  doi: 10.1038/nenergy.2015.1
– ident: e_1_2_7_127_1
  doi: 10.1002/chem.200601298
– ident: e_1_2_7_73_1
  doi: 10.1103/PhysRevLett.107.256805
– ident: e_1_2_7_32_1
  doi: 10.1038/nphoton.2016.3
– ident: e_1_2_7_120_1
  doi: 10.1002/asia.201600856
– ident: e_1_2_7_87_1
  doi: 10.1039/C5RA27620A
– ident: e_1_2_7_98_1
  doi: 10.1039/C8TA06081A
– ident: e_1_2_7_143_1
  doi: 10.1002/aenm.201702872
– ident: e_1_2_7_121_1
  doi: 10.1002/aenm.201700522
– ident: e_1_2_7_122_1
  doi: 10.1039/C7TA01764B
– ident: e_1_2_7_108_1
  doi: 10.1021/acsami.5b00113
– ident: e_1_2_7_137_1
  doi: 10.1021/acsami.7b10365
– ident: e_1_2_7_63_1
  doi: 10.1002/aenm.201401692
– ident: e_1_2_7_91_1
  doi: 10.1039/C7TA02617J
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201301327
– ident: e_1_2_7_128_1
  doi: 10.1063/1.4864260
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-018-04028-8
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201502101
– ident: e_1_2_7_144_1
  doi: 10.1002/cssc.201501673
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201305172
– ident: e_1_2_7_116_1
  doi: 10.1002/asia.201300208
– ident: e_1_2_7_60_1
  doi: 10.1039/b907991m
– ident: e_1_2_7_53_1
  doi: 10.1021/ja103173m
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.6b10803
– ident: e_1_2_7_57_1
  doi: 10.1016/j.nanoen.2017.11.014
– ident: e_1_2_7_90_1
  doi: 10.1039/C0JM02354J
– ident: e_1_2_7_77_1
  doi: 10.1038/ncomms12806
– ident: e_1_2_7_66_1
  doi: 10.1039/C5TA10574A
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201401616
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_7_20_1
  doi: 10.1016/j.orgel.2016.01.002
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201602120
– ident: e_1_2_7_135_1
  doi: 10.1021/acsami.8b15130
– volume: 46
  start-page: 325
  year: 2010
  ident: e_1_2_7_45_1
  publication-title: Chem. Commun.
  contributor:
    fullname: Li G.
– ident: e_1_2_7_59_1
  doi: 10.1021/cm101937p
– ident: e_1_2_7_78_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_7_94_1
  doi: 10.1016/j.mtener.2018.05.017
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_72_1
  doi: 10.1002/aenm.201500279
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.6b14375
– ident: e_1_2_7_136_1
  doi: 10.1021/am506785k
– ident: e_1_2_7_101_1
  doi: 10.1002/adma.201001402
– ident: e_1_2_7_102_1
  doi: 10.1039/C7TA06900F
– ident: e_1_2_7_74_1
  doi: 10.1002/aenm.201200103
– ident: e_1_2_7_105_1
  doi: 10.1016/j.orgel.2018.06.049
– ident: e_1_2_7_25_1
  doi: 10.1039/C8TA05636F
– ident: e_1_2_7_28_1
  doi: 10.1039/C7TA06335K
– ident: e_1_2_7_67_1
  doi: 10.1039/C5CC01642H
– ident: e_1_2_7_132_1
  doi: 10.1039/C8TA06730A
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_7_55_1
  doi: 10.1039/C5CC05253J
– ident: e_1_2_7_62_1
  doi: 10.1063/1.5036643
– ident: e_1_2_7_117_1
  doi: 10.1021/jo5021163
– ident: e_1_2_7_88_1
  doi: 10.1016/j.solmat.2017.04.043
– ident: e_1_2_7_119_1
  doi: 10.1002/asia.201301547
– ident: e_1_2_7_79_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_7_69_1
  doi: 10.1016/j.nanoen.2016.04.057
– ident: e_1_2_7_75_1
  doi: 10.1021/acsami.5b01606
– ident: e_1_2_7_114_1
  doi: 10.1002/asia.201000659
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cplett.2012.03.061
– ident: e_1_2_7_70_1
  doi: 10.1103/PhysRevApplied.2.034007
– ident: e_1_2_7_131_1
  doi: 10.1039/C8TA00492G
– ident: e_1_2_7_71_1
  doi: 10.1126/science.aaa5333
– ident: e_1_2_7_80_1
  doi: 10.1016/j.nanoen.2016.10.026
– ident: e_1_2_7_140_1
  doi: 10.1021/acsami.7b00902
– ident: e_1_2_7_134_1
  doi: 10.1039/C7TC03368K
– ident: e_1_2_7_41_1
  doi: 10.1039/C8QO00788H
– ident: e_1_2_7_125_1
  doi: 10.1002/chem.201304071
– ident: e_1_2_7_82_1
  doi: 10.1039/C7NJ04978A
– ident: e_1_2_7_139_1
  doi: 10.1016/j.solmat.2016.05.026
– ident: e_1_2_7_100_1
  doi: 10.1021/acs.chemrev.6b00160
– ident: e_1_2_7_103_1
  doi: 10.1002/adfm.201800346
– ident: e_1_2_7_113_1
  doi: 10.1021/acs.chemmater.7b01318
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201402767
– ident: e_1_2_7_58_1
  doi: 10.1039/c2jm30470h
– ident: e_1_2_7_85_1
  doi: 10.1039/C5TA03093E
– ident: e_1_2_7_27_1
  doi: 10.1039/C3EE43161D
– ident: e_1_2_7_124_1
  doi: 10.1021/ja064934k
– ident: e_1_2_7_8_1
  doi: 10.1038/nphys3357
– ident: e_1_2_7_1_1
  doi: 10.1016/j.rser.2017.05.095
– ident: e_1_2_7_46_1
  doi: 10.1039/c3cs60388a
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.201404152
– ident: e_1_2_7_92_1
  doi: 10.1016/S1369-7021(12)70019-6
– ident: e_1_2_7_129_1
  doi: 10.1002/anie.201510990
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1228604
– ident: e_1_2_7_64_1
  doi: 10.1016/j.nanoen.2016.08.048
– ident: e_1_2_7_81_1
  doi: 10.1016/j.ica.2017.05.056
– ident: e_1_2_7_35_1
  doi: 10.1021/es103860a
– ident: e_1_2_7_9_1
  doi: 10.1021/jz500279b
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms8348
– ident: e_1_2_7_51_1
  doi: 10.1039/C6RA22023A
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201101686
– ident: e_1_2_7_104_1
  doi: 10.1002/cssc.201702374
– ident: e_1_2_7_126_1
  doi: 10.1002/chem.201403472
– ident: e_1_2_7_4_1
  doi: 10.1021/ja809598r
– ident: e_1_2_7_65_1
  doi: 10.1002/advs.201600027
– ident: e_1_2_7_138_1
  doi: 10.1039/C5TA10696F
– ident: e_1_2_7_106_1
  doi: 10.1016/j.jssc.2018.10.045
– ident: e_1_2_7_142_1
  doi: 10.1002/smll.201803339
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201600457
– ident: e_1_2_7_83_1
  doi: 10.1021/acs.accounts.5b00199
– ident: e_1_2_7_107_1
  doi: 10.1002/ajoc.201800385
– ident: e_1_2_7_68_1
  doi: 10.1039/C5NJ02957K
– ident: e_1_2_7_76_1
  doi: 10.1039/C6EE01337F
– ident: e_1_2_7_145_1
  doi: 10.1039/C6TA08526A
– ident: e_1_2_7_34_1
  doi: 10.1039/C3TA14236A
– ident: e_1_2_7_110_1
  doi: 10.1039/C6TB02052F
– ident: e_1_2_7_123_1
  doi: 10.1002/ange.200462962
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.nanolett.5b00787
– ident: e_1_2_7_97_1
  doi: 10.1002/cssc.201701827
– ident: e_1_2_7_109_1
  doi: 10.1002/tcr.201600015
– ident: e_1_2_7_111_1
  doi: 10.1039/C5TC02080H
– ident: e_1_2_7_86_1
  doi: 10.1002/advs.201500014
– ident: e_1_2_7_36_1
  doi: 10.1039/C6TC05066B
– ident: e_1_2_7_52_1
  doi: 10.1039/C4EE01216J
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201300580
– ident: e_1_2_7_44_1
  doi: 10.1039/C4CC08706B
– ident: e_1_2_7_49_1
  doi: 10.1039/C2JM15322J
– ident: e_1_2_7_12_1
  doi: 10.1039/c1nr10867k
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jpclett.6b00215
– ident: e_1_2_7_37_1
  doi: 10.1002/asia.201600293
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201204543
– ident: e_1_2_7_130_1
  doi: 10.1016/j.joule.2017.11.006
– ident: e_1_2_7_56_1
  doi: 10.1039/C5TA09080F
– ident: e_1_2_7_141_1
  doi: 10.1021/acsami.8b12675
SSID ssj0031247
Score 2.6882217
SecondaryResourceType review_article
Snippet Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated...
Organic n-type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene-based molecules, and n-type conjugated...
Abstract Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1900854
SubjectTerms Chemical synthesis
Electron mobility
Electron transport
electron transport materials
Fullerenes
inverted perovskite solar cells
modified fullerene materials
Molecular orbitals
Nanotechnology
Naphthalene
n‐type polymers
Organic chemistry
Organic materials
organic n‐type small molecules
Perovskites
Photovoltaic cells
Solar cells
Thermal stability
Transport properties
Title Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900854
https://www.ncbi.nlm.nih.gov/pubmed/31069952
https://www.proquest.com/docview/2265562015
https://search.proquest.com/docview/2231912542
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6kx78_qhOiSB4KutX0vYoc7LDJoMpiJfSpK8gzE7Wzb_f95q2OjwIemtIQkPyPn4vyfuFsWsHYgAUBVs6GgMUV4OtHDopzF1IBWgnryg2htPw4Tm6GxBNTpvFb_gh2g030ozKXpOCp6rsfZGGlm8zOjpAh4aogQhBMVSocjj8SWOKfXRe1esq6LNsIt5qWBsdr7fefd0r_YCa68i1cj33u_8f9B7bqWEnvzVyss82oDhg29_ICA_ZCyJI9EB8Qje20P7x14KbTE3NB_VjObzlQufjdGmEl9oRW8cCsSufwGL-UdKOMJ9S0Mz7MJuVR-zpfvDYH9r1ywu2pkxZW0VZFIjUlQ6R7-REIimkUoFQgMF3ruJM-14WgUwhAwFhFjoaAkng0cslGpFj1inmBZwyLlIvR0jia1fqIPKyOMuVAincMNSxH0uL3TQzn7wbgo3EUCl7Cc1W0s6WxbrNwiS1opUJokeBEA5BjcWu2mpUETr3SAuYr6gN2hkEcoFnsROzoO2vEN3KOBZY41Xr9ssYkul4NGpLZ3_pdM626Ntc-e2yznKxggu2WWary0p4PwE7pe4I
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH64HNSD-xLXEQRPwWwzSY5SKxXbUqiCeAnJ5AWEmkpj_f2-lzTR4kEQj5mFDG_e8s32PYALC0NEUgVTWZoWKLZGM7H4pDCzMZaorayk2OgM_f5TcNNmmpzr-i1MxQ_RbLixZZT-mg2cN6SvvlhDi9cRnx1QRCPY4C3Csqe8kLM3uO6gdsYuha8yvwpFLZOpt2reRsu5mu8_H5d-gM157FoGn9uNfxj2JqzPkKe4rlRlCxYw34a1b3yEO_BMIJKCkBjwpS1ygeIlF9VjTS3as3w5oqFDF734vdJfbseEHROCr2KAk_FHwZvCYsjrZtHC0ajYhcfb9kOrY86SL5iaH8uaSZAGnoxtZTH_TsY8klIliScTpPV3loSpdp00QBVjihL91Lc0eorxo5Mp8iN7sJSPczwAIWMnI1TialtpL3DSMM2SBJW0fV-HbqgMuKxFH71VHBtRxabsRCytqJGWAcf1zEQzWysiApCSUBzhGgPOm2qyEj76iHMcT7kNuRrCcp5jwH41o82vCOCqMJRU45QT98sYomGv222-Dv_S6QxWOg-9btS9698fwSqXVzeAj2HpfTLFE1gs0ulpqcmfQQXyKQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB48QPTB-6jnCoJPwVy7SR5FWyq2UqiC-BKS3QkINS2N9fc7k7TR4oOgj9mDLLtzfLuz8y3AhY0RIomCpWxNGxRHo5XaHCnMHEwkajsrKTba_eDhObxtMk1OncVf8UPUB26sGaW9ZgUfmezqizS0eBtw6IAcGqEGfxGWfcbinMTh9Wa22CPvVT6vQk7LYuatGW2j7V7N9593Sz-w5jx0LX1Pa-P_o96E9SnuFNeVoGzBAubbsPaNjXAHXghCkgsSPb6yRQZQvOaiStXUojl9LUfUZOiim7xX0svtmK5jTOBV9HA8_Cj4SFj0edcsbnAwKHbhqdV8vGlb06cXLM2pslYamtCXiaNsZt_JmEVSqjT1ZYq0-87SyGjPNSGqBA1KDExga_QVo0c3U2RF9mApH-Z4AEImbkaYxNOO0n7omshkaYpKOkGgIy9SDbiczXw8qhg24opL2Y15tuJ6thpwPFuYeKppRUzwURKGI1TTgPO6mnSEAx9JjsMJtyFDQ0jOdxuwXy1o_SuCtyqKJNW45br9Moa43-106q_Dv3Q6g5XebSvu3D3cH8EqF1fXf49h6X08wRNYLMzktJTjT2qi8Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Organic+Electron+Transport+Materials+in+Inverted+Perovskite+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Said%2C+Ahmed+Ali&rft.au=Xie%2C+Jian&rft.au=Zhang%2C+Qichun&rft.date=2019-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201900854&rft.externalDBID=10.1002%252Fsmll.201900854&rft.externalDocID=SMLL201900854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon