Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells
Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materi...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 27; pp. e1900854 - n/a |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-07-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs.
Organic n‐type materials as electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs) have attracted many scientists' attention, not only because of their several advantages, including easy synthesis, tunable frontier molecular orbitals, decent electron mobility, and reasonable chemical/thermal stability, but also because of their ability to make large‐scale solution‐processing p–i–n PSCs possible. |
---|---|
AbstractList | Organic n-type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene-based molecules, and n-type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p-i-n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p-i-n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p-i-n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n-type materials as ETLs for more efficient p-i-n PSCs. Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs. Organic n‐type materials as electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs) have attracted many scientists' attention, not only because of their several advantages, including easy synthesis, tunable frontier molecular orbitals, decent electron mobility, and reasonable chemical/thermal stability, but also because of their ability to make large‐scale solution‐processing p–i–n PSCs possible. Abstract Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p–i–n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability. Considering these positive factors, approaches toward achieving effective p–i–n PSCs with these organic materials as ETLs are highlighted in this Review. Moreover, organic structures, electron transport properties, working function of electrodes caused by ETLs, and key relevant parameters (PCE and stability) of p–i–n PSCs are presented. Hopefully, this Review will provide fundamental guidance for future development of new organic n‐type materials as ETLs for more efficient p–i–n PSCs. |
Author | Said, Ahmed Ali Zhang, Qichun Xie, Jian |
Author_xml | – sequence: 1 givenname: Ahmed Ali surname: Said fullname: Said, Ahmed Ali organization: Nanyang Technological University – sequence: 2 givenname: Jian surname: Xie fullname: Xie, Jian organization: Nanyang Technological University – sequence: 3 givenname: Qichun orcidid: 0000-0003-1854-8659 surname: Zhang fullname: Zhang, Qichun email: qczhang@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31069952$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0LtPwzAQBnALFdFSWBmRJRaWFr-TjKgqDymoFY-FJXKSS5WS2sVOivjvMRSKxMJ0N_zu0-k7RD1jDSB0QsmYEsIu_KppxozQhJBYij00oIrykYpZ0tvtlPTRofdLQjhlIjpAfU6JShLJBuj5HgowLZ47u3DgPa4NnrmFNnWBpw0UrbMGPzpt_Nq6Ft_pFlytmy93azbgWijxHJzd-Je6BfxgG-3wBJrGH6H9Kkg4_p5D9HQ1fZzcjNLZ9e3kMh0VgidilMdlLKSmiggieEUjpaTKcyFzgJxXeVIWnJUxKA0lSIjKiBQglKKSs0pFhA_R-TZ37exrB77NVrUvwgfagO18xhinCWVSsEDP_tCl7ZwJ3wWlpFShSRnUeKsKZ713UGVrV6-0e88oyT5bzz5bz3ath4PT79guX0G54z81B5BswVvdwPs_cdnDXZr-hn8Auh2QEg |
CitedBy_id | crossref_primary_10_1002_adma_202302146 crossref_primary_10_1002_ente_202300991 crossref_primary_10_1002_solr_202400178 crossref_primary_10_1039_D1NR00839K crossref_primary_10_1021_acsami_1c21081 crossref_primary_10_1039_D0TA03548C crossref_primary_10_1021_acsaem_0c01484 crossref_primary_10_1002_cssc_202000728 crossref_primary_10_1002_solr_202000816 crossref_primary_10_1021_acsami_1c05284 crossref_primary_10_1039_D2MA00385F crossref_primary_10_1039_D3TC03183G crossref_primary_10_1039_D1MA00355K crossref_primary_10_1007_s40843_021_1771_5 crossref_primary_10_1002_solr_202200296 crossref_primary_10_1021_acs_energyfuels_1c03692 crossref_primary_10_1002_adfm_202001073 crossref_primary_10_1002_inf2_12345 crossref_primary_10_1021_acsenergylett_1c02807 crossref_primary_10_1016_j_nanoen_2020_105712 crossref_primary_10_1021_jacsau_2c00151 crossref_primary_10_1016_j_solener_2020_03_062 crossref_primary_10_1021_acsaem_2c00430 crossref_primary_10_1002_solr_202101086 crossref_primary_10_1016_j_matchemphys_2020_124060 crossref_primary_10_1039_D1NJ01464A crossref_primary_10_1021_acsami_2c08733 crossref_primary_10_1002_eom2_12094 crossref_primary_10_3390_en13236335 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1002_smll_202403193 crossref_primary_10_1021_acsami_9b12829 crossref_primary_10_1039_D0CP02367A crossref_primary_10_1002_hlca_202000173 crossref_primary_10_1002_smtd_201900552 crossref_primary_10_1039_D2TA08827D crossref_primary_10_1039_D3TC02243A crossref_primary_10_1002_asia_202000262 crossref_primary_10_1002_chem_201905303 crossref_primary_10_1080_25740881_2020_1861289 crossref_primary_10_1002_solr_202100401 crossref_primary_10_1002_smll_202101226 crossref_primary_10_1007_s10853_023_08439_x crossref_primary_10_1039_D2TC02911A crossref_primary_10_1007_s11771_021_4885_5 crossref_primary_10_1021_acsomega_2c03775 crossref_primary_10_1039_D1TA08424K crossref_primary_10_1149_2162_8777_abefaf crossref_primary_10_1016_j_jpowsour_2022_231038 crossref_primary_10_1016_j_nanoen_2020_104844 crossref_primary_10_1002_est2_665 crossref_primary_10_1002_inf2_12120 crossref_primary_10_1007_s10853_020_05567_6 crossref_primary_10_1039_D0TA06500E crossref_primary_10_1021_acsaem_2c03720 crossref_primary_10_1109_ACCESS_2023_3267971 crossref_primary_10_1002_solr_202100236 crossref_primary_10_1016_j_ccr_2023_215502 crossref_primary_10_1016_j_molstruc_2023_136932 crossref_primary_10_1039_D0TC04271D crossref_primary_10_1021_acsenergylett_4c00306 crossref_primary_10_1002_smsc_202100086 crossref_primary_10_1039_D2NJ02202H crossref_primary_10_1002_aenm_202302191 crossref_primary_10_1155_2021_9920442 crossref_primary_10_3390_en16010471 crossref_primary_10_1016_j_cej_2021_129375 crossref_primary_10_1039_D0NR02562C crossref_primary_10_1155_2022_5288400 crossref_primary_10_1016_j_jssc_2021_122872 crossref_primary_10_1039_D2RA07580F crossref_primary_10_1002_adfm_202002808 crossref_primary_10_1039_C9QM00656G crossref_primary_10_1016_j_trechm_2019_11_002 crossref_primary_10_1016_j_cej_2022_137051 crossref_primary_10_1002_adfm_202109968 crossref_primary_10_1021_acsami_0c10717 crossref_primary_10_1007_s11708_022_0826_8 crossref_primary_10_1016_j_mtener_2024_101514 crossref_primary_10_1002_smll_202208243 crossref_primary_10_1002_er_7942 crossref_primary_10_1016_j_jssc_2020_121571 crossref_primary_10_1021_acsami_0c11164 crossref_primary_10_1080_15567036_2023_2192182 crossref_primary_10_1016_j_materresbull_2024_112677 crossref_primary_10_1016_j_cej_2022_138037 crossref_primary_10_1021_jacs_0c09647 crossref_primary_10_1002_admi_202100776 crossref_primary_10_1021_acsaem_1c04059 crossref_primary_10_1021_acsami_1c04601 crossref_primary_10_1039_D0EE02043E crossref_primary_10_1016_j_cej_2023_148277 crossref_primary_10_1016_j_spmi_2020_106549 crossref_primary_10_1016_j_mtcomm_2024_109260 crossref_primary_10_3390_polym14040823 crossref_primary_10_1021_acs_jpclett_1c03061 crossref_primary_10_1039_D0TC04175K crossref_primary_10_1016_j_solener_2023_112185 crossref_primary_10_1109_TED_2023_3235870 crossref_primary_10_1155_2020_8877744 crossref_primary_10_1002_celc_202101483 crossref_primary_10_1021_acs_chemmater_9b02601 crossref_primary_10_1016_j_mtener_2023_101473 crossref_primary_10_1038_s41377_021_00515_8 crossref_primary_10_1002_ente_202100952 crossref_primary_10_1007_s12034_022_02805_2 crossref_primary_10_1039_D1CP02704B crossref_primary_10_1002_aenm_201902253 crossref_primary_10_1021_acsami_2c02250 crossref_primary_10_1002_eom2_12272 crossref_primary_10_3788_LOP221066 crossref_primary_10_1021_acsami_2c01960 crossref_primary_10_1039_D2NJ02274E crossref_primary_10_1051_epjpv_2021004 crossref_primary_10_1002_solr_202000425 crossref_primary_10_3390_polym13132110 crossref_primary_10_1021_acsaem_0c01085 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1002_sstr_202200012 crossref_primary_10_1016_j_cej_2021_129730 crossref_primary_10_1016_j_mtcomm_2022_104090 crossref_primary_10_1002_adma_202005504 crossref_primary_10_1039_D0QM00983K crossref_primary_10_1109_JPHOTOV_2020_3048249 crossref_primary_10_1109_JPHOTOV_2021_3077445 crossref_primary_10_1021_acsaem_0c00535 crossref_primary_10_1039_C9SC05694G crossref_primary_10_1007_s11426_021_1084_y crossref_primary_10_1002_adfm_202008300 crossref_primary_10_1021_acsaem_9b02392 crossref_primary_10_1021_acsami_1c21479 crossref_primary_10_1039_D2QM01369J crossref_primary_10_1016_j_mtener_2022_101031 crossref_primary_10_1002_aenm_202000183 crossref_primary_10_1039_D3CP04322C crossref_primary_10_1016_j_mseb_2023_116911 crossref_primary_10_1109_LED_2019_2956346 crossref_primary_10_1149_2162_8777_ac255e crossref_primary_10_1080_10408436_2022_2041395 crossref_primary_10_1002_ente_202100691 crossref_primary_10_1021_acssuschemeng_0c03087 crossref_primary_10_1039_C9TC03877A crossref_primary_10_1039_D0NR03408H crossref_primary_10_1021_acs_jpclett_1c01074 crossref_primary_10_1039_D3LF00183K crossref_primary_10_1109_ACCESS_2021_3070112 crossref_primary_10_1002_adfm_202201933 crossref_primary_10_1002_cjoc_202300105 crossref_primary_10_1002_adfm_202011242 crossref_primary_10_1021_acsaem_9b01154 crossref_primary_10_1002_chem_202401283 crossref_primary_10_1002_adfm_201905021 crossref_primary_10_1016_j_dyepig_2019_108031 crossref_primary_10_1021_acsomega_3c04452 crossref_primary_10_1002_adma_202402143 crossref_primary_10_1039_D1NR04170C crossref_primary_10_1021_acsenergylett_2c00476 crossref_primary_10_1002_eom2_12127 crossref_primary_10_1002_chem_202301337 crossref_primary_10_1002_admi_202100506 crossref_primary_10_1002_smll_201905731 crossref_primary_10_1016_j_apsadv_2023_100394 crossref_primary_10_1039_D4TA01453G crossref_primary_10_1109_ACCESS_2021_3114383 crossref_primary_10_1016_j_carbon_2022_04_046 crossref_primary_10_1021_acsaem_1c01836 crossref_primary_10_1002_eem2_12347 crossref_primary_10_1002_aesr_202100218 crossref_primary_10_1002_er_6909 crossref_primary_10_1002_smll_202207445 crossref_primary_10_1039_D1TC02407H crossref_primary_10_1080_00268976_2023_2200497 crossref_primary_10_1038_s41467_024_44974_0 crossref_primary_10_1088_1402_4896_ad4b6a crossref_primary_10_1021_acsaem_1c01886 crossref_primary_10_1002_sus2_25 crossref_primary_10_1039_D0TC05725H crossref_primary_10_3389_fchem_2022_886522 crossref_primary_10_1007_s11664_022_10203_x crossref_primary_10_1021_acsenergylett_9b01539 crossref_primary_10_1038_s41467_022_34203_x crossref_primary_10_1007_s13204_022_02745_7 crossref_primary_10_1002_solr_202000299 crossref_primary_10_1039_D1CP04863E crossref_primary_10_1016_j_orgel_2022_106719 crossref_primary_10_1021_acsenergylett_0c01609 crossref_primary_10_1166_sam_2022_4302 crossref_primary_10_6023_cjoc202107063 crossref_primary_10_1021_acs_jpcc_1c02225 crossref_primary_10_1007_s00521_023_08230_8 crossref_primary_10_1002_asia_201901452 crossref_primary_10_1002_aenm_202202713 crossref_primary_10_1021_acsphotonics_0c00677 crossref_primary_10_1021_acssuschemeng_4c01587 crossref_primary_10_1134_S0022476622110178 crossref_primary_10_1515_nanoph_2021_0034 crossref_primary_10_1063_5_0074039 crossref_primary_10_1021_acsmaterialslett_2c00045 crossref_primary_10_1016_j_mencom_2023_04_030 crossref_primary_10_1002_aenm_202000910 crossref_primary_10_1039_D2TC02182J crossref_primary_10_1007_s40820_021_00683_7 crossref_primary_10_1007_s12598_021_01812_2 crossref_primary_10_1021_acsaelm_3c00900 crossref_primary_10_1016_j_rser_2021_111689 crossref_primary_10_1021_acsaem_0c00680 crossref_primary_10_1016_j_cej_2024_152899 crossref_primary_10_1016_j_cinorg_2023_100026 crossref_primary_10_1021_acsami_1c03000 crossref_primary_10_1039_D1TC03246A crossref_primary_10_1021_acs_analchem_1c04750 |
Cites_doi | 10.1016/j.orgel.2017.10.028 10.1002/cssc.201801908 10.1002/anie.201706895 10.1126/science.aan2301 10.1021/acsami.6b08771 10.1016/j.solmat.2013.01.010 10.1021/jo500400d 10.1002/aenm.201100429 10.1002/advs.201500353 10.1002/solr.201700046 10.1021/jo5027707 10.1038/ncomms8081 10.1021/nn5036476 10.1039/B615857A 10.1016/j.jpowsour.2016.11.047 10.1126/science.1243167 10.1038/nphoton.2013.341 10.1039/c2cc32048g 10.1002/adma.201601745 10.1016/j.solmat.2016.07.037 10.1038/nenergy.2015.1 10.1002/chem.200601298 10.1103/PhysRevLett.107.256805 10.1038/nphoton.2016.3 10.1002/asia.201600856 10.1039/C5RA27620A 10.1039/C8TA06081A 10.1002/aenm.201702872 10.1002/aenm.201700522 10.1039/C7TA01764B 10.1021/acsami.5b00113 10.1021/acsami.7b10365 10.1002/aenm.201401692 10.1039/C7TA02617J 10.1002/adma.201301327 10.1063/1.4864260 10.1038/s41467-018-04028-8 10.1002/aenm.201502101 10.1002/cssc.201501673 10.1002/adma.201305172 10.1002/asia.201300208 10.1039/b907991m 10.1021/ja103173m 10.1021/acsami.6b10803 10.1016/j.nanoen.2017.11.014 10.1039/C0JM02354J 10.1038/ncomms12806 10.1039/C5TA10574A 10.1002/aenm.201401616 10.1126/science.aap9282 10.1016/j.orgel.2016.01.002 10.1002/aenm.201602120 10.1021/acsami.8b15130 10.1021/cm101937p 10.1039/C4CS00458B 10.1016/j.mtener.2018.05.017 10.1126/science.1243982 10.1002/aenm.201500279 10.1021/acsami.6b14375 10.1021/am506785k 10.1002/adma.201001402 10.1039/C7TA06900F 10.1002/aenm.201200103 10.1016/j.orgel.2018.06.049 10.1039/C8TA05636F 10.1039/C7TA06335K 10.1039/C5CC01642H 10.1039/C8TA06730A 10.1038/ncomms6784 10.1039/C5CC05253J 10.1063/1.5036643 10.1021/jo5021163 10.1016/j.solmat.2017.04.043 10.1002/asia.201301547 10.1126/science.aaa9272 10.1016/j.nanoen.2016.04.057 10.1021/acsami.5b01606 10.1002/asia.201000659 10.1016/j.cplett.2012.03.061 10.1103/PhysRevApplied.2.034007 10.1039/C8TA00492G 10.1126/science.aaa5333 10.1016/j.nanoen.2016.10.026 10.1021/acsami.7b00902 10.1039/C7TC03368K 10.1039/C8QO00788H 10.1002/chem.201304071 10.1039/C7NJ04978A 10.1016/j.solmat.2016.05.026 10.1021/acs.chemrev.6b00160 10.1002/adfm.201800346 10.1021/acs.chemmater.7b01318 10.1002/smll.201402767 10.1039/c2jm30470h 10.1039/C5TA03093E 10.1039/C3EE43161D 10.1021/ja064934k 10.1038/nphys3357 10.1016/j.rser.2017.05.095 10.1039/c3cs60388a 10.1002/adma.201404152 10.1016/S1369-7021(12)70019-6 10.1002/anie.201510990 10.1126/science.1228604 10.1016/j.nanoen.2016.08.048 10.1016/j.ica.2017.05.056 10.1021/es103860a 10.1021/jz500279b 10.1038/ncomms8348 10.1039/C6RA22023A 10.1002/smll.201101686 10.1002/cssc.201702374 10.1002/chem.201403472 10.1021/ja809598r 10.1002/advs.201600027 10.1039/C5TA10696F 10.1016/j.jssc.2018.10.045 10.1002/smll.201803339 10.1002/aenm.201600457 10.1021/acs.accounts.5b00199 10.1002/ajoc.201800385 10.1039/C5NJ02957K 10.1039/C6EE01337F 10.1039/C6TA08526A 10.1039/C3TA14236A 10.1039/C6TB02052F 10.1002/ange.200462962 10.1021/acs.nanolett.5b00787 10.1002/cssc.201701827 10.1002/tcr.201600015 10.1039/C5TC02080H 10.1002/advs.201500014 10.1039/C6TC05066B 10.1039/C4EE01216J 10.1002/adma.201300580 10.1039/C4CC08706B 10.1039/C2JM15322J 10.1039/c1nr10867k 10.1021/acs.jpclett.6b00215 10.1002/asia.201600293 10.1002/adma.201204543 10.1016/j.joule.2017.11.006 10.1039/C5TA09080F 10.1021/acsami.8b12675 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201900854 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_201900854 31069952 SMLL201900854 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Jilin University – fundername: State Key Laboratory of Supramolecular Structure and Materials – fundername: MOE funderid: 2017‐T2‐1‐021; 2018‐T2‐1‐070 – fundername: MOE grantid: 2017-T2-1-021 – fundername: MOE grantid: 2018-T2-1-070 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- NPM 31~ AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4394-b8d845a1604043f176656bb45beeb3fb9dc32d8e6aede5e7d70ce4661532f6703 |
IEDL.DBID | 33P |
ISSN | 1613-6810 |
IngestDate | Sat Aug 17 03:56:45 EDT 2024 Thu Oct 10 16:17:18 EDT 2024 Fri Aug 23 01:08:53 EDT 2024 Wed Oct 16 00:50:23 EDT 2024 Sat Aug 24 01:11:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | n-type polymers modified fullerene materials electron transport materials organic n-type small molecules inverted perovskite solar cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-b8d845a1604043f176656bb45beeb3fb9dc32d8e6aede5e7d70ce4661532f6703 |
Notes | Dedicated to Professor Yongfang Li, Professor Yuliang Li, and Professor Yunqi Liu on the occasion of their 70th birthdays ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-1854-8659 |
PMID | 31069952 |
PQID | 2265562015 |
PQPubID | 1046358 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2231912542 proquest_journals_2265562015 crossref_primary_10_1002_smll_201900854 pubmed_primary_31069952 wiley_primary_10_1002_smll_201900854_SMLL201900854 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 80 2017; 1 2013; 25 2018; 360 2018; 124 2014; 26 2008; 37 2016; 30 2015; 80 2015; 348 2012; 15 2013; 8 2018; 43 2017; 356 2018; 42 2017; 9 2014; 20 2018; 7 2018; 6 2018; 9 2015; 48 2018; 8 2014; 5 2018; 2 2018; 5 2014; 2 2013; 112 2016; 157 2016; 40 2011; 21 2011; 23 2016; 116 2014; 9 2014; 8 2014; 7 2019; 270 2012; 22 2012; 535 2017; 169 2006; 128 2012; 338 2016; 45 2017; 339 2015; 2 2015; 15 2018; 28 2015; 6 2015; 5 2011; 1 2015; 3 2015; 51 2010; 39 2015; 11 2005; 117 2016; 10 2013; 342 2017; 29 2018; 61 2009; 131 2011; 3 2016; 16 2011; 6 2015; 7 2007; 13 2014; 115 2014; 43 2016; 11 2016; 55 2016; 4 2016; 6 2016; 7 2012; 2 2016; 1 2015; 27 2011; 107 2010; 46 2016; 3 2017; 56 2010; 132 2018 2014; 79 2018; 52 2011; 45 2012; 48 2018; 11 2016; 28 2018; 10 2016; 26 2016; 8 2016; 9 2017; 468 2012; 8 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 Li G. (e_1_2_7_45_1) 2010; 46 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 7 start-page: 399 year: 2014 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1015 year: 2015 publication-title: Adv. Mater. – volume: 80 start-page: 109 year: 2015 publication-title: J. Org. Chem. – volume: 23 start-page: 268 year: 2011 publication-title: Adv. Mater. – volume: 2 start-page: 168 year: 2018 publication-title: Joule – volume: 10 start-page: 38970 year: 2018 publication-title: ACS Appl. ACS Appl. Mater. Interfaces – volume: 6 start-page: 16868 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 265 year: 2012 publication-title: Small – volume: 21 start-page: 1953 year: 2011 publication-title: J. Mater. Chem. – volume: 8 start-page: 128 year: 2014 publication-title: Nat. Photonics – volume: 6 start-page: 1502101 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 4443 year: 2018 publication-title: J. Mater. Chem. A – volume: 56 start-page: 14648 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 7 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 856 year: 2011 publication-title: Chem. ‐ Asian J. – volume: 45 start-page: 2353 year: 2011 publication-title: Environ. Sci. Technol. – volume: 51 start-page: 1834 year: 2015 publication-title: Chem. Commun. – volume: 39 start-page: 2500 year: 2010 publication-title: Chem. Soc. Rev. – volume: 157 start-page: 79 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 34612 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 132 start-page: 8852 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 7 start-page: 11881 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2444 year: 2016 publication-title: Energy Environ. Sci. – volume: 5 start-page: 12811 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 18852 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 264 year: 2018 publication-title: Mater. Today Energy – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 10 year: 2015 publication-title: Small – volume: 4 start-page: 3667 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 start-page: 1700046 year: 2017 publication-title: Sol. RRL – volume: 10 start-page: 196 year: 2016 publication-title: Nat. Photonics – volume: 6 start-page: 19923 year: 2016 publication-title: RSC Adv. – volume: 7 start-page: 12806 year: 2016 publication-title: Nat. Commun. – volume: 4 start-page: 2419 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 15495 year: 2018 publication-title: J. Mater. Chem. A – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 2572 year: 2014 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 36 year: 2012 publication-title: Mater. Today – volume: 11 start-page: 415 year: 2018 publication-title: ChemSusChem – volume: 128 start-page: 13042 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1600457 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1401692 year: 2015 publication-title: Adv. Energy Mater. – volume: 80 start-page: 3030 year: 2015 publication-title: J. Org. Chem. – volume: 11 start-page: 582 year: 2015 publication-title: Nat. Phys. – volume: 9 start-page: 1625 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 1201 year: 2014 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1700522 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1602120 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1600027 year: 2016 publication-title: Adv. Sci. – volume: 5 start-page: 2845 year: 2018 publication-title: Org. Chem. Front. – volume: 468 start-page: 146 year: 2017 publication-title: Inorg. Chim. Acta – volume: 5 start-page: 1401616 year: 2015 publication-title: Adv. Energy Mater. – volume: 28 start-page: 10786 year: 2016 publication-title: Adv. Mater. – volume: 37 start-page: 331 year: 2008 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 034007 year: 2014 publication-title: Phys. Rev. Appl. – volume: 5 start-page: 20720 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 20615 year: 2017 publication-title: J. Mater. Chem. A – volume: 15 start-page: 2756 year: 2015 publication-title: Nano Lett. – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 22 start-page: 1758 year: 2012 publication-title: J. Mater. Chem. – volume: 79 start-page: 4438 year: 2014 publication-title: J. Org. Chem. – volume: 7 start-page: 3994 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 10983 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1500353 year: 2016 publication-title: Adv. Sci. – volume: 5 start-page: 1275 year: 2017 publication-title: J. Mater. Chem. C – volume: 8 start-page: 1574 year: 2013 publication-title: Chem. ‐ Asian J. – volume: 7 start-page: 905 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 18044 year: 2018 publication-title: J. Mater. Chem. A – volume: 535 start-page: 100 year: 2012 publication-title: Chem. Phys. Lett. – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 11 start-page: 2135 year: 2016 publication-title: Chem. ‐ Asian J. – volume: 8 start-page: 1702872 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1 year: 2016 publication-title: ChemSusChem – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 115 start-page: 054515 year: 2014 publication-title: J. Appl. Phys. – volume: 28 start-page: 330 year: 2016 publication-title: Nano Energy – volume: 169 start-page: 78 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 20 start-page: 14207 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 61 start-page: 113 year: 2018 publication-title: Org. Electron. – volume: 1 start-page: 15001 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 10777 year: 2017 publication-title: J. Mater. Chem. C – volume: 28 start-page: 1800346 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1246 year: 2012 publication-title: Adv. Energy Mater. – volume: 43 start-page: 72 year: 2018 publication-title: Nano Energy – volume: 112 start-page: 6 year: 2013 publication-title: Sol. Energy Mater. Sol. Cells – volume: 48 start-page: 5974 year: 2012 publication-title: Chem. Commun. – volume: 6 start-page: 112512 year: 2016 publication-title: RSC Adv. – volume: 4 start-page: 7060 year: 2016 publication-title: J. Mater. Chem. B – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 29 start-page: 4172 year: 2017 publication-title: Chem. Mater. – volume: 9 start-page: 36070 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 1518 year: 2016 publication-title: Chem. Rec. – volume: 8 start-page: 9815 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 1489 year: 2016 publication-title: Chem. ‐ Asian J. – volume: 157 start-page: 510 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 4088 year: 2011 publication-title: Nanoscale – volume: 51 start-page: 8126 year: 2015 publication-title: Chem. Commun. – volume: 10 start-page: 36549 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 7339 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1500014 year: 2015 publication-title: Adv. Sci. – volume: 51 start-page: 17413 year: 2015 publication-title: Chem. Commun. – volume: 25 start-page: 3727 year: 2013 publication-title: Adv. Mater. – volume: 23 start-page: 326 year: 2011 publication-title: Chem. Mater. – volume: 3 start-page: 10055 year: 2015 publication-title: J. Mater. Chem. C – volume: 7 start-page: 2294 year: 2018 publication-title: Asian J. Org. Chem. – volume: 25 start-page: 2457 year: 2013 publication-title: Adv. Mater. – volume: 20 start-page: 1525 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 116 start-page: 11685 year: 2016 publication-title: Chem. Rev. – volume: 4 start-page: 640 year: 2016 publication-title: J. Mater. Chem. A – volume: 48 start-page: 2803 year: 2015 publication-title: Acc. Chem. Res. – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 13 start-page: 3537 year: 2007 publication-title: Chem. ‐ Eur. J. – volume: 11 start-page: 1 year: 2018 publication-title: ChemSusChem – volume: 9 start-page: 1136 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 2642 year: 2014 publication-title: Energy Environ. Sci. – volume: 46 start-page: 325 year: 2010 publication-title: Chem. Commun. – volume: 7 start-page: 28049 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1500279 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 779 year: 2014 publication-title: Chem. ‐ Asian J. – volume: 25 start-page: 4425 year: 2013 publication-title: Adv. Mater. – volume: 30 start-page: 341 year: 2016 publication-title: Nano Energy – volume: 8 start-page: 33592 year: 2016 publication-title: ACS Appl. Mater. Interfaces – start-page: 1803339 year: 2018 publication-title: Small – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 117 start-page: 2760 year: 2005 publication-title: Angew. Chem. – volume: 339 start-page: 27 year: 2017 publication-title: J. Power Sources – volume: 6 start-page: 7348 year: 2015 publication-title: Nat. Commun. – volume: 52 start-page: 200 year: 2018 publication-title: Org. Electron. – volume: 1 start-page: 1148 year: 2011 publication-title: Adv. Energy Mater. – volume: 26 start-page: 1584 year: 2014 publication-title: Adv. Mater. – volume: 80 start-page: 1321 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 55 start-page: 1 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 42 start-page: 2896 year: 2018 publication-title: New J. Chem. – volume: 22 start-page: 10416 year: 2012 publication-title: J. Mater. Chem. – volume: 40 start-page: 2829 year: 2016 publication-title: New J. Chem. – volume: 124 start-page: 065306 year: 2018 publication-title: J. Appl. Phys. – volume: 3 start-page: 13632 year: 2015 publication-title: J. Mater. Chem. A – volume: 107 start-page: 256805 year: 2011 publication-title: Phys. Rev. Lett. – volume: 348 start-page: 683 year: 2015 publication-title: Science – volume: 30 start-page: 281 year: 2016 publication-title: Org. Electron. – volume: 11 start-page: 3882 year: 2018 publication-title: ChemSusChem – volume: 270 start-page: 51 year: 2019 publication-title: J. Solid State Chem. – ident: e_1_2_7_93_1 doi: 10.1016/j.orgel.2017.10.028 – ident: e_1_2_7_22_1 doi: 10.1002/cssc.201801908 – ident: e_1_2_7_95_1 doi: 10.1002/anie.201706895 – ident: e_1_2_7_2_1 doi: 10.1126/science.aan2301 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.6b08771 – ident: e_1_2_7_89_1 doi: 10.1016/j.solmat.2013.01.010 – ident: e_1_2_7_118_1 doi: 10.1021/jo500400d – ident: e_1_2_7_54_1 doi: 10.1002/aenm.201100429 – ident: e_1_2_7_61_1 doi: 10.1002/advs.201500353 – ident: e_1_2_7_96_1 doi: 10.1002/solr.201700046 – ident: e_1_2_7_115_1 doi: 10.1021/jo5027707 – ident: e_1_2_7_26_1 doi: 10.1038/ncomms8081 – ident: e_1_2_7_23_1 doi: 10.1021/nn5036476 – ident: e_1_2_7_99_1 doi: 10.1039/B615857A – ident: e_1_2_7_33_1 doi: 10.1016/j.jpowsour.2016.11.047 – ident: e_1_2_7_7_1 doi: 10.1126/science.1243167 – ident: e_1_2_7_13_1 doi: 10.1038/nphoton.2013.341 – ident: e_1_2_7_112_1 doi: 10.1039/c2cc32048g – ident: e_1_2_7_24_1 doi: 10.1002/adma.201601745 – ident: e_1_2_7_133_1 doi: 10.1016/j.solmat.2016.07.037 – ident: e_1_2_7_31_1 doi: 10.1038/nenergy.2015.1 – ident: e_1_2_7_127_1 doi: 10.1002/chem.200601298 – ident: e_1_2_7_73_1 doi: 10.1103/PhysRevLett.107.256805 – ident: e_1_2_7_32_1 doi: 10.1038/nphoton.2016.3 – ident: e_1_2_7_120_1 doi: 10.1002/asia.201600856 – ident: e_1_2_7_87_1 doi: 10.1039/C5RA27620A – ident: e_1_2_7_98_1 doi: 10.1039/C8TA06081A – ident: e_1_2_7_143_1 doi: 10.1002/aenm.201702872 – ident: e_1_2_7_121_1 doi: 10.1002/aenm.201700522 – ident: e_1_2_7_122_1 doi: 10.1039/C7TA01764B – ident: e_1_2_7_108_1 doi: 10.1021/acsami.5b00113 – ident: e_1_2_7_137_1 doi: 10.1021/acsami.7b10365 – ident: e_1_2_7_63_1 doi: 10.1002/aenm.201401692 – ident: e_1_2_7_91_1 doi: 10.1039/C7TA02617J – ident: e_1_2_7_11_1 doi: 10.1002/adma.201301327 – ident: e_1_2_7_128_1 doi: 10.1063/1.4864260 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-018-04028-8 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201502101 – ident: e_1_2_7_144_1 doi: 10.1002/cssc.201501673 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201305172 – ident: e_1_2_7_116_1 doi: 10.1002/asia.201300208 – ident: e_1_2_7_60_1 doi: 10.1039/b907991m – ident: e_1_2_7_53_1 doi: 10.1021/ja103173m – ident: e_1_2_7_17_1 doi: 10.1021/acsami.6b10803 – ident: e_1_2_7_57_1 doi: 10.1016/j.nanoen.2017.11.014 – ident: e_1_2_7_90_1 doi: 10.1039/C0JM02354J – ident: e_1_2_7_77_1 doi: 10.1038/ncomms12806 – ident: e_1_2_7_66_1 doi: 10.1039/C5TA10574A – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201401616 – ident: e_1_2_7_3_1 doi: 10.1126/science.aap9282 – ident: e_1_2_7_20_1 doi: 10.1016/j.orgel.2016.01.002 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201602120 – ident: e_1_2_7_135_1 doi: 10.1021/acsami.8b15130 – volume: 46 start-page: 325 year: 2010 ident: e_1_2_7_45_1 publication-title: Chem. Commun. contributor: fullname: Li G. – ident: e_1_2_7_59_1 doi: 10.1021/cm101937p – ident: e_1_2_7_78_1 doi: 10.1039/C4CS00458B – ident: e_1_2_7_94_1 doi: 10.1016/j.mtener.2018.05.017 – ident: e_1_2_7_6_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_72_1 doi: 10.1002/aenm.201500279 – ident: e_1_2_7_39_1 doi: 10.1021/acsami.6b14375 – ident: e_1_2_7_136_1 doi: 10.1021/am506785k – ident: e_1_2_7_101_1 doi: 10.1002/adma.201001402 – ident: e_1_2_7_102_1 doi: 10.1039/C7TA06900F – ident: e_1_2_7_74_1 doi: 10.1002/aenm.201200103 – ident: e_1_2_7_105_1 doi: 10.1016/j.orgel.2018.06.049 – ident: e_1_2_7_25_1 doi: 10.1039/C8TA05636F – ident: e_1_2_7_28_1 doi: 10.1039/C7TA06335K – ident: e_1_2_7_67_1 doi: 10.1039/C5CC01642H – ident: e_1_2_7_132_1 doi: 10.1039/C8TA06730A – ident: e_1_2_7_30_1 doi: 10.1038/ncomms6784 – ident: e_1_2_7_55_1 doi: 10.1039/C5CC05253J – ident: e_1_2_7_62_1 doi: 10.1063/1.5036643 – ident: e_1_2_7_117_1 doi: 10.1021/jo5021163 – ident: e_1_2_7_88_1 doi: 10.1016/j.solmat.2017.04.043 – ident: e_1_2_7_119_1 doi: 10.1002/asia.201301547 – ident: e_1_2_7_79_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_7_69_1 doi: 10.1016/j.nanoen.2016.04.057 – ident: e_1_2_7_75_1 doi: 10.1021/acsami.5b01606 – ident: e_1_2_7_114_1 doi: 10.1002/asia.201000659 – ident: e_1_2_7_50_1 doi: 10.1016/j.cplett.2012.03.061 – ident: e_1_2_7_70_1 doi: 10.1103/PhysRevApplied.2.034007 – ident: e_1_2_7_131_1 doi: 10.1039/C8TA00492G – ident: e_1_2_7_71_1 doi: 10.1126/science.aaa5333 – ident: e_1_2_7_80_1 doi: 10.1016/j.nanoen.2016.10.026 – ident: e_1_2_7_140_1 doi: 10.1021/acsami.7b00902 – ident: e_1_2_7_134_1 doi: 10.1039/C7TC03368K – ident: e_1_2_7_41_1 doi: 10.1039/C8QO00788H – ident: e_1_2_7_125_1 doi: 10.1002/chem.201304071 – ident: e_1_2_7_82_1 doi: 10.1039/C7NJ04978A – ident: e_1_2_7_139_1 doi: 10.1016/j.solmat.2016.05.026 – ident: e_1_2_7_100_1 doi: 10.1021/acs.chemrev.6b00160 – ident: e_1_2_7_103_1 doi: 10.1002/adfm.201800346 – ident: e_1_2_7_113_1 doi: 10.1021/acs.chemmater.7b01318 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201402767 – ident: e_1_2_7_58_1 doi: 10.1039/c2jm30470h – ident: e_1_2_7_85_1 doi: 10.1039/C5TA03093E – ident: e_1_2_7_27_1 doi: 10.1039/C3EE43161D – ident: e_1_2_7_124_1 doi: 10.1021/ja064934k – ident: e_1_2_7_8_1 doi: 10.1038/nphys3357 – ident: e_1_2_7_1_1 doi: 10.1016/j.rser.2017.05.095 – ident: e_1_2_7_46_1 doi: 10.1039/c3cs60388a – ident: e_1_2_7_84_1 doi: 10.1002/adma.201404152 – ident: e_1_2_7_92_1 doi: 10.1016/S1369-7021(12)70019-6 – ident: e_1_2_7_129_1 doi: 10.1002/anie.201510990 – ident: e_1_2_7_16_1 doi: 10.1126/science.1228604 – ident: e_1_2_7_64_1 doi: 10.1016/j.nanoen.2016.08.048 – ident: e_1_2_7_81_1 doi: 10.1016/j.ica.2017.05.056 – ident: e_1_2_7_35_1 doi: 10.1021/es103860a – ident: e_1_2_7_9_1 doi: 10.1021/jz500279b – ident: e_1_2_7_14_1 doi: 10.1038/ncomms8348 – ident: e_1_2_7_51_1 doi: 10.1039/C6RA22023A – ident: e_1_2_7_43_1 doi: 10.1002/smll.201101686 – ident: e_1_2_7_104_1 doi: 10.1002/cssc.201702374 – ident: e_1_2_7_126_1 doi: 10.1002/chem.201403472 – ident: e_1_2_7_4_1 doi: 10.1021/ja809598r – ident: e_1_2_7_65_1 doi: 10.1002/advs.201600027 – ident: e_1_2_7_138_1 doi: 10.1039/C5TA10696F – ident: e_1_2_7_106_1 doi: 10.1016/j.jssc.2018.10.045 – ident: e_1_2_7_142_1 doi: 10.1002/smll.201803339 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201600457 – ident: e_1_2_7_83_1 doi: 10.1021/acs.accounts.5b00199 – ident: e_1_2_7_107_1 doi: 10.1002/ajoc.201800385 – ident: e_1_2_7_68_1 doi: 10.1039/C5NJ02957K – ident: e_1_2_7_76_1 doi: 10.1039/C6EE01337F – ident: e_1_2_7_145_1 doi: 10.1039/C6TA08526A – ident: e_1_2_7_34_1 doi: 10.1039/C3TA14236A – ident: e_1_2_7_110_1 doi: 10.1039/C6TB02052F – ident: e_1_2_7_123_1 doi: 10.1002/ange.200462962 – ident: e_1_2_7_47_1 doi: 10.1021/acs.nanolett.5b00787 – ident: e_1_2_7_97_1 doi: 10.1002/cssc.201701827 – ident: e_1_2_7_109_1 doi: 10.1002/tcr.201600015 – ident: e_1_2_7_111_1 doi: 10.1039/C5TC02080H – ident: e_1_2_7_86_1 doi: 10.1002/advs.201500014 – ident: e_1_2_7_36_1 doi: 10.1039/C6TC05066B – ident: e_1_2_7_52_1 doi: 10.1039/C4EE01216J – ident: e_1_2_7_38_1 doi: 10.1002/adma.201300580 – ident: e_1_2_7_44_1 doi: 10.1039/C4CC08706B – ident: e_1_2_7_49_1 doi: 10.1039/C2JM15322J – ident: e_1_2_7_12_1 doi: 10.1039/c1nr10867k – ident: e_1_2_7_29_1 doi: 10.1021/acs.jpclett.6b00215 – ident: e_1_2_7_37_1 doi: 10.1002/asia.201600293 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201204543 – ident: e_1_2_7_130_1 doi: 10.1016/j.joule.2017.11.006 – ident: e_1_2_7_56_1 doi: 10.1039/C5TA09080F – ident: e_1_2_7_141_1 doi: 10.1021/acsami.8b12675 |
SSID | ssj0031247 |
Score | 2.6882217 |
SecondaryResourceType | review_article |
Snippet | Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type conjugated... Organic n-type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene-based molecules, and n-type conjugated... Abstract Organic n‐type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene‐based molecules, and n‐type... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1900854 |
SubjectTerms | Chemical synthesis Electron mobility Electron transport electron transport materials Fullerenes inverted perovskite solar cells modified fullerene materials Molecular orbitals Nanotechnology Naphthalene n‐type polymers Organic chemistry Organic materials organic n‐type small molecules Perovskites Photovoltaic cells Solar cells Thermal stability Transport properties |
Title | Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900854 https://www.ncbi.nlm.nih.gov/pubmed/31069952 https://www.proquest.com/docview/2265562015 https://search.proquest.com/docview/2231912542 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6kx78_qhOiSB4KutX0vYoc7LDJoMpiJfSpK8gzE7Wzb_f95q2OjwIemtIQkPyPn4vyfuFsWsHYgAUBVs6GgMUV4OtHDopzF1IBWgnryg2htPw4Tm6GxBNTpvFb_gh2g030ozKXpOCp6rsfZGGlm8zOjpAh4aogQhBMVSocjj8SWOKfXRe1esq6LNsIt5qWBsdr7fefd0r_YCa68i1cj33u_8f9B7bqWEnvzVyss82oDhg29_ICA_ZCyJI9EB8Qje20P7x14KbTE3NB_VjObzlQufjdGmEl9oRW8cCsSufwGL-UdKOMJ9S0Mz7MJuVR-zpfvDYH9r1ywu2pkxZW0VZFIjUlQ6R7-REIimkUoFQgMF3ruJM-14WgUwhAwFhFjoaAkng0cslGpFj1inmBZwyLlIvR0jia1fqIPKyOMuVAincMNSxH0uL3TQzn7wbgo3EUCl7Cc1W0s6WxbrNwiS1opUJokeBEA5BjcWu2mpUETr3SAuYr6gN2hkEcoFnsROzoO2vEN3KOBZY41Xr9ssYkul4NGpLZ3_pdM626Ntc-e2yznKxggu2WWary0p4PwE7pe4I |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH64HNSD-xLXEQRPwWwzSY5SKxXbUqiCeAnJ5AWEmkpj_f2-lzTR4kEQj5mFDG_e8s32PYALC0NEUgVTWZoWKLZGM7H4pDCzMZaorayk2OgM_f5TcNNmmpzr-i1MxQ_RbLixZZT-mg2cN6SvvlhDi9cRnx1QRCPY4C3Csqe8kLM3uO6gdsYuha8yvwpFLZOpt2reRsu5mu8_H5d-gM157FoGn9uNfxj2JqzPkKe4rlRlCxYw34a1b3yEO_BMIJKCkBjwpS1ygeIlF9VjTS3as3w5oqFDF734vdJfbseEHROCr2KAk_FHwZvCYsjrZtHC0ajYhcfb9kOrY86SL5iaH8uaSZAGnoxtZTH_TsY8klIliScTpPV3loSpdp00QBVjihL91Lc0eorxo5Mp8iN7sJSPczwAIWMnI1TialtpL3DSMM2SBJW0fV-HbqgMuKxFH71VHBtRxabsRCytqJGWAcf1zEQzWysiApCSUBzhGgPOm2qyEj76iHMcT7kNuRrCcp5jwH41o82vCOCqMJRU45QT98sYomGv222-Dv_S6QxWOg-9btS9698fwSqXVzeAj2HpfTLFE1gs0ulpqcmfQQXyKQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB48QPTB-6jnCoJPwVy7SR5FWyq2UqiC-BKS3QkINS2N9fc7k7TR4oOgj9mDLLtzfLuz8y3AhY0RIomCpWxNGxRHo5XaHCnMHEwkajsrKTba_eDhObxtMk1OncVf8UPUB26sGaW9ZgUfmezqizS0eBtw6IAcGqEGfxGWfcbinMTh9Wa22CPvVT6vQk7LYuatGW2j7V7N9593Sz-w5jx0LX1Pa-P_o96E9SnuFNeVoGzBAubbsPaNjXAHXghCkgsSPb6yRQZQvOaiStXUojl9LUfUZOiim7xX0svtmK5jTOBV9HA8_Cj4SFj0edcsbnAwKHbhqdV8vGlb06cXLM2pslYamtCXiaNsZt_JmEVSqjT1ZYq0-87SyGjPNSGqBA1KDExga_QVo0c3U2RF9mApH-Z4AEImbkaYxNOO0n7omshkaYpKOkGgIy9SDbiczXw8qhg24opL2Y15tuJ6thpwPFuYeKppRUzwURKGI1TTgPO6mnSEAx9JjsMJtyFDQ0jOdxuwXy1o_SuCtyqKJNW45br9Moa43-106q_Dv3Q6g5XebSvu3D3cH8EqF1fXf49h6X08wRNYLMzktJTjT2qi8Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Organic+Electron+Transport+Materials+in+Inverted+Perovskite+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Said%2C+Ahmed+Ali&rft.au=Xie%2C+Jian&rft.au=Zhang%2C+Qichun&rft.date=2019-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201900854&rft.externalDBID=10.1002%252Fsmll.201900854&rft.externalDocID=SMLL201900854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |