Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites
Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-typ...
Saved in:
Published in: | Nature materials Vol. 14; no. 12; pp. 1223 - 1228 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-12-2015
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Filled skutterudites R
x
Co
4
Sb
12
are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb
3
is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb
3
skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics.
It is shown that the large thermoelectric capability of CoSb
3
skutterudite can be associated with a secondary conduction band with high valley degeneracy, which can converge with the light conduction band at high temperatures. |
---|---|
AbstractList | Filled skutterudites R(x)Co4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics. Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb 3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb 3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics. It is shown that the large thermoelectric capability of CoSb 3 skutterudite can be associated with a secondary conduction band with high valley degeneracy, which can converge with the light conduction band at high temperatures. Filled skutterudites RxCo4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics. |
Author | Tang, Yinglu Curtarolo, Stefano Snyder, G. Jeffrey Gibbs, Zachary M. Kim, Hyun-Sik Li, Guodong Agapito, Luis A. Nardelli, Marco Buongiorno |
Author_xml | – sequence: 1 givenname: Yinglu surname: Tang fullname: Tang, Yinglu organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology – sequence: 2 givenname: Zachary M. surname: Gibbs fullname: Gibbs, Zachary M. organization: Division of Chemistry and Chemical Engineering, California Institute of Technology – sequence: 3 givenname: Luis A. surname: Agapito fullname: Agapito, Luis A. organization: Department of Physics, University of North Texas, Department of Mechanical Engineering and Materials Science, Physics and Chemistry, Duke University – sequence: 4 givenname: Guodong surname: Li fullname: Li, Guodong organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 5 givenname: Hyun-Sik surname: Kim fullname: Kim, Hyun-Sik organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology, Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 6 givenname: Marco Buongiorno surname: Nardelli fullname: Nardelli, Marco Buongiorno organization: Department of Physics, University of North Texas – sequence: 7 givenname: Stefano surname: Curtarolo fullname: Curtarolo, Stefano organization: Department of Mechanical Engineering and Materials Science, Physics and Chemistry, Duke University – sequence: 8 givenname: G. Jeffrey surname: Snyder fullname: Snyder, G. Jeffrey email: jeff.snyder@northwestern.edu organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26436339$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1370980$$D View this record in Osti.gov |
BookMark | eNpdkc1O3DAURi1EVX5aiSeoorJpF6HXsWM7SzSiLRJSF8A6SpzrGdPEntoOEm-PoxmgYmVL39G5_nxPyKHzDgk5o3BBgakfbuoS5wwOyDHlUpRcCDjc3ymtqiNyEuMDQEXrWnwkR5XgTDDWHJO08u4RwxqdxsKbYprHZMvHbhzxqeg7N8Sii0XaYIEj6hS8s7rwwa6tW_CNXW-WNEx-l-d0i8H4MHWLMVMrf9uzIv6dU8IwDzZh_EQ-mG6M-Hl_npL7n1d3q9_lzZ9f16vLm1JzplJpmjp34kL2Ta8kKm6ErPUgQGpac-BKGWgMVKAHqJXhSydR616y2kigPTslX3deH5Nto86z9UZ75_JLW8okNAoy9G0HbYP_N2NM7WSjxnHsHPo5tjTrGBOgaEbP36EPfg4uV8iUkKDyn1ZvQh18jAFNuw126sJTS6Fd1tW-rCujX_bCuZ9weAVf9pOB7zsg5sitMfw38b3sGUaVnwc |
CitedBy_id | crossref_primary_10_1016_j_cogsc_2017_02_003 crossref_primary_10_1002_pssb_202300078 crossref_primary_10_1063_5_0076087 crossref_primary_10_1039_C9TC03839F crossref_primary_10_1016_j_jallcom_2022_167432 crossref_primary_10_1103_PhysRevApplied_8_034007 crossref_primary_10_1002_ange_202208216 crossref_primary_10_1063_1_5086061 crossref_primary_10_1039_D3CP05612K crossref_primary_10_1021_acs_chemrev_0c00026 crossref_primary_10_1039_C7EE02504A crossref_primary_10_1021_acs_chemmater_0c04351 crossref_primary_10_1088_2053_1591_ab24e7 crossref_primary_10_1016_j_jallcom_2021_159659 crossref_primary_10_1002_admi_202101691 crossref_primary_10_1016_j_physb_2022_414446 crossref_primary_10_1103_PhysRevMaterials_7_045402 crossref_primary_10_1002_adma_201802000 crossref_primary_10_1038_s41598_023_48316_w crossref_primary_10_1016_j_jallcom_2019_153497 crossref_primary_10_1016_j_nanoen_2021_106530 crossref_primary_10_1016_j_joule_2020_03_004 crossref_primary_10_1088_1361_648X_ac6e1e crossref_primary_10_1002_adma_202003168 crossref_primary_10_1039_D1EE02986J crossref_primary_10_1007_s12274_022_4810_8 crossref_primary_10_1007_s40843_018_9392_7 crossref_primary_10_1016_j_jeurceramsoc_2023_08_005 crossref_primary_10_1021_acsaem_4c00763 crossref_primary_10_1039_D3TA01291C crossref_primary_10_1038_nmat4461 crossref_primary_10_1039_D0EE02791J crossref_primary_10_1016_j_jallcom_2019_152272 crossref_primary_10_1016_j_jmat_2016_03_001 crossref_primary_10_1063_1_4971819 crossref_primary_10_1080_21663831_2018_1436092 crossref_primary_10_1088_1402_4896_ac8c70 crossref_primary_10_1016_j_nanoen_2018_02_009 crossref_primary_10_1038_s41524_019_0200_5 crossref_primary_10_1016_j_mssp_2020_105542 crossref_primary_10_1039_C7MH00865A crossref_primary_10_1021_acs_chemmater_2c02103 crossref_primary_10_1039_C9TC01096C crossref_primary_10_1021_acs_inorgchem_1c03947 crossref_primary_10_1002_adfm_202305269 crossref_primary_10_1007_s11664_018_6833_1 crossref_primary_10_1016_j_jssc_2017_02_025 crossref_primary_10_1021_acsami_2c16721 crossref_primary_10_1038_s41467_018_03866_w crossref_primary_10_1002_advs_202302688 crossref_primary_10_1007_s10854_020_03732_w crossref_primary_10_1021_acsami_1c06267 crossref_primary_10_1103_PhysRevLett_119_215503 crossref_primary_10_1063_5_0081785 crossref_primary_10_1103_PhysRevB_93_035104 crossref_primary_10_1002_aenm_202100661 crossref_primary_10_1016_j_mtphys_2021_100394 crossref_primary_10_1007_s10854_024_13037_x crossref_primary_10_1002_pssb_201800020 crossref_primary_10_1063_5_0069327 crossref_primary_10_1016_j_mssp_2020_105303 crossref_primary_10_1016_j_mtelec_2022_100002 crossref_primary_10_1088_1361_648X_ab03b6 crossref_primary_10_1016_j_physe_2021_115060 crossref_primary_10_1002_pssa_202300717 crossref_primary_10_1016_j_mtphys_2022_100887 crossref_primary_10_1016_j_mtphys_2022_100889 crossref_primary_10_1021_acsenergylett_8b00749 crossref_primary_10_1016_j_xcrp_2024_101781 crossref_primary_10_15541_jim20220714 crossref_primary_10_1016_j_mtphys_2021_100484 crossref_primary_10_1039_D0NR05382A crossref_primary_10_1016_j_matchemphys_2022_126669 crossref_primary_10_1002_adma_202206941 crossref_primary_10_1002_aenm_201800030 crossref_primary_10_1103_PhysRevB_99_045405 crossref_primary_10_1002_adfm_202111354 crossref_primary_10_1038_s41524_021_00587_5 crossref_primary_10_1039_C6TA06832D crossref_primary_10_1002_smll_202201183 crossref_primary_10_1016_j_jmat_2021_05_003 crossref_primary_10_1016_j_mseb_2022_115914 crossref_primary_10_1039_C8QI00207J crossref_primary_10_1007_s12598_018_1000_7 crossref_primary_10_1016_j_cap_2023_04_011 crossref_primary_10_1016_j_cap_2023_04_010 crossref_primary_10_1002_aelm_201901141 crossref_primary_10_1063_5_0174415 crossref_primary_10_1126_sciadv_abe9439 crossref_primary_10_1039_C6TA10827J crossref_primary_10_1038_s41467_020_16913_2 crossref_primary_10_1039_D1CP02545G crossref_primary_10_1103_PhysRevB_99_155203 crossref_primary_10_1002_adfm_201910039 crossref_primary_10_1063_1_4993900 crossref_primary_10_1039_C6CP06859F crossref_primary_10_1021_acsami_2c20292 crossref_primary_10_1021_acsami_9b12854 crossref_primary_10_1103_PhysRevMaterials_2_082401 crossref_primary_10_1039_D4TA01088D crossref_primary_10_1016_j_commatsci_2020_110192 crossref_primary_10_1016_j_jeurceramsoc_2023_01_047 crossref_primary_10_1016_j_actamat_2018_07_050 crossref_primary_10_1103_PhysRevB_101_184302 crossref_primary_10_1016_j_jmrt_2021_06_087 crossref_primary_10_1016_j_jssc_2020_121454 crossref_primary_10_1016_j_mtphys_2021_100340 crossref_primary_10_1039_D0RA01751E crossref_primary_10_1016_j_actamat_2018_02_063 crossref_primary_10_1016_j_mtphys_2020_100180 crossref_primary_10_1038_s41467_019_08542_1 crossref_primary_10_1039_C7TA07140J crossref_primary_10_1002_smsc_202300272 crossref_primary_10_1039_D0TA02614J crossref_primary_10_1016_j_jmst_2021_05_067 crossref_primary_10_1126_sciadv_adn9959 crossref_primary_10_1103_PhysRevMaterials_6_085404 crossref_primary_10_1021_acs_chemmater_8b03130 crossref_primary_10_1038_s41535_018_0083_6 crossref_primary_10_1088_1674_1056_ac6ee8 crossref_primary_10_3390_nano13192730 crossref_primary_10_1039_C8CP04301A crossref_primary_10_1039_C9EE03897C crossref_primary_10_1016_j_scriptamat_2018_11_015 crossref_primary_10_1016_j_jallcom_2021_160532 crossref_primary_10_1002_adfm_202403926 crossref_primary_10_1016_j_mtphys_2021_100591 crossref_primary_10_1021_acs_chemmater_9b01630 crossref_primary_10_1021_jacs_4c04048 crossref_primary_10_1002_adfm_202305582 crossref_primary_10_1039_C7TA10415D crossref_primary_10_1016_j_joule_2019_01_001 crossref_primary_10_1016_j_mtphys_2021_100355 crossref_primary_10_1039_D0DT03429K crossref_primary_10_1016_j_jallcom_2017_06_296 crossref_primary_10_1021_acsami_3c17695 crossref_primary_10_1016_j_nanoen_2017_10_003 crossref_primary_10_1039_D4NJ00494A crossref_primary_10_1016_j_mssp_2024_108556 crossref_primary_10_1007_s11431_017_9058_8 crossref_primary_10_1007_s12274_019_2432_6 crossref_primary_10_3390_nano13202738 crossref_primary_10_7567_JJAP_56_05DA04 crossref_primary_10_1103_PhysRevB_108_125119 crossref_primary_10_1103_PhysRevB_95_165204 crossref_primary_10_1021_acsami_7b18451 crossref_primary_10_1021_acs_chemmater_0c04517 crossref_primary_10_1039_C6QI00263C crossref_primary_10_1039_C7TC01967J crossref_primary_10_1002_smsc_202300298 crossref_primary_10_1016_j_mtener_2022_101029 crossref_primary_10_1103_PhysRevB_94_064105 crossref_primary_10_1103_PhysRevB_104_054511 crossref_primary_10_1016_j_jallcom_2019_05_238 crossref_primary_10_1515_ijmr_2021_8406 crossref_primary_10_1002_anie_202316469 crossref_primary_10_1038_s41563_021_01064_6 crossref_primary_10_1016_j_joule_2021_11_008 crossref_primary_10_1016_j_jallcom_2017_11_195 crossref_primary_10_1002_adfm_202112772 crossref_primary_10_1002_inf2_12502 crossref_primary_10_1007_s11664_022_10083_1 crossref_primary_10_1039_C6TA10770B crossref_primary_10_1080_00150193_2023_2296296 crossref_primary_10_1002_adma_201801787 crossref_primary_10_1103_PhysRevB_102_184305 crossref_primary_10_1039_D0TA02758H crossref_primary_10_1002_apxr_202300149 crossref_primary_10_1088_1367_2630_aa7b58 crossref_primary_10_1016_j_cplett_2021_138722 crossref_primary_10_1038_s41467_021_23839_w crossref_primary_10_1016_j_actamat_2020_01_045 crossref_primary_10_1016_j_cclet_2019_07_034 crossref_primary_10_1016_j_jallcom_2018_12_165 crossref_primary_10_1016_j_jmat_2020_10_013 crossref_primary_10_1038_s41524_018_0100_0 crossref_primary_10_1093_nsr_nwx011 crossref_primary_10_1007_s40843_021_1945_1 crossref_primary_10_1021_acsaem_7b00128 crossref_primary_10_1088_1361_6463_ad0f5b crossref_primary_10_1103_PhysRevB_102_115204 crossref_primary_10_1039_D1TA03649A crossref_primary_10_1016_j_jmat_2022_11_012 crossref_primary_10_3389_fchem_2022_865281 crossref_primary_10_1016_j_mtphys_2018_09_001 crossref_primary_10_1088_1361_6463_aa7625 crossref_primary_10_1021_acsomega_7b01389 crossref_primary_10_1016_j_heliyon_2023_e21117 crossref_primary_10_1021_jacs_9b13272 crossref_primary_10_1038_s41535_017_0071_2 crossref_primary_10_1021_acsaem_0c02810 crossref_primary_10_1021_acsaelm_0c00453 crossref_primary_10_1002_aenm_201803072 crossref_primary_10_1021_acsami_2c06822 crossref_primary_10_1088_1361_6633_ac105f crossref_primary_10_1103_PhysRevB_108_205143 crossref_primary_10_1002_aenm_201702333 crossref_primary_10_1021_acsaem_2c00857 crossref_primary_10_1016_j_jeurceramsoc_2021_11_022 crossref_primary_10_1021_acsaem_9b02131 crossref_primary_10_1016_j_mtener_2019_04_014 crossref_primary_10_1039_C7TA02178J crossref_primary_10_1002_aenm_201502269 crossref_primary_10_1021_acs_chemmater_7b00767 crossref_primary_10_1039_D1QI00727K crossref_primary_10_1016_j_mtchem_2023_101488 crossref_primary_10_1021_acsaem_9b02015 crossref_primary_10_1039_D3TA07747K crossref_primary_10_1002_adfm_202316144 crossref_primary_10_1038_s41524_023_01103_7 crossref_primary_10_1039_D1TA08379A crossref_primary_10_3389_fmats_2021_709757 crossref_primary_10_1016_j_mtphys_2019_03_005 crossref_primary_10_1016_j_mtphys_2019_03_004 crossref_primary_10_1038_s41524_017_0013_3 crossref_primary_10_1016_j_mtphys_2019_03_002 crossref_primary_10_1016_j_intermet_2019_106683 crossref_primary_10_1016_j_mtphys_2019_03_001 crossref_primary_10_1088_1361_648X_aab284 crossref_primary_10_1021_acsaem_0c00100 crossref_primary_10_1021_acsaem_3c01838 crossref_primary_10_1021_acsenergylett_7b00813 crossref_primary_10_1039_C8TA06824K crossref_primary_10_1002_adfm_202008851 crossref_primary_10_1021_acsaem_9b02340 crossref_primary_10_1021_acsami_9b05243 crossref_primary_10_1021_acs_chemmater_0c03581 crossref_primary_10_1016_j_jallcom_2024_174972 crossref_primary_10_1021_acsami_2c15413 crossref_primary_10_1016_j_applthermaleng_2023_121164 crossref_primary_10_1016_j_jallcom_2024_173520 crossref_primary_10_1016_j_nanoen_2016_12_023 crossref_primary_10_1016_j_actamat_2019_02_041 crossref_primary_10_1039_C8EE02077A crossref_primary_10_1016_j_mser_2021_100607 crossref_primary_10_1016_j_jallcom_2018_04_214 crossref_primary_10_1103_PhysRevMaterials_3_015403 crossref_primary_10_1039_D1NJ03624F crossref_primary_10_1002_aenm_202200204 crossref_primary_10_1016_j_jallcom_2019_07_147 crossref_primary_10_1016_j_jallcom_2019_152917 crossref_primary_10_1039_D3MH00195D crossref_primary_10_1021_acsaem_8b00064 crossref_primary_10_35848_1347_4065_acb3ce crossref_primary_10_1103_PhysRevMaterials_7_074205 crossref_primary_10_1039_C6DT04885D crossref_primary_10_1088_2515_7655_ac7fb8 crossref_primary_10_1016_j_jmat_2017_07_003 crossref_primary_10_1134_S0021364021180041 crossref_primary_10_1039_C8TA04876B crossref_primary_10_1016_j_mattod_2021_01_007 crossref_primary_10_1016_j_jallcom_2021_158995 crossref_primary_10_1016_j_nanoen_2020_105198 crossref_primary_10_1016_j_joule_2018_02_016 crossref_primary_10_1016_j_ssc_2022_114982 crossref_primary_10_1021_jacs_0c07067 crossref_primary_10_2139_ssrn_3976106 crossref_primary_10_1016_j_joule_2017_09_006 crossref_primary_10_1039_D0EE00491J crossref_primary_10_1016_j_matpr_2020_03_044 crossref_primary_10_1016_j_cplett_2024_141132 crossref_primary_10_1016_j_jallcom_2022_165550 crossref_primary_10_1021_acsaem_2c00549 crossref_primary_10_1063_1_5040752 crossref_primary_10_1021_jacs_8b11050 crossref_primary_10_1039_D2CP05979G crossref_primary_10_1002_admi_201900222 crossref_primary_10_1021_acsaem_1c02957 crossref_primary_10_1016_j_jmat_2016_05_007 crossref_primary_10_1021_acsaem_2c00785 crossref_primary_10_1021_acsami_3c16773 crossref_primary_10_1039_C6TA06325J crossref_primary_10_1088_1367_2630_aaf53f crossref_primary_10_1103_PhysRevB_94_165166 crossref_primary_10_1016_j_nanoen_2016_11_016 crossref_primary_10_1021_acsami_8b15080 crossref_primary_10_1103_PhysRevB_106_094316 crossref_primary_10_1002_sstr_202100016 crossref_primary_10_1039_C8EE03374A crossref_primary_10_1103_PhysRevMaterials_4_025405 crossref_primary_10_1002_adma_201807071 crossref_primary_10_1039_D1TC02404C crossref_primary_10_1021_acsaem_3c01725 crossref_primary_10_1002_advs_201600196 crossref_primary_10_1002_aenm_201902842 crossref_primary_10_1016_j_jmst_2019_08_046 crossref_primary_10_1016_j_mtadv_2022_100310 crossref_primary_10_1038_s41524_017_0046_7 crossref_primary_10_1021_acsaem_9b02330 crossref_primary_10_1002_adfm_201801617 crossref_primary_10_1126_science_adn7265 crossref_primary_10_1016_j_intermet_2020_106796 crossref_primary_10_1021_acs_inorgchem_8b00569 crossref_primary_10_1002_aenm_201900354 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1002_aenm_201801837 crossref_primary_10_1016_j_jssc_2016_03_015 crossref_primary_10_1007_s11664_022_09513_x crossref_primary_10_1021_acsaem_0c00825 crossref_primary_10_1039_D0MH00954G crossref_primary_10_1080_09243046_2023_2300587 crossref_primary_10_1103_PhysRevB_96_195425 crossref_primary_10_1002_aenm_202102012 crossref_primary_10_1016_j_mtphys_2020_100206 crossref_primary_10_1002_adfm_202300154 crossref_primary_10_1002_inf2_12217 crossref_primary_10_1021_acs_chemmater_3c00393 crossref_primary_10_3365_KJMM_2019_57_10_673 crossref_primary_10_1073_pnas_1617663113 crossref_primary_10_3390_ma16010370 crossref_primary_10_1016_j_rser_2021_110800 crossref_primary_10_1016_j_vacuum_2024_113269 crossref_primary_10_1039_D0TA08683E crossref_primary_10_1016_j_mtcomm_2022_103961 crossref_primary_10_1051_epjap_2022210231 crossref_primary_10_1039_D0MH01802C crossref_primary_10_1002_admi_201700517 crossref_primary_10_1016_j_jeurceramsoc_2022_03_034 crossref_primary_10_1021_acs_chemmater_6b04506 crossref_primary_10_1021_acsami_9b14548 crossref_primary_10_1103_PhysRevLett_119_085501 crossref_primary_10_1016_j_jallcom_2022_164733 crossref_primary_10_1016_j_vacuum_2017_04_015 crossref_primary_10_1016_j_jallcom_2021_160191 crossref_primary_10_1016_j_jssc_2019_120995 crossref_primary_10_1002_aenm_201602582 crossref_primary_10_1007_s11664_022_09547_1 crossref_primary_10_1039_C8TA00381E crossref_primary_10_1016_j_ast_2022_107966 crossref_primary_10_1039_D2TA06877J crossref_primary_10_1088_1361_6463_aa84f7 crossref_primary_10_3989_ris_2021_79_1_19_350 crossref_primary_10_1016_j_solidstatesciences_2022_106900 crossref_primary_10_1016_j_jmst_2022_12_020 crossref_primary_10_1007_s40948_019_00134_z crossref_primary_10_1016_j_mtener_2024_101555 crossref_primary_10_1002_advs_201902628 crossref_primary_10_1021_acsami_8b22741 crossref_primary_10_1021_acs_jpcc_1c06843 crossref_primary_10_1103_PhysRevMaterials_7_085403 crossref_primary_10_1007_s12598_021_01737_w crossref_primary_10_1016_j_actamat_2024_119896 crossref_primary_10_1016_j_actamat_2024_119777 crossref_primary_10_1021_acs_chemmater_8b03732 crossref_primary_10_1039_D3TA04192A crossref_primary_10_1016_j_nanoen_2019_104193 crossref_primary_10_1016_j_jmat_2019_04_008 crossref_primary_10_1016_j_matpr_2023_01_364 crossref_primary_10_1038_s41467_022_31372_7 crossref_primary_10_1039_C7TC03603E crossref_primary_10_1038_s41467_021_25119_z crossref_primary_10_1016_j_jallcom_2019_151772 crossref_primary_10_1016_j_jmat_2016_06_001 crossref_primary_10_1002_aenm_202301525 crossref_primary_10_34133_2020_1934848 crossref_primary_10_1002_cnl2_28 crossref_primary_10_1039_D2NR02556F crossref_primary_10_1002_smtd_201900412 crossref_primary_10_1103_PhysRevB_107_045203 crossref_primary_10_34133_2020_9652749 crossref_primary_10_1016_j_mtphys_2023_101287 crossref_primary_10_1063_1_5021094 crossref_primary_10_1016_j_mtphys_2023_101167 crossref_primary_10_1021_jacs_0c05650 crossref_primary_10_1016_j_jma_2022_05_021 crossref_primary_10_1103_PhysRevB_105_075431 crossref_primary_10_1016_j_jpcs_2023_111835 crossref_primary_10_1016_j_mtphys_2023_101283 crossref_primary_10_1038_s41524_020_00368_6 crossref_primary_10_1002_adfm_201904346 crossref_primary_10_1002_smll_201700661 crossref_primary_10_1002_adfm_202404021 crossref_primary_10_1021_acsami_1c11599 crossref_primary_10_56646_jjapcp_10_0_011001 crossref_primary_10_1021_acsami_2c08555 crossref_primary_10_1021_acsmaterialsau_3c00107 crossref_primary_10_1016_j_mtphys_2023_101211 crossref_primary_10_1039_D1TA02812J crossref_primary_10_1039_C8TA05798B crossref_primary_10_1016_j_jallcom_2019_03_140 crossref_primary_10_1016_j_jallcom_2020_156989 crossref_primary_10_1021_acsaem_2c00800 crossref_primary_10_1016_j_ccr_2020_213437 crossref_primary_10_1021_acsami_7b19501 crossref_primary_10_7567_JJAP_56_05FB07 crossref_primary_10_1021_acsnano_9b03805 crossref_primary_10_1021_acsami_0c22842 crossref_primary_10_1021_acsami_3c05929 crossref_primary_10_1002_adfm_202203852 crossref_primary_10_1039_C6TC01000H crossref_primary_10_1063_1_5049628 crossref_primary_10_1021_acsami_3c15741 crossref_primary_10_1016_j_ceramint_2024_05_130 crossref_primary_10_1039_C8DT02701C crossref_primary_10_1021_acs_inorgchem_8b02899 crossref_primary_10_1021_acs_chemmater_6b00112 crossref_primary_10_1039_C8TA02250J crossref_primary_10_3390_en13051106 crossref_primary_10_1021_acsaelm_3c00887 crossref_primary_10_1016_j_jechem_2019_09_021 crossref_primary_10_1038_s41598_019_43911_2 crossref_primary_10_1080_17436753_2019_1705018 crossref_primary_10_1039_C7TC01623A crossref_primary_10_1002_er_6851 crossref_primary_10_1063_5_0072589 crossref_primary_10_1103_PhysRevB_107_125202 crossref_primary_10_1016_j_actamat_2021_116791 crossref_primary_10_2139_ssrn_4070798 crossref_primary_10_1002_qute_202000115 crossref_primary_10_1016_j_nanoen_2019_104395 crossref_primary_10_1002_adma_201905703 crossref_primary_10_1002_adma_201605884 crossref_primary_10_1002_adma_201602013 crossref_primary_10_1007_s00894_017_3304_1 crossref_primary_10_1039_D0TC03455J crossref_primary_10_1002_ange_202316469 crossref_primary_10_1002_aenm_201902435 crossref_primary_10_1021_jacs_4c01688 crossref_primary_10_1088_1361_648X_aade17 crossref_primary_10_1039_D2RA08100H crossref_primary_10_1016_j_jallcom_2019_03_232 crossref_primary_10_1039_C8CP05818K crossref_primary_10_1016_j_jallcom_2020_157971 crossref_primary_10_1103_PhysRevB_99_125109 crossref_primary_10_1016_j_apsusc_2022_152526 crossref_primary_10_1016_j_jmat_2020_09_005 crossref_primary_10_1021_acs_chemmater_7b04123 crossref_primary_10_1038_s41467_019_10476_7 crossref_primary_10_1039_D3QI02439C crossref_primary_10_1088_1361_6463_abc0bf crossref_primary_10_1126_science_abi8668 crossref_primary_10_1103_PhysRevApplied_13_024038 crossref_primary_10_1038_s41598_022_08931_5 crossref_primary_10_1002_aenm_202400340 crossref_primary_10_1016_j_jallcom_2016_12_425 crossref_primary_10_1039_D2CC04205C crossref_primary_10_1021_acs_chemmater_9b03011 crossref_primary_10_1103_PhysRevB_100_075207 crossref_primary_10_1103_PhysRevB_109_085305 crossref_primary_10_1140_epjb_e2020_10455_0 crossref_primary_10_1021_jacs_2c04741 crossref_primary_10_1039_D2EE01038K crossref_primary_10_1016_j_ceramint_2021_03_097 crossref_primary_10_1021_acs_chemmater_0c00388 crossref_primary_10_1103_PhysRevB_108_235203 crossref_primary_10_1103_PhysRevB_108_155205 crossref_primary_10_1002_pssr_202300133 crossref_primary_10_1016_j_actamat_2016_03_059 crossref_primary_10_1021_jacs_8b09147 crossref_primary_10_1016_j_ceramint_2020_12_017 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1002_adfm_202307864 crossref_primary_10_1021_acsaem_1c01045 crossref_primary_10_1063_5_0044648 crossref_primary_10_1021_acsami_8b13528 crossref_primary_10_1103_PhysRevB_105_115142 crossref_primary_10_1038_s41524_022_00927_z crossref_primary_10_1016_j_jcrysgro_2017_03_020 crossref_primary_10_1039_C9TC00183B crossref_primary_10_1002_pssb_202300244 crossref_primary_10_1021_acs_chemmater_6b04230 crossref_primary_10_1016_j_mtener_2022_100977 crossref_primary_10_1039_C9TC01607D crossref_primary_10_1021_acsaelm_1c01075 crossref_primary_10_1016_j_mtphys_2019_100159 crossref_primary_10_1021_jacs_8b09375 crossref_primary_10_1021_acs_chemmater_1c03747 crossref_primary_10_1016_j_matdes_2018_08_001 crossref_primary_10_1039_C7TA08545A crossref_primary_10_1039_D0CP01641A crossref_primary_10_1016_j_actamat_2023_118773 crossref_primary_10_1021_jacs_6b04181 crossref_primary_10_1103_PhysRevB_106_104303 crossref_primary_10_1007_s11665_020_04953_0 crossref_primary_10_1126_science_aak9997 crossref_primary_10_1016_j_mtphys_2022_100742 crossref_primary_10_1007_s11664_023_10296_y crossref_primary_10_1039_D3EE02482B crossref_primary_10_1038_s41598_017_02808_8 crossref_primary_10_1021_acsami_7b01473 crossref_primary_10_35848_1347_4065_aca258 crossref_primary_10_1038_s41467_022_31939_4 crossref_primary_10_1039_D2CP04806J crossref_primary_10_1016_j_commatsci_2020_109960 crossref_primary_10_1007_s10854_021_06403_6 crossref_primary_10_1021_acs_chemmater_1c03619 crossref_primary_10_1039_D3CP03596D crossref_primary_10_1038_s41586_019_1751_9 crossref_primary_10_1063_5_0087244 crossref_primary_10_1038_s41524_021_00523_7 crossref_primary_10_3390_cryst11111290 crossref_primary_10_1039_D2TA09210G crossref_primary_10_54227_mlab_20220056 crossref_primary_10_1002_smtd_202301619 crossref_primary_10_1103_PhysRevMaterials_3_105405 crossref_primary_10_1002_aenm_202001924 crossref_primary_10_1016_j_mtphys_2024_101466 crossref_primary_10_1021_acsaem_0c02019 crossref_primary_10_1002_aenm_202103770 crossref_primary_10_1126_sciadv_abg1449 crossref_primary_10_1039_C6TA02116F crossref_primary_10_2139_ssrn_4191307 crossref_primary_10_1103_PhysRevB_99_195202 crossref_primary_10_1007_s10853_020_05586_3 crossref_primary_10_1021_acsami_0c01798 crossref_primary_10_1103_PhysRevB_103_165406 crossref_primary_10_1021_acsami_0c01676 crossref_primary_10_1021_acs_jpclett_2c00379 crossref_primary_10_1002_aelm_202001262 crossref_primary_10_1016_j_mtphys_2018_11_001 crossref_primary_10_1021_acs_chemmater_8b03994 crossref_primary_10_1016_j_actamat_2020_07_045 crossref_primary_10_1039_D2CP05258J crossref_primary_10_1088_1674_1056_ac3cae crossref_primary_10_1016_j_mtphys_2023_101059 crossref_primary_10_1021_acsami_8b16717 crossref_primary_10_1039_D1RA04270J crossref_primary_10_1142_S1793604721510139 crossref_primary_10_1109_TED_2017_2777803 crossref_primary_10_1016_j_mtphys_2019_100102 crossref_primary_10_3390_ma16103819 crossref_primary_10_1016_j_mtphys_2023_101293 crossref_primary_10_1021_acsaem_2c01176 crossref_primary_10_1080_00018732_2018_1551715 crossref_primary_10_1007_s11467_018_0756_4 crossref_primary_10_1016_j_jphotochemrev_2019_01_001 crossref_primary_10_1002_eem2_12535 crossref_primary_10_1021_acsaem_8b01609 crossref_primary_10_1021_acs_chemmater_7b00279 crossref_primary_10_1007_s12034_023_02945_z crossref_primary_10_1016_j_rinp_2024_107850 crossref_primary_10_34133_2020_5016564 crossref_primary_10_1002_adfm_202404279 crossref_primary_10_1002_pssb_202400172 crossref_primary_10_1016_j_jallcom_2021_159161 crossref_primary_10_1063_5_0049197 crossref_primary_10_1002_adma_202208272 crossref_primary_10_1021_acsaem_3c02359 crossref_primary_10_1016_j_cej_2021_130530 crossref_primary_10_1016_j_jpowsour_2019_01_022 crossref_primary_10_1021_acs_inorgchem_9b01038 crossref_primary_10_1111_jace_15069 crossref_primary_10_1007_s40145_020_0407_4 crossref_primary_10_1039_C8TA03837F crossref_primary_10_1039_D0TA05458E crossref_primary_10_1002_smll_202104067 crossref_primary_10_1016_j_mtphys_2022_100904 crossref_primary_10_1007_s10825_023_02075_z crossref_primary_10_1007_s11664_023_10424_8 crossref_primary_10_1016_j_mtphys_2018_11_004 crossref_primary_10_1039_C9TC01824G crossref_primary_10_1021_acsami_1c12862 crossref_primary_10_1016_j_jallcom_2022_163933 crossref_primary_10_1088_1674_1056_27_4_048403 crossref_primary_10_1039_D4TC00761A crossref_primary_10_1063_1_5145186 crossref_primary_10_1016_j_jmat_2018_04_001 crossref_primary_10_1039_C7QM00306D crossref_primary_10_1039_D1MA00780G crossref_primary_10_1063_1_5138651 crossref_primary_10_1021_acs_chemmater_9b00393 crossref_primary_10_34133_2021_2414286 crossref_primary_10_1016_j_physe_2022_115333 crossref_primary_10_1016_j_jmat_2018_10_004 crossref_primary_10_1021_acsami_2c07044 crossref_primary_10_1021_acs_jpcc_0c06703 crossref_primary_10_1002_aelm_201800904 crossref_primary_10_1021_acsaem_3c00198 crossref_primary_10_3365_KJMM_2023_61_8_608 crossref_primary_10_1021_jacs_6b09222 crossref_primary_10_1016_j_mtphys_2020_100331 crossref_primary_10_1021_acs_chemmater_8b03306 crossref_primary_10_1039_C9TC02188D crossref_primary_10_1088_1674_1056_27_4_047206 crossref_primary_10_1002_adma_202405299 crossref_primary_10_1016_j_joule_2017_11_005 crossref_primary_10_1016_j_jallcom_2023_172815 crossref_primary_10_1002_anie_202208216 crossref_primary_10_1039_C7TA02080E crossref_primary_10_1016_j_mtphys_2020_100217 crossref_primary_10_1016_j_cej_2021_130670 crossref_primary_10_1021_acs_chemmater_9b02327 crossref_primary_10_1002_aenm_202100580 crossref_primary_10_1515_zkri_2022_0051 crossref_primary_10_1021_acs_chemmater_2c00637 crossref_primary_10_1063_5_0089871 crossref_primary_10_1140_epjp_s13360_022_02996_x crossref_primary_10_1016_j_cjsc_2024_100268 crossref_primary_10_1103_PhysRevB_107_205206 crossref_primary_10_1007_s12598_021_01847_5 crossref_primary_10_1002_adfm_202001651 crossref_primary_10_1021_acsami_7b15651 crossref_primary_10_1021_acsami_0c08149 crossref_primary_10_1016_j_mtphys_2021_100508 crossref_primary_10_1021_acsami_3c01956 crossref_primary_10_1002_smll_201703695 crossref_primary_10_1039_C8TA08448C crossref_primary_10_1002_adma_202400845 crossref_primary_10_1039_D0RA02699A |
Cites_doi | 10.1103/PhysRev.121.752 10.1116/1.1290372 10.1063/1.3182800 10.1007/978-3-662-03313-5 10.1016/j.jallcom.2014.09.173 10.1063/1.363405 10.1002/adma.201202919 10.1007/BF00892328 10.1007/s11664-010-1073-z 10.1103/PhysRevLett.80.3551 10.1016/0022-3697(59)90051-4 10.1103/PhysRevB.88.165127 10.1088/0953-8984/15/29/315 10.1063/1.3296186 10.1103/PhysRev.138.A873 10.1103/PhysRevB.72.085126 10.1016/0022-3697(57)90013-6 10.1103/PhysRevB.61.4672 10.1038/nature09996 10.1063/1.2965123 10.1039/C3EE43240H 10.1088/0953-8984/21/39/395502 10.1016/0022-3697(77)90203-7 10.1016/j.actamat.2013.09.039 10.1063/1.371287 10.1063/1.1388162 10.1134/S1063783407090053 10.1038/ncomms8584 10.1103/PhysRevB.6.3898 10.1016/0020-0891(84)90066-6 10.1016/S0927-0256(03)00104-6 10.1103/PhysRevLett.77.3865 10.1016/0022-3697(64)90030-7 10.1063/1.1450036 10.1063/1.3099804 10.1103/PhysRevLett.110.146601 10.1016/j.jmat.2015.03.008 10.1021/ja111199y 10.1103/PhysRevB.50.11235 10.1039/c3ee42187b 10.1103/PhysRevLett.108.166601 10.1039/C3EE43438A 10.1103/PhysRevB.80.115329 10.1103/PhysRevB.58.15620 10.1039/c2ee21536e 10.1038/nmat2260 10.1063/1.2245204 10.1007/s11664-009-0703-9 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 Copyright Nature Publishing Group Dec 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: Copyright Nature Publishing Group Dec 2015 |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC) |
DBID | NPM AAYXX CITATION 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PQEST PQQKQ PQUKI PTHSS Q9U 7X8 OTOTI |
DOI | 10.1038/nmat4430 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Engineering Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1228 |
ExternalDocumentID | 1370980 3959782351 10_1038_nmat4430 26436339 |
Genre | Journal Article Feature |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABVXF ABZEH ACGFS ACGOD ACIWK ADBBV AENEX AFBBN AFKRA AFSHS AFWHJ AGAYW AGEZK AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYZH NPM AAYXX CITATION 7SR 7XB 8BQ 8FD 8FK JG9 K9. PQEST PQUKI Q9U 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c438t-f95430467b9b87e84f675cd607c1540488f09f020cd058f4436365cb735f701b3 |
ISSN | 1476-1122 |
IngestDate | Thu May 18 18:17:43 EDT 2023 Fri Oct 25 04:35:58 EDT 2024 Thu Oct 10 21:03:05 EDT 2024 Thu Sep 12 16:39:49 EDT 2024 Tue Oct 15 23:55:19 EDT 2024 Fri Oct 11 20:47:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-f95430467b9b87e84f675cd607c1540488f09f020cd058f4436365cb735f701b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001299; FG02-09ER46577 |
PMID | 26436339 |
PQID | 1767086332 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1370980 proquest_miscellaneous_1735336081 proquest_journals_1767086332 crossref_primary_10_1038_nmat4430 pubmed_primary_26436339 springer_journals_10_1038_nmat4430 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tang, Chen, Snyder (CR2) 2015; 1 Ackermann, Wold (CR35) 1977; 38 Smith, Moss, Taylor (CR38) 1959; 11 Meisner, Morelli, Hu, Yang, Uher (CR10) 1998; 80 Pei (CR13) 2011; 473 Li, Tang, Zhang, Uher (CR7) 2009; 94 Kuznetsov, Kuznetsova, Rowe (CR22) 2003; 15 Yang, Xi, Zhang, Chen, Yang (CR27) 2009; 38 Zhao (CR14) 2013; 6 Perdew, Burke, Ernzerhof (CR47) 1996; 77 Koza (CR11) 2008; 7 Nagamoto, Tanaka, Koyanagi (CR30) 1998 Cardona (CR39) 1961; 121 Liu (CR16) 2012; 108 Singh, Pickett (CR19) 1994; 50 Caillat, Borshchevsky, Fleurial (CR1) 1996; 80 Giannozzi (CR48) 2009; 21 Wang, Gibbs, Takagiwa, Snyder (CR15) 2014; 7 Liu, Zhao, Zhang, Zhang, Li (CR29) 2008; 93 Kokalj (CR50) 2003; 28 Dixon, Riedl (CR40) 1965; 138 Pei (CR3) 2009; 95 Arushanov, Respaud, Rakoto, Broto, Caillat (CR42) 2000; 61 Agapito, Ferretti, Calzolari, Curtarolo, Buongiorno (CR49) 2013; 88 Gnutzman, Clauseck (CR34) 1974; 3 Rogl (CR8) 2014; 63 Dionne, Woolley (CR41) 1972; 6 Salvador, Yang, Wang, Shi (CR23) 2010; 107 Takagiwa, Pei, Pomrehn, Snyder (CR28) 2013; 1 Zhou, Liu, Zhai, Zhao, Zhang (CR26) 2010; 39 Parker, Chen, Singh (CR17) 2013; 110 Kane (CR37) 1957; 1 Chen (CR4) 2001; 90 Harman (CR43) 1964; 25 Pshenaı̆-Severin, Fedorov (CR45) 2007; 49 Yang (CR32) 2009; 80 Tang (CR5) 2014; 7 Tang, Hanus, Chen, Snyder (CR6) 2015; 6 Nolas, Fowler, Yang (CR12) 2006; 100 Kajikawa (CR31) 2015; 621 Pei, LaLonde, Wang, Snyder (CR21) 2012; 5 Shi (CR9) 2011; 133 Anno, Matsubara, Notohara, Sakakibara, Tashiro (CR24) 1999; 86 Young, Coutts, Kaydanov, Gilmore, Mulligan (CR44) 2000; 18 Chaput, Pécheur, Tobola, Scherrer (CR33) 2005; 72 Kliche, Lutz (CR36) 1984; 24 Yu, Cardona (CR46) 1996 Dyck (CR25) 2002; 91 Sofo, Mahan (CR20) 1998; 58 Pei, Wang, Snyder (CR18) 2012; 24 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502 21524125 - J Am Chem Soc. 2011 May 25;133(20):7837-46 26189943 - Nat Commun. 2015 Jul 20;6:7584 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 9975246 - Phys Rev B Condens Matter. 1994 Oct 15;50(15):11235-11238 22680741 - Phys Rev Lett. 2012 Apr 20;108(16):166601 23074043 - Adv Mater. 2012 Dec 4;24(46):6125-35 25167018 - Phys Rev Lett. 2013 Apr 5;110(14):146601 21544143 - Nature. 2011 May 5;473(7345):66-9 18758457 - Nat Mater. 2008 Oct;7(10):805-10 U Gnutzman (BFnmat4430_CR34) 1974; 3 T Caillat (BFnmat4430_CR1) 1996; 80 H Wang (BFnmat4430_CR15) 2014; 7 D Parker (BFnmat4430_CR17) 2013; 110 MM Koza (BFnmat4430_CR11) 2008; 7 W-S Liu (BFnmat4430_CR29) 2008; 93 Y Kajikawa (BFnmat4430_CR31) 2015; 621 EO Kane (BFnmat4430_CR37) 1957; 1 H Anno (BFnmat4430_CR24) 1999; 86 Y Tang (BFnmat4430_CR5) 2014; 7 LD Chen (BFnmat4430_CR4) 2001; 90 SD Smith (BFnmat4430_CR38) 1959; 11 M Cardona (BFnmat4430_CR39) 1961; 121 E Arushanov (BFnmat4430_CR42) 2000; 61 JR Salvador (BFnmat4430_CR23) 2010; 107 L Chaput (BFnmat4430_CR33) 2005; 72 A Kokalj (BFnmat4430_CR50) 2003; 28 G Meisner (BFnmat4430_CR10) 1998; 80 JP Perdew (BFnmat4430_CR47) 1996; 77 Y Nagamoto (BFnmat4430_CR30) 1998 Y Pei (BFnmat4430_CR18) 2012; 24 DJ Singh (BFnmat4430_CR19) 1994; 50 VL Kuznetsov (BFnmat4430_CR22) 2003; 15 J Yang (BFnmat4430_CR27) 2009; 38 Y Tang (BFnmat4430_CR2) 2015; 1 H Li (BFnmat4430_CR7) 2009; 94 J Yang (BFnmat4430_CR32) 2009; 80 G Kliche (BFnmat4430_CR36) 1984; 24 GS Nolas (BFnmat4430_CR12) 2006; 100 LA Agapito (BFnmat4430_CR49) 2013; 88 G Rogl (BFnmat4430_CR8) 2014; 63 JR Dixon (BFnmat4430_CR40) 1965; 138 G Dionne (BFnmat4430_CR41) 1972; 6 YZ Pei (BFnmat4430_CR3) 2009; 95 Y Pei (BFnmat4430_CR21) 2012; 5 DL Young (BFnmat4430_CR44) 2000; 18 P Giannozzi (BFnmat4430_CR48) 2009; 21 X Shi (BFnmat4430_CR9) 2011; 133 W Liu (BFnmat4430_CR16) 2012; 108 Y Takagiwa (BFnmat4430_CR28) 2013; 1 JS Dyck (BFnmat4430_CR25) 2002; 91 LD Zhao (BFnmat4430_CR14) 2013; 6 JO Sofo (BFnmat4430_CR20) 1998; 58 TC Harman (BFnmat4430_CR43) 1964; 25 DA Pshenaı̆-Severin (BFnmat4430_CR45) 2007; 49 PY Yu (BFnmat4430_CR46) 1996 Y Tang (BFnmat4430_CR6) 2015; 6 Y Pei (BFnmat4430_CR13) 2011; 473 J Ackermann (BFnmat4430_CR35) 1977; 38 A Zhou (BFnmat4430_CR26) 2010; 39 |
References_xml | – volume: 121 start-page: 752 year: 1961 end-page: 758 ident: CR39 article-title: Electron effective masses of InAs and GaAs as a function of temperature and doping publication-title: Phys. Rev. doi: 10.1103/PhysRev.121.752 contributor: fullname: Cardona – volume: 18 start-page: 2978 year: 2000 end-page: 2985 ident: CR44 article-title: Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1290372 contributor: fullname: Mulligan – volume: 95 start-page: 042101 year: 2009 ident: CR3 article-title: Improving thermoelectric performance of caged compounds through light-element filling publication-title: Appl. Phys. Lett. doi: 10.1063/1.3182800 contributor: fullname: Pei – start-page: 259 year: 1996 end-page: 264 ident: CR46 publication-title: Fundamentals of Semiconductors doi: 10.1007/978-3-662-03313-5 contributor: fullname: Cardona – volume: 621 start-page: 170 year: 2015 end-page: 178 ident: CR31 article-title: Refined analysis of the transport properties of Co Ni Sb according to a model including a deep donor level and the second lowest valleys of the conduction band publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.09.173 contributor: fullname: Kajikawa – volume: 80 start-page: 4442 year: 1996 end-page: 4449 ident: CR1 article-title: Properties of single crystalline semiconducting CoSb publication-title: J. Appl. Phys. doi: 10.1063/1.363405 contributor: fullname: Fleurial – volume: 24 start-page: 6125 year: 2012 end-page: 6135 ident: CR18 article-title: Band engineering of thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.201202919 contributor: fullname: Snyder – volume: 3 start-page: 9 year: 1974 end-page: 14 ident: CR34 article-title: Theory of direct optical-transitions in an optical indirect semiconductor with a superlattice structure publication-title: Appl. Phys. doi: 10.1007/BF00892328 contributor: fullname: Clauseck – volume: 39 start-page: 1832 year: 2010 end-page: 1836 ident: CR26 article-title: Electronic structures and transport properties of single-filled CoSb publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1073-z contributor: fullname: Zhang – volume: 80 start-page: 3551 year: 1998 end-page: 3554 ident: CR10 article-title: Structure and lattice thermal conductivity of fractionally filled skutterudites: Solid solutions of fully filled and unfilled end members publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3551 contributor: fullname: Uher – volume: 11 start-page: 131 year: 1959 end-page: 139 ident: CR38 article-title: The energy-dependence of electron mass in indium antimonide determined from measurements of the infrared Faraday effect publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(59)90051-4 contributor: fullname: Taylor – volume: 88 start-page: 165127 year: 2013 ident: CR49 article-title: Effective and accurate representation of extended Bloch states on finite Hilbert spaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165127 contributor: fullname: Buongiorno – volume: 15 start-page: 5035 year: 2003 end-page: 5048 ident: CR22 article-title: Effect of partial void filling on the transport properties of Nd Co Sb skutterudites publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/29/315 contributor: fullname: Rowe – volume: 107 start-page: 043705 year: 2010 ident: CR23 article-title: Double-filled skutterudites of the type Yb Ca Co Sb : Synthesis and properties publication-title: J. Appl. Phys. doi: 10.1063/1.3296186 contributor: fullname: Shi – volume: 138 start-page: A873 year: 1965 end-page: A881 ident: CR40 article-title: Electric-susceptibility hole mass of lead telluride publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.A873 contributor: fullname: Riedl – volume: 72 start-page: 085126 year: 2005 ident: CR33 article-title: Transport in doped skutterudites: electronic structure calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.085126 contributor: fullname: Scherrer – volume: 1 start-page: 249 year: 1957 end-page: 261 ident: CR37 article-title: Band structure of indium antimonide publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(57)90013-6 contributor: fullname: Kane – volume: 61 start-page: 4672 year: 2000 end-page: 4676 ident: CR42 article-title: Shubnikov–de Haas oscillations in CoSb single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.4672 contributor: fullname: Caillat – volume: 473 start-page: 66 year: 2011 end-page: 69 ident: CR13 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature doi: 10.1038/nature09996 contributor: fullname: Pei – volume: 93 start-page: 042109 year: 2008 ident: CR29 article-title: Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds publication-title: Appl. Phys. Lett. doi: 10.1063/1.2965123 contributor: fullname: Li – volume: 7 start-page: 812 year: 2014 end-page: 819 ident: CR5 article-title: Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43240H contributor: fullname: Tang – volume: 21 start-page: 395502 year: 2009 ident: CR48 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 contributor: fullname: Giannozzi – volume: 38 start-page: 1013 year: 1977 end-page: 1016 ident: CR35 article-title: The preparation and characterization of the cobalt skutterudites CoP , CoAs and CoSb publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(77)90203-7 contributor: fullname: Wold – volume: 63 start-page: 30 year: 2014 end-page: 43 ident: CR8 article-title: n-type skutterudites (R, Ba, Yb) Co Sb (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≍ 2.0 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.039 contributor: fullname: Rogl – volume: 86 start-page: 3780 year: 1999 end-page: 3786 ident: CR24 article-title: Effects of doping on the transport properties of CoSb publication-title: J. Appl. Phys. doi: 10.1063/1.371287 contributor: fullname: Tashiro – volume: 90 start-page: 1864 year: 2001 end-page: 1868 ident: CR4 article-title: Anomalous barium filling fraction and n-type thermoelectric performance of Ba Co Sb publication-title: J. Appl. Phys. doi: 10.1063/1.1388162 contributor: fullname: Chen – volume: 49 start-page: 1633 year: 2007 end-page: 1637 ident: CR45 article-title: Effect of the band structure on the thermoelectric properties of a semiconductor publication-title: Phys. Solid State doi: 10.1134/S1063783407090053 contributor: fullname: Fedorov – volume: 6 start-page: 7584 year: 2015 ident: CR6 article-title: Solubility design leading to high figure of merit in low-cost Ce–CoSb skutterudites publication-title: Nature Commun. doi: 10.1038/ncomms8584 contributor: fullname: Snyder – volume: 6 start-page: 3898 year: 1972 end-page: 3913 ident: CR41 article-title: Optical properties of some Pb Sn Te alloys determined from infrared plasma reflectivity measurements publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.3898 contributor: fullname: Woolley – volume: 24 start-page: 171 year: 1984 end-page: 177 ident: CR36 article-title: Temperature dependence of the FIR reflection spectra of the skutterudites CoAs and CoSb publication-title: Infrared Phys. doi: 10.1016/0020-0891(84)90066-6 contributor: fullname: Lutz – volume: 28 start-page: 155 year: 2003 end-page: 168 ident: CR50 article-title: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 contributor: fullname: Kokalj – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR47 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Ernzerhof – volume: 25 start-page: 931 year: 1964 end-page: 940 ident: CR43 article-title: Galvano-thermomagnetic effects in semiconductors and semimetals—IV. mercury selenide publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(64)90030-7 contributor: fullname: Harman – volume: 91 start-page: 3698 year: 2002 end-page: 3705 ident: CR25 article-title: Thermoelectric properties of the n-type filled skutterudite Ba Co Sb doped with Ni publication-title: J. Appl. Phys. doi: 10.1063/1.1450036 contributor: fullname: Dyck – volume: 94 start-page: 102114 year: 2009 ident: CR7 article-title: High performance In Ce Co Sb thermoelectric materials with forming nanostructured InSb phase publication-title: Appl. Phys. Lett. doi: 10.1063/1.3099804 contributor: fullname: Uher – volume: 110 start-page: 146601 year: 2013 ident: CR17 article-title: High three-dimensional thermoelectric performance from low-dimensional bands publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146601 contributor: fullname: Singh – volume: 1 start-page: 75 year: 2015 end-page: 84 ident: CR2 article-title: Temperature dependent solubility of Yb in Yb–CoSb skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics publication-title: J. Materiom. doi: 10.1016/j.jmat.2015.03.008 contributor: fullname: Snyder – volume: 133 start-page: 7837 year: 2011 end-page: 7846 ident: CR9 article-title: Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111199y contributor: fullname: Shi – volume: 50 start-page: 11235 year: 1994 end-page: 11238 ident: CR19 article-title: Skutterudite antimonides: Quasilinear bands and unusual transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.11235 contributor: fullname: Pickett – volume: 6 start-page: 3346 year: 2013 end-page: 3355 ident: CR14 article-title: All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42187b contributor: fullname: Zhao – volume: 108 start-page: 166601 year: 2012 ident: CR16 article-title: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg Si Sn solid solutions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.166601 contributor: fullname: Liu – volume: 7 start-page: 804 year: 2014 end-page: 811 ident: CR15 article-title: Tuning bands of PbSe for better thermoelectric efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43438A contributor: fullname: Snyder – volume: 80 start-page: 115329 year: 2009 ident: CR32 article-title: Solubility study of Yb in n-type skutterudites Yb Co Sb and their enhanced thermoelectric properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.115329 contributor: fullname: Yang – volume: 58 start-page: 15620 year: 1998 end-page: 15623 ident: CR20 article-title: Electronic structure of CoSb : A narrow-band-gap semiconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.15620 contributor: fullname: Mahan – start-page: 302 year: 1998 end-page: 305 ident: CR30 publication-title: Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on contributor: fullname: Koyanagi – volume: 5 start-page: 7963 year: 2012 end-page: 7969 ident: CR21 article-title: Low effective mass leading to high thermoelectric performance publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21536e contributor: fullname: Snyder – volume: 7 start-page: 805 year: 2008 end-page: 810 ident: CR11 article-title: Breakdown of phonon glass paradigm in La- and Ce-filled Fe Sb skutterudites publication-title: Nature Mater. doi: 10.1038/nmat2260 contributor: fullname: Koza – volume: 1 start-page: 011101 year: 2013 ident: CR28 article-title: Validity of rigid band approximation of PbTe thermoelectric materials publication-title: Appl. Phys. Lett. Mater. contributor: fullname: Snyder – volume: 100 start-page: 043705 year: 2006 ident: CR12 article-title: Assessing the role of filler atoms on the thermal conductivity of filled skutterudites publication-title: J. Appl. Phys. doi: 10.1063/1.2245204 contributor: fullname: Yang – volume: 38 start-page: 1397 year: 2009 end-page: 1401 ident: CR27 article-title: Electrical transport properties of filled CoSb skutterudites: A theoretical study publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0703-9 contributor: fullname: Yang – volume: 1 start-page: 75 year: 2015 ident: BFnmat4430_CR2 publication-title: J. Materiom. doi: 10.1016/j.jmat.2015.03.008 contributor: fullname: Y Tang – volume: 108 start-page: 166601 year: 2012 ident: BFnmat4430_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.166601 contributor: fullname: W Liu – volume: 6 start-page: 3346 year: 2013 ident: BFnmat4430_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42187b contributor: fullname: LD Zhao – volume: 77 start-page: 3865 year: 1996 ident: BFnmat4430_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: JP Perdew – volume: 7 start-page: 805 year: 2008 ident: BFnmat4430_CR11 publication-title: Nature Mater. doi: 10.1038/nmat2260 contributor: fullname: MM Koza – volume: 621 start-page: 170 year: 2015 ident: BFnmat4430_CR31 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.09.173 contributor: fullname: Y Kajikawa – volume: 100 start-page: 043705 year: 2006 ident: BFnmat4430_CR12 publication-title: J. Appl. Phys. doi: 10.1063/1.2245204 contributor: fullname: GS Nolas – volume: 15 start-page: 5035 year: 2003 ident: BFnmat4430_CR22 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/29/315 contributor: fullname: VL Kuznetsov – volume: 80 start-page: 3551 year: 1998 ident: BFnmat4430_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3551 contributor: fullname: G Meisner – volume: 63 start-page: 30 year: 2014 ident: BFnmat4430_CR8 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.039 contributor: fullname: G Rogl – volume: 11 start-page: 131 year: 1959 ident: BFnmat4430_CR38 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(59)90051-4 contributor: fullname: SD Smith – volume: 7 start-page: 804 year: 2014 ident: BFnmat4430_CR15 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43438A contributor: fullname: H Wang – volume: 1 start-page: 249 year: 1957 ident: BFnmat4430_CR37 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(57)90013-6 contributor: fullname: EO Kane – volume: 1 start-page: 011101 year: 2013 ident: BFnmat4430_CR28 publication-title: Appl. Phys. Lett. Mater. contributor: fullname: Y Takagiwa – volume: 24 start-page: 6125 year: 2012 ident: BFnmat4430_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201202919 contributor: fullname: Y Pei – volume: 121 start-page: 752 year: 1961 ident: BFnmat4430_CR39 publication-title: Phys. Rev. doi: 10.1103/PhysRev.121.752 contributor: fullname: M Cardona – volume: 58 start-page: 15620 year: 1998 ident: BFnmat4430_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.15620 contributor: fullname: JO Sofo – volume: 3 start-page: 9 year: 1974 ident: BFnmat4430_CR34 publication-title: Appl. Phys. doi: 10.1007/BF00892328 contributor: fullname: U Gnutzman – volume: 38 start-page: 1013 year: 1977 ident: BFnmat4430_CR35 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(77)90203-7 contributor: fullname: J Ackermann – volume: 7 start-page: 812 year: 2014 ident: BFnmat4430_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43240H contributor: fullname: Y Tang – volume: 88 start-page: 165127 year: 2013 ident: BFnmat4430_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165127 contributor: fullname: LA Agapito – volume: 50 start-page: 11235 year: 1994 ident: BFnmat4430_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.11235 contributor: fullname: DJ Singh – volume: 91 start-page: 3698 year: 2002 ident: BFnmat4430_CR25 publication-title: J. Appl. Phys. doi: 10.1063/1.1450036 contributor: fullname: JS Dyck – volume: 24 start-page: 171 year: 1984 ident: BFnmat4430_CR36 publication-title: Infrared Phys. doi: 10.1016/0020-0891(84)90066-6 contributor: fullname: G Kliche – volume: 93 start-page: 042109 year: 2008 ident: BFnmat4430_CR29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2965123 contributor: fullname: W-S Liu – volume: 95 start-page: 042101 year: 2009 ident: BFnmat4430_CR3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3182800 contributor: fullname: YZ Pei – volume: 90 start-page: 1864 year: 2001 ident: BFnmat4430_CR4 publication-title: J. Appl. Phys. doi: 10.1063/1.1388162 contributor: fullname: LD Chen – volume: 80 start-page: 4442 year: 1996 ident: BFnmat4430_CR1 publication-title: J. Appl. Phys. doi: 10.1063/1.363405 contributor: fullname: T Caillat – volume: 6 start-page: 3898 year: 1972 ident: BFnmat4430_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.3898 contributor: fullname: G Dionne – volume: 473 start-page: 66 year: 2011 ident: BFnmat4430_CR13 publication-title: Nature doi: 10.1038/nature09996 contributor: fullname: Y Pei – volume: 25 start-page: 931 year: 1964 ident: BFnmat4430_CR43 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(64)90030-7 contributor: fullname: TC Harman – volume: 28 start-page: 155 year: 2003 ident: BFnmat4430_CR50 publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 contributor: fullname: A Kokalj – volume: 94 start-page: 102114 year: 2009 ident: BFnmat4430_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3099804 contributor: fullname: H Li – start-page: 259 volume-title: Fundamentals of Semiconductors year: 1996 ident: BFnmat4430_CR46 doi: 10.1007/978-3-662-03313-5 contributor: fullname: PY Yu – volume: 86 start-page: 3780 year: 1999 ident: BFnmat4430_CR24 publication-title: J. Appl. Phys. doi: 10.1063/1.371287 contributor: fullname: H Anno – volume: 138 start-page: A873 year: 1965 ident: BFnmat4430_CR40 publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.A873 contributor: fullname: JR Dixon – volume: 61 start-page: 4672 year: 2000 ident: BFnmat4430_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.4672 contributor: fullname: E Arushanov – volume: 72 start-page: 085126 year: 2005 ident: BFnmat4430_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.085126 contributor: fullname: L Chaput – volume: 133 start-page: 7837 year: 2011 ident: BFnmat4430_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111199y contributor: fullname: X Shi – volume: 6 start-page: 7584 year: 2015 ident: BFnmat4430_CR6 publication-title: Nature Commun. doi: 10.1038/ncomms8584 contributor: fullname: Y Tang – volume: 5 start-page: 7963 year: 2012 ident: BFnmat4430_CR21 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21536e contributor: fullname: Y Pei – volume: 21 start-page: 395502 year: 2009 ident: BFnmat4430_CR48 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 contributor: fullname: P Giannozzi – start-page: 302 volume-title: Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on year: 1998 ident: BFnmat4430_CR30 contributor: fullname: Y Nagamoto – volume: 38 start-page: 1397 year: 2009 ident: BFnmat4430_CR27 publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0703-9 contributor: fullname: J Yang – volume: 110 start-page: 146601 year: 2013 ident: BFnmat4430_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146601 contributor: fullname: D Parker – volume: 107 start-page: 043705 year: 2010 ident: BFnmat4430_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.3296186 contributor: fullname: JR Salvador – volume: 18 start-page: 2978 year: 2000 ident: BFnmat4430_CR44 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1290372 contributor: fullname: DL Young – volume: 49 start-page: 1633 year: 2007 ident: BFnmat4430_CR45 publication-title: Phys. Solid State doi: 10.1134/S1063783407090053 contributor: fullname: DA Pshenaı̆-Severin – volume: 39 start-page: 1832 year: 2010 ident: BFnmat4430_CR26 publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1073-z contributor: fullname: A Zhou – volume: 80 start-page: 115329 year: 2009 ident: BFnmat4430_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.115329 contributor: fullname: J Yang |
SSID | ssj0021556 |
Score | 2.6927176 |
Snippet | Filled skutterudites R
x
Co
4
Sb
12
are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined... Filled skutterudites R(x)Co4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with... Filled skutterudites RxCo4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low... |
SourceID | osti proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1223 |
SubjectTerms | 119/118 121/135 639/301/1034 639/301/299/2736 Biomaterials Condensed Matter Physics Electronics Heat conductivity High temperature Materials Science Nanotechnology Optical and Electronic Materials solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Thermal conductivity |
Title | Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites |
URI | https://link.springer.com/article/10.1038/nmat4430 https://www.ncbi.nlm.nih.gov/pubmed/26436339 https://www.proquest.com/docview/1767086332 https://search.proquest.com/docview/1735336081 https://www.osti.gov/biblio/1370980 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67gIHxDdlAxnELQokcWI7x2orIDF22SatXKJ8GVVAUjUN0v573rOdj5YdxoFL1NqO4_j98vye_T4IeVeIPBOCl24R-aneunFT6SkXY0GpEJZcKXUS2wtxfi1PF-FiMukyEA5l_5XSUAa0Rs_Zf6B23ykUwG-gOVyB6nC9E91P0Ix8Y0Js4tk5Ggy6vzFjyo2ToV8vZpbRlhxDAhyTHUvLjaCrY-3mV23qoXY98i3QPoIXGXOaHzrDNfp0WCtEK-Ge60ihDgjC5m2HrQHDVZawVv5se7OfVZZpJH1L0f_rxvn6vofg93S90kmenLN21TjzvuZMWyB8akGjtuuu3bbwoz0TEDuY_b025-rLiBmHgrsgDxpuXQ5lITc5CHoOHo6RGoz4MdzMRms7_JW3rhsmSnwFcxOG9pxoNwq3PqtnMumaHJDDAIANPPVwfr1cnvZKPshnxqPNjr0LeMzkh-7eHRFoWgMrv029-etoXks8lw_JA6uq0LnB2CMyKavH5P4ogOUTsh2hjdaKjtFGNdpo2lDAEx3QRg3asDmije6ijY7QRqGVRhvdQdtTcvVxcXny2bV5PNw8ZHLrqjgK8QBeZHEmRSlDBVpqXnBP5CDA4xKivFiB3pIXwBsUTBFnPAIewiIlPD9jz8i0qqvyBaGiyHkMvaTogBKUQRpxFQSllxZB7ilezMibbmqTtQnXkuyTbkaOcM4TEDExTnKOBmX5NvGZ8GIJtccdKRL7WTeJL7gA3Z-xAB7QVwMjxtO1tCrrFtswUJ04iNgz8tyQsB8CaB3wTiyekbcdTUed743v5V0aHZF7w1d1TKbbTVu-IgdN0b62iPwD8LPAHg |
link.rule.ids | 230,315,783,787,888,27936,27937,48349,48350,48364,49654,49655,49669 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7o7kE9-H6srlqNVyJLoS1Ho65rXDcxrok3AqW9GMHIron_3ikFXB8HPc9QCtNhvmFeACcplwnnTDlp0IvLXzdOLFztmF5Q2keTK0Q5xPaejx7FxWXTJqeos93rkGT5pbaF4eI0QwTn-xTd87aPGB1PcLt_d9W_adwrtIy2logzB1GEV7eanbn2i_Fp5ahEvwHLH0HR0tb0V_6zy1VYrhAlObNHYA3mVLYOSzN9BjfADJV-s2WWiuSalFmEzpsZo_JOElPsS-KCIBQkn1NxiB2ZZdhNS2NDfX3OLR2pL58FBwS5zvP7hJLiqRx7bQo9VLEJD_3L8fnAqcYtONKnYuLoMPBNnJQnYSK4Er5GZ0KmzOUScZbRdO2GGuGlTFGEGp-SURagqGmgudtL6Ba0sjxTO0B4KlmIq8SmTsBTXhww7XnKjVNPupqlHTiq5RC92K4aURkNpyKq32AH9oyAIkQCpp2tNHk_chL1KHdDgdRuLbeo0roi6nHG0UWj1MMbNGTUFxMEiTOVTw0PRYTLEAl1YNvKu9kCgkN8Jhp24LgW7szi3_a3-xemQ1gYjG-H0fB6dLMHi4i2ApsL04XW5HWq9mG-SKcH1VH-AAbW8Xs |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRULlwKsFlkdxq14jsnFiO0deK6pFSyWo1FuU-HGpmqzILhL_npk4WZbHAXGeiWNn7Mxnj78ZgJ9G6kJKYQOTDPLm6CbIVegCygXlYnS5SjVFbG_k-K86v6A0OaLjwjS33buQpOc0UJamcno8Ma4liavjEtFcHHPcqi_TYRjO5uXT0Wh8Pd9qoZf0vCIpAkQUUZd2duHZZ46oV-GCegtkvgqQNn5nuP7RHm_AWos02YmfGpuwZMstWF3IP_gFqNj0vadfWlY51twuDO6pvMoDK4gEzPKaIURkT9VymC-lReqU6pikd_8rL0fp5ImIwFDrrLopOKv_NeWwiQBi66_wZ3hxe3YZtGUYAh1zNQ1cmsQUP5VFWihpVexwk6GNCKVG_EV_ABemDmGnNmhah6MUXCQ4BXjiZDgo-Db0yqq0u8Ck0SLFVnLiD0Q2yhPhosiGuYl06ITpw_fOJtnEZ9vImig5V1n3BfuwT8bKECFQmltN94H0NBtwGaYKpQedDbN2NdbZQAqJWzfOI3zBXIzriIIjeWmrGelwRL4CEVIfdrzt511A0Ihj4mkffnSGXmj8Rf_23qN0BCu_z4fZ1a_xaB8-IwhL_BWZA-hN72b2ED7VZvatndWPc3r6Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+multi-valley+bands+as+the+electronic+origin+of+high+thermoelectric+performance+in+CoSb3+skutterudites&rft.jtitle=Nature+materials&rft.au=Tang%2C+Yinglu&rft.au=Gibbs%2C+Zachary+M.&rft.au=Agapito%2C+Luis+A.&rft.au=Li%2C+Guodong&rft.date=2015-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=14&rft.issue=12&rft.spage=1223&rft.epage=1228&rft_id=info:doi/10.1038%2Fnmat4430&rft.externalDocID=10_1038_nmat4430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |