Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites

Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-typ...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 14; no. 12; pp. 1223 - 1228
Main Authors: Tang, Yinglu, Gibbs, Zachary M., Agapito, Luis A., Li, Guodong, Kim, Hyun-Sik, Nardelli, Marco Buongiorno, Curtarolo, Stefano, Snyder, G. Jeffrey
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-12-2015
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb 3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb 3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics. It is shown that the large thermoelectric capability of CoSb 3 skutterudite can be associated with a secondary conduction band with high valley degeneracy, which can converge with the light conduction band at high temperatures.
AbstractList Filled skutterudites R(x)Co4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics.
Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb 3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb 3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics. It is shown that the large thermoelectric capability of CoSb 3 skutterudite can be associated with a secondary conduction band with high valley degeneracy, which can converge with the light conduction band at high temperatures.
Filled skutterudites RxCo4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics.
Author Tang, Yinglu
Curtarolo, Stefano
Snyder, G. Jeffrey
Gibbs, Zachary M.
Kim, Hyun-Sik
Li, Guodong
Agapito, Luis A.
Nardelli, Marco Buongiorno
Author_xml – sequence: 1
  givenname: Yinglu
  surname: Tang
  fullname: Tang, Yinglu
  organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology
– sequence: 2
  givenname: Zachary M.
  surname: Gibbs
  fullname: Gibbs, Zachary M.
  organization: Division of Chemistry and Chemical Engineering, California Institute of Technology
– sequence: 3
  givenname: Luis A.
  surname: Agapito
  fullname: Agapito, Luis A.
  organization: Department of Physics, University of North Texas, Department of Mechanical Engineering and Materials Science, Physics and Chemistry, Duke University
– sequence: 4
  givenname: Guodong
  surname: Li
  fullname: Li, Guodong
  organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 5
  givenname: Hyun-Sik
  surname: Kim
  fullname: Kim, Hyun-Sik
  organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology, Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 6
  givenname: Marco Buongiorno
  surname: Nardelli
  fullname: Nardelli, Marco Buongiorno
  organization: Department of Physics, University of North Texas
– sequence: 7
  givenname: Stefano
  surname: Curtarolo
  fullname: Curtarolo, Stefano
  organization: Department of Mechanical Engineering and Materials Science, Physics and Chemistry, Duke University
– sequence: 8
  givenname: G. Jeffrey
  surname: Snyder
  fullname: Snyder, G. Jeffrey
  email: jeff.snyder@northwestern.edu
  organization: Department of Materials Science and Engineering, Northwestern University, Materials Science, California Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26436339$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1370980$$D View this record in Osti.gov
BookMark eNpdkc1O3DAURi1EVX5aiSeoorJpF6HXsWM7SzSiLRJSF8A6SpzrGdPEntoOEm-PoxmgYmVL39G5_nxPyKHzDgk5o3BBgakfbuoS5wwOyDHlUpRcCDjc3ymtqiNyEuMDQEXrWnwkR5XgTDDWHJO08u4RwxqdxsKbYprHZMvHbhzxqeg7N8Sii0XaYIEj6hS8s7rwwa6tW_CNXW-WNEx-l-d0i8H4MHWLMVMrf9uzIv6dU8IwDzZh_EQ-mG6M-Hl_npL7n1d3q9_lzZ9f16vLm1JzplJpmjp34kL2Ta8kKm6ErPUgQGpac-BKGWgMVKAHqJXhSydR616y2kigPTslX3deH5Nto86z9UZ75_JLW8okNAoy9G0HbYP_N2NM7WSjxnHsHPo5tjTrGBOgaEbP36EPfg4uV8iUkKDyn1ZvQh18jAFNuw126sJTS6Fd1tW-rCujX_bCuZ9weAVf9pOB7zsg5sitMfw38b3sGUaVnwc
CitedBy_id crossref_primary_10_1016_j_cogsc_2017_02_003
crossref_primary_10_1002_pssb_202300078
crossref_primary_10_1063_5_0076087
crossref_primary_10_1039_C9TC03839F
crossref_primary_10_1016_j_jallcom_2022_167432
crossref_primary_10_1103_PhysRevApplied_8_034007
crossref_primary_10_1002_ange_202208216
crossref_primary_10_1063_1_5086061
crossref_primary_10_1039_D3CP05612K
crossref_primary_10_1021_acs_chemrev_0c00026
crossref_primary_10_1039_C7EE02504A
crossref_primary_10_1021_acs_chemmater_0c04351
crossref_primary_10_1088_2053_1591_ab24e7
crossref_primary_10_1016_j_jallcom_2021_159659
crossref_primary_10_1002_admi_202101691
crossref_primary_10_1016_j_physb_2022_414446
crossref_primary_10_1103_PhysRevMaterials_7_045402
crossref_primary_10_1002_adma_201802000
crossref_primary_10_1038_s41598_023_48316_w
crossref_primary_10_1016_j_jallcom_2019_153497
crossref_primary_10_1016_j_nanoen_2021_106530
crossref_primary_10_1016_j_joule_2020_03_004
crossref_primary_10_1088_1361_648X_ac6e1e
crossref_primary_10_1002_adma_202003168
crossref_primary_10_1039_D1EE02986J
crossref_primary_10_1007_s12274_022_4810_8
crossref_primary_10_1007_s40843_018_9392_7
crossref_primary_10_1016_j_jeurceramsoc_2023_08_005
crossref_primary_10_1021_acsaem_4c00763
crossref_primary_10_1039_D3TA01291C
crossref_primary_10_1038_nmat4461
crossref_primary_10_1039_D0EE02791J
crossref_primary_10_1016_j_jallcom_2019_152272
crossref_primary_10_1016_j_jmat_2016_03_001
crossref_primary_10_1063_1_4971819
crossref_primary_10_1080_21663831_2018_1436092
crossref_primary_10_1088_1402_4896_ac8c70
crossref_primary_10_1016_j_nanoen_2018_02_009
crossref_primary_10_1038_s41524_019_0200_5
crossref_primary_10_1016_j_mssp_2020_105542
crossref_primary_10_1039_C7MH00865A
crossref_primary_10_1021_acs_chemmater_2c02103
crossref_primary_10_1039_C9TC01096C
crossref_primary_10_1021_acs_inorgchem_1c03947
crossref_primary_10_1002_adfm_202305269
crossref_primary_10_1007_s11664_018_6833_1
crossref_primary_10_1016_j_jssc_2017_02_025
crossref_primary_10_1021_acsami_2c16721
crossref_primary_10_1038_s41467_018_03866_w
crossref_primary_10_1002_advs_202302688
crossref_primary_10_1007_s10854_020_03732_w
crossref_primary_10_1021_acsami_1c06267
crossref_primary_10_1103_PhysRevLett_119_215503
crossref_primary_10_1063_5_0081785
crossref_primary_10_1103_PhysRevB_93_035104
crossref_primary_10_1002_aenm_202100661
crossref_primary_10_1016_j_mtphys_2021_100394
crossref_primary_10_1007_s10854_024_13037_x
crossref_primary_10_1002_pssb_201800020
crossref_primary_10_1063_5_0069327
crossref_primary_10_1016_j_mssp_2020_105303
crossref_primary_10_1016_j_mtelec_2022_100002
crossref_primary_10_1088_1361_648X_ab03b6
crossref_primary_10_1016_j_physe_2021_115060
crossref_primary_10_1002_pssa_202300717
crossref_primary_10_1016_j_mtphys_2022_100887
crossref_primary_10_1016_j_mtphys_2022_100889
crossref_primary_10_1021_acsenergylett_8b00749
crossref_primary_10_1016_j_xcrp_2024_101781
crossref_primary_10_15541_jim20220714
crossref_primary_10_1016_j_mtphys_2021_100484
crossref_primary_10_1039_D0NR05382A
crossref_primary_10_1016_j_matchemphys_2022_126669
crossref_primary_10_1002_adma_202206941
crossref_primary_10_1002_aenm_201800030
crossref_primary_10_1103_PhysRevB_99_045405
crossref_primary_10_1002_adfm_202111354
crossref_primary_10_1038_s41524_021_00587_5
crossref_primary_10_1039_C6TA06832D
crossref_primary_10_1002_smll_202201183
crossref_primary_10_1016_j_jmat_2021_05_003
crossref_primary_10_1016_j_mseb_2022_115914
crossref_primary_10_1039_C8QI00207J
crossref_primary_10_1007_s12598_018_1000_7
crossref_primary_10_1016_j_cap_2023_04_011
crossref_primary_10_1016_j_cap_2023_04_010
crossref_primary_10_1002_aelm_201901141
crossref_primary_10_1063_5_0174415
crossref_primary_10_1126_sciadv_abe9439
crossref_primary_10_1039_C6TA10827J
crossref_primary_10_1038_s41467_020_16913_2
crossref_primary_10_1039_D1CP02545G
crossref_primary_10_1103_PhysRevB_99_155203
crossref_primary_10_1002_adfm_201910039
crossref_primary_10_1063_1_4993900
crossref_primary_10_1039_C6CP06859F
crossref_primary_10_1021_acsami_2c20292
crossref_primary_10_1021_acsami_9b12854
crossref_primary_10_1103_PhysRevMaterials_2_082401
crossref_primary_10_1039_D4TA01088D
crossref_primary_10_1016_j_commatsci_2020_110192
crossref_primary_10_1016_j_jeurceramsoc_2023_01_047
crossref_primary_10_1016_j_actamat_2018_07_050
crossref_primary_10_1103_PhysRevB_101_184302
crossref_primary_10_1016_j_jmrt_2021_06_087
crossref_primary_10_1016_j_jssc_2020_121454
crossref_primary_10_1016_j_mtphys_2021_100340
crossref_primary_10_1039_D0RA01751E
crossref_primary_10_1016_j_actamat_2018_02_063
crossref_primary_10_1016_j_mtphys_2020_100180
crossref_primary_10_1038_s41467_019_08542_1
crossref_primary_10_1039_C7TA07140J
crossref_primary_10_1002_smsc_202300272
crossref_primary_10_1039_D0TA02614J
crossref_primary_10_1016_j_jmst_2021_05_067
crossref_primary_10_1126_sciadv_adn9959
crossref_primary_10_1103_PhysRevMaterials_6_085404
crossref_primary_10_1021_acs_chemmater_8b03130
crossref_primary_10_1038_s41535_018_0083_6
crossref_primary_10_1088_1674_1056_ac6ee8
crossref_primary_10_3390_nano13192730
crossref_primary_10_1039_C8CP04301A
crossref_primary_10_1039_C9EE03897C
crossref_primary_10_1016_j_scriptamat_2018_11_015
crossref_primary_10_1016_j_jallcom_2021_160532
crossref_primary_10_1002_adfm_202403926
crossref_primary_10_1016_j_mtphys_2021_100591
crossref_primary_10_1021_acs_chemmater_9b01630
crossref_primary_10_1021_jacs_4c04048
crossref_primary_10_1002_adfm_202305582
crossref_primary_10_1039_C7TA10415D
crossref_primary_10_1016_j_joule_2019_01_001
crossref_primary_10_1016_j_mtphys_2021_100355
crossref_primary_10_1039_D0DT03429K
crossref_primary_10_1016_j_jallcom_2017_06_296
crossref_primary_10_1021_acsami_3c17695
crossref_primary_10_1016_j_nanoen_2017_10_003
crossref_primary_10_1039_D4NJ00494A
crossref_primary_10_1016_j_mssp_2024_108556
crossref_primary_10_1007_s11431_017_9058_8
crossref_primary_10_1007_s12274_019_2432_6
crossref_primary_10_3390_nano13202738
crossref_primary_10_7567_JJAP_56_05DA04
crossref_primary_10_1103_PhysRevB_108_125119
crossref_primary_10_1103_PhysRevB_95_165204
crossref_primary_10_1021_acsami_7b18451
crossref_primary_10_1021_acs_chemmater_0c04517
crossref_primary_10_1039_C6QI00263C
crossref_primary_10_1039_C7TC01967J
crossref_primary_10_1002_smsc_202300298
crossref_primary_10_1016_j_mtener_2022_101029
crossref_primary_10_1103_PhysRevB_94_064105
crossref_primary_10_1103_PhysRevB_104_054511
crossref_primary_10_1016_j_jallcom_2019_05_238
crossref_primary_10_1515_ijmr_2021_8406
crossref_primary_10_1002_anie_202316469
crossref_primary_10_1038_s41563_021_01064_6
crossref_primary_10_1016_j_joule_2021_11_008
crossref_primary_10_1016_j_jallcom_2017_11_195
crossref_primary_10_1002_adfm_202112772
crossref_primary_10_1002_inf2_12502
crossref_primary_10_1007_s11664_022_10083_1
crossref_primary_10_1039_C6TA10770B
crossref_primary_10_1080_00150193_2023_2296296
crossref_primary_10_1002_adma_201801787
crossref_primary_10_1103_PhysRevB_102_184305
crossref_primary_10_1039_D0TA02758H
crossref_primary_10_1002_apxr_202300149
crossref_primary_10_1088_1367_2630_aa7b58
crossref_primary_10_1016_j_cplett_2021_138722
crossref_primary_10_1038_s41467_021_23839_w
crossref_primary_10_1016_j_actamat_2020_01_045
crossref_primary_10_1016_j_cclet_2019_07_034
crossref_primary_10_1016_j_jallcom_2018_12_165
crossref_primary_10_1016_j_jmat_2020_10_013
crossref_primary_10_1038_s41524_018_0100_0
crossref_primary_10_1093_nsr_nwx011
crossref_primary_10_1007_s40843_021_1945_1
crossref_primary_10_1021_acsaem_7b00128
crossref_primary_10_1088_1361_6463_ad0f5b
crossref_primary_10_1103_PhysRevB_102_115204
crossref_primary_10_1039_D1TA03649A
crossref_primary_10_1016_j_jmat_2022_11_012
crossref_primary_10_3389_fchem_2022_865281
crossref_primary_10_1016_j_mtphys_2018_09_001
crossref_primary_10_1088_1361_6463_aa7625
crossref_primary_10_1021_acsomega_7b01389
crossref_primary_10_1016_j_heliyon_2023_e21117
crossref_primary_10_1021_jacs_9b13272
crossref_primary_10_1038_s41535_017_0071_2
crossref_primary_10_1021_acsaem_0c02810
crossref_primary_10_1021_acsaelm_0c00453
crossref_primary_10_1002_aenm_201803072
crossref_primary_10_1021_acsami_2c06822
crossref_primary_10_1088_1361_6633_ac105f
crossref_primary_10_1103_PhysRevB_108_205143
crossref_primary_10_1002_aenm_201702333
crossref_primary_10_1021_acsaem_2c00857
crossref_primary_10_1016_j_jeurceramsoc_2021_11_022
crossref_primary_10_1021_acsaem_9b02131
crossref_primary_10_1016_j_mtener_2019_04_014
crossref_primary_10_1039_C7TA02178J
crossref_primary_10_1002_aenm_201502269
crossref_primary_10_1021_acs_chemmater_7b00767
crossref_primary_10_1039_D1QI00727K
crossref_primary_10_1016_j_mtchem_2023_101488
crossref_primary_10_1021_acsaem_9b02015
crossref_primary_10_1039_D3TA07747K
crossref_primary_10_1002_adfm_202316144
crossref_primary_10_1038_s41524_023_01103_7
crossref_primary_10_1039_D1TA08379A
crossref_primary_10_3389_fmats_2021_709757
crossref_primary_10_1016_j_mtphys_2019_03_005
crossref_primary_10_1016_j_mtphys_2019_03_004
crossref_primary_10_1038_s41524_017_0013_3
crossref_primary_10_1016_j_mtphys_2019_03_002
crossref_primary_10_1016_j_intermet_2019_106683
crossref_primary_10_1016_j_mtphys_2019_03_001
crossref_primary_10_1088_1361_648X_aab284
crossref_primary_10_1021_acsaem_0c00100
crossref_primary_10_1021_acsaem_3c01838
crossref_primary_10_1021_acsenergylett_7b00813
crossref_primary_10_1039_C8TA06824K
crossref_primary_10_1002_adfm_202008851
crossref_primary_10_1021_acsaem_9b02340
crossref_primary_10_1021_acsami_9b05243
crossref_primary_10_1021_acs_chemmater_0c03581
crossref_primary_10_1016_j_jallcom_2024_174972
crossref_primary_10_1021_acsami_2c15413
crossref_primary_10_1016_j_applthermaleng_2023_121164
crossref_primary_10_1016_j_jallcom_2024_173520
crossref_primary_10_1016_j_nanoen_2016_12_023
crossref_primary_10_1016_j_actamat_2019_02_041
crossref_primary_10_1039_C8EE02077A
crossref_primary_10_1016_j_mser_2021_100607
crossref_primary_10_1016_j_jallcom_2018_04_214
crossref_primary_10_1103_PhysRevMaterials_3_015403
crossref_primary_10_1039_D1NJ03624F
crossref_primary_10_1002_aenm_202200204
crossref_primary_10_1016_j_jallcom_2019_07_147
crossref_primary_10_1016_j_jallcom_2019_152917
crossref_primary_10_1039_D3MH00195D
crossref_primary_10_1021_acsaem_8b00064
crossref_primary_10_35848_1347_4065_acb3ce
crossref_primary_10_1103_PhysRevMaterials_7_074205
crossref_primary_10_1039_C6DT04885D
crossref_primary_10_1088_2515_7655_ac7fb8
crossref_primary_10_1016_j_jmat_2017_07_003
crossref_primary_10_1134_S0021364021180041
crossref_primary_10_1039_C8TA04876B
crossref_primary_10_1016_j_mattod_2021_01_007
crossref_primary_10_1016_j_jallcom_2021_158995
crossref_primary_10_1016_j_nanoen_2020_105198
crossref_primary_10_1016_j_joule_2018_02_016
crossref_primary_10_1016_j_ssc_2022_114982
crossref_primary_10_1021_jacs_0c07067
crossref_primary_10_2139_ssrn_3976106
crossref_primary_10_1016_j_joule_2017_09_006
crossref_primary_10_1039_D0EE00491J
crossref_primary_10_1016_j_matpr_2020_03_044
crossref_primary_10_1016_j_cplett_2024_141132
crossref_primary_10_1016_j_jallcom_2022_165550
crossref_primary_10_1021_acsaem_2c00549
crossref_primary_10_1063_1_5040752
crossref_primary_10_1021_jacs_8b11050
crossref_primary_10_1039_D2CP05979G
crossref_primary_10_1002_admi_201900222
crossref_primary_10_1021_acsaem_1c02957
crossref_primary_10_1016_j_jmat_2016_05_007
crossref_primary_10_1021_acsaem_2c00785
crossref_primary_10_1021_acsami_3c16773
crossref_primary_10_1039_C6TA06325J
crossref_primary_10_1088_1367_2630_aaf53f
crossref_primary_10_1103_PhysRevB_94_165166
crossref_primary_10_1016_j_nanoen_2016_11_016
crossref_primary_10_1021_acsami_8b15080
crossref_primary_10_1103_PhysRevB_106_094316
crossref_primary_10_1002_sstr_202100016
crossref_primary_10_1039_C8EE03374A
crossref_primary_10_1103_PhysRevMaterials_4_025405
crossref_primary_10_1002_adma_201807071
crossref_primary_10_1039_D1TC02404C
crossref_primary_10_1021_acsaem_3c01725
crossref_primary_10_1002_advs_201600196
crossref_primary_10_1002_aenm_201902842
crossref_primary_10_1016_j_jmst_2019_08_046
crossref_primary_10_1016_j_mtadv_2022_100310
crossref_primary_10_1038_s41524_017_0046_7
crossref_primary_10_1021_acsaem_9b02330
crossref_primary_10_1002_adfm_201801617
crossref_primary_10_1126_science_adn7265
crossref_primary_10_1016_j_intermet_2020_106796
crossref_primary_10_1021_acs_inorgchem_8b00569
crossref_primary_10_1002_aenm_201900354
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1002_aenm_201801837
crossref_primary_10_1016_j_jssc_2016_03_015
crossref_primary_10_1007_s11664_022_09513_x
crossref_primary_10_1021_acsaem_0c00825
crossref_primary_10_1039_D0MH00954G
crossref_primary_10_1080_09243046_2023_2300587
crossref_primary_10_1103_PhysRevB_96_195425
crossref_primary_10_1002_aenm_202102012
crossref_primary_10_1016_j_mtphys_2020_100206
crossref_primary_10_1002_adfm_202300154
crossref_primary_10_1002_inf2_12217
crossref_primary_10_1021_acs_chemmater_3c00393
crossref_primary_10_3365_KJMM_2019_57_10_673
crossref_primary_10_1073_pnas_1617663113
crossref_primary_10_3390_ma16010370
crossref_primary_10_1016_j_rser_2021_110800
crossref_primary_10_1016_j_vacuum_2024_113269
crossref_primary_10_1039_D0TA08683E
crossref_primary_10_1016_j_mtcomm_2022_103961
crossref_primary_10_1051_epjap_2022210231
crossref_primary_10_1039_D0MH01802C
crossref_primary_10_1002_admi_201700517
crossref_primary_10_1016_j_jeurceramsoc_2022_03_034
crossref_primary_10_1021_acs_chemmater_6b04506
crossref_primary_10_1021_acsami_9b14548
crossref_primary_10_1103_PhysRevLett_119_085501
crossref_primary_10_1016_j_jallcom_2022_164733
crossref_primary_10_1016_j_vacuum_2017_04_015
crossref_primary_10_1016_j_jallcom_2021_160191
crossref_primary_10_1016_j_jssc_2019_120995
crossref_primary_10_1002_aenm_201602582
crossref_primary_10_1007_s11664_022_09547_1
crossref_primary_10_1039_C8TA00381E
crossref_primary_10_1016_j_ast_2022_107966
crossref_primary_10_1039_D2TA06877J
crossref_primary_10_1088_1361_6463_aa84f7
crossref_primary_10_3989_ris_2021_79_1_19_350
crossref_primary_10_1016_j_solidstatesciences_2022_106900
crossref_primary_10_1016_j_jmst_2022_12_020
crossref_primary_10_1007_s40948_019_00134_z
crossref_primary_10_1016_j_mtener_2024_101555
crossref_primary_10_1002_advs_201902628
crossref_primary_10_1021_acsami_8b22741
crossref_primary_10_1021_acs_jpcc_1c06843
crossref_primary_10_1103_PhysRevMaterials_7_085403
crossref_primary_10_1007_s12598_021_01737_w
crossref_primary_10_1016_j_actamat_2024_119896
crossref_primary_10_1016_j_actamat_2024_119777
crossref_primary_10_1021_acs_chemmater_8b03732
crossref_primary_10_1039_D3TA04192A
crossref_primary_10_1016_j_nanoen_2019_104193
crossref_primary_10_1016_j_jmat_2019_04_008
crossref_primary_10_1016_j_matpr_2023_01_364
crossref_primary_10_1038_s41467_022_31372_7
crossref_primary_10_1039_C7TC03603E
crossref_primary_10_1038_s41467_021_25119_z
crossref_primary_10_1016_j_jallcom_2019_151772
crossref_primary_10_1016_j_jmat_2016_06_001
crossref_primary_10_1002_aenm_202301525
crossref_primary_10_34133_2020_1934848
crossref_primary_10_1002_cnl2_28
crossref_primary_10_1039_D2NR02556F
crossref_primary_10_1002_smtd_201900412
crossref_primary_10_1103_PhysRevB_107_045203
crossref_primary_10_34133_2020_9652749
crossref_primary_10_1016_j_mtphys_2023_101287
crossref_primary_10_1063_1_5021094
crossref_primary_10_1016_j_mtphys_2023_101167
crossref_primary_10_1021_jacs_0c05650
crossref_primary_10_1016_j_jma_2022_05_021
crossref_primary_10_1103_PhysRevB_105_075431
crossref_primary_10_1016_j_jpcs_2023_111835
crossref_primary_10_1016_j_mtphys_2023_101283
crossref_primary_10_1038_s41524_020_00368_6
crossref_primary_10_1002_adfm_201904346
crossref_primary_10_1002_smll_201700661
crossref_primary_10_1002_adfm_202404021
crossref_primary_10_1021_acsami_1c11599
crossref_primary_10_56646_jjapcp_10_0_011001
crossref_primary_10_1021_acsami_2c08555
crossref_primary_10_1021_acsmaterialsau_3c00107
crossref_primary_10_1016_j_mtphys_2023_101211
crossref_primary_10_1039_D1TA02812J
crossref_primary_10_1039_C8TA05798B
crossref_primary_10_1016_j_jallcom_2019_03_140
crossref_primary_10_1016_j_jallcom_2020_156989
crossref_primary_10_1021_acsaem_2c00800
crossref_primary_10_1016_j_ccr_2020_213437
crossref_primary_10_1021_acsami_7b19501
crossref_primary_10_7567_JJAP_56_05FB07
crossref_primary_10_1021_acsnano_9b03805
crossref_primary_10_1021_acsami_0c22842
crossref_primary_10_1021_acsami_3c05929
crossref_primary_10_1002_adfm_202203852
crossref_primary_10_1039_C6TC01000H
crossref_primary_10_1063_1_5049628
crossref_primary_10_1021_acsami_3c15741
crossref_primary_10_1016_j_ceramint_2024_05_130
crossref_primary_10_1039_C8DT02701C
crossref_primary_10_1021_acs_inorgchem_8b02899
crossref_primary_10_1021_acs_chemmater_6b00112
crossref_primary_10_1039_C8TA02250J
crossref_primary_10_3390_en13051106
crossref_primary_10_1021_acsaelm_3c00887
crossref_primary_10_1016_j_jechem_2019_09_021
crossref_primary_10_1038_s41598_019_43911_2
crossref_primary_10_1080_17436753_2019_1705018
crossref_primary_10_1039_C7TC01623A
crossref_primary_10_1002_er_6851
crossref_primary_10_1063_5_0072589
crossref_primary_10_1103_PhysRevB_107_125202
crossref_primary_10_1016_j_actamat_2021_116791
crossref_primary_10_2139_ssrn_4070798
crossref_primary_10_1002_qute_202000115
crossref_primary_10_1016_j_nanoen_2019_104395
crossref_primary_10_1002_adma_201905703
crossref_primary_10_1002_adma_201605884
crossref_primary_10_1002_adma_201602013
crossref_primary_10_1007_s00894_017_3304_1
crossref_primary_10_1039_D0TC03455J
crossref_primary_10_1002_ange_202316469
crossref_primary_10_1002_aenm_201902435
crossref_primary_10_1021_jacs_4c01688
crossref_primary_10_1088_1361_648X_aade17
crossref_primary_10_1039_D2RA08100H
crossref_primary_10_1016_j_jallcom_2019_03_232
crossref_primary_10_1039_C8CP05818K
crossref_primary_10_1016_j_jallcom_2020_157971
crossref_primary_10_1103_PhysRevB_99_125109
crossref_primary_10_1016_j_apsusc_2022_152526
crossref_primary_10_1016_j_jmat_2020_09_005
crossref_primary_10_1021_acs_chemmater_7b04123
crossref_primary_10_1038_s41467_019_10476_7
crossref_primary_10_1039_D3QI02439C
crossref_primary_10_1088_1361_6463_abc0bf
crossref_primary_10_1126_science_abi8668
crossref_primary_10_1103_PhysRevApplied_13_024038
crossref_primary_10_1038_s41598_022_08931_5
crossref_primary_10_1002_aenm_202400340
crossref_primary_10_1016_j_jallcom_2016_12_425
crossref_primary_10_1039_D2CC04205C
crossref_primary_10_1021_acs_chemmater_9b03011
crossref_primary_10_1103_PhysRevB_100_075207
crossref_primary_10_1103_PhysRevB_109_085305
crossref_primary_10_1140_epjb_e2020_10455_0
crossref_primary_10_1021_jacs_2c04741
crossref_primary_10_1039_D2EE01038K
crossref_primary_10_1016_j_ceramint_2021_03_097
crossref_primary_10_1021_acs_chemmater_0c00388
crossref_primary_10_1103_PhysRevB_108_235203
crossref_primary_10_1103_PhysRevB_108_155205
crossref_primary_10_1002_pssr_202300133
crossref_primary_10_1016_j_actamat_2016_03_059
crossref_primary_10_1021_jacs_8b09147
crossref_primary_10_1016_j_ceramint_2020_12_017
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1002_adfm_202307864
crossref_primary_10_1021_acsaem_1c01045
crossref_primary_10_1063_5_0044648
crossref_primary_10_1021_acsami_8b13528
crossref_primary_10_1103_PhysRevB_105_115142
crossref_primary_10_1038_s41524_022_00927_z
crossref_primary_10_1016_j_jcrysgro_2017_03_020
crossref_primary_10_1039_C9TC00183B
crossref_primary_10_1002_pssb_202300244
crossref_primary_10_1021_acs_chemmater_6b04230
crossref_primary_10_1016_j_mtener_2022_100977
crossref_primary_10_1039_C9TC01607D
crossref_primary_10_1021_acsaelm_1c01075
crossref_primary_10_1016_j_mtphys_2019_100159
crossref_primary_10_1021_jacs_8b09375
crossref_primary_10_1021_acs_chemmater_1c03747
crossref_primary_10_1016_j_matdes_2018_08_001
crossref_primary_10_1039_C7TA08545A
crossref_primary_10_1039_D0CP01641A
crossref_primary_10_1016_j_actamat_2023_118773
crossref_primary_10_1021_jacs_6b04181
crossref_primary_10_1103_PhysRevB_106_104303
crossref_primary_10_1007_s11665_020_04953_0
crossref_primary_10_1126_science_aak9997
crossref_primary_10_1016_j_mtphys_2022_100742
crossref_primary_10_1007_s11664_023_10296_y
crossref_primary_10_1039_D3EE02482B
crossref_primary_10_1038_s41598_017_02808_8
crossref_primary_10_1021_acsami_7b01473
crossref_primary_10_35848_1347_4065_aca258
crossref_primary_10_1038_s41467_022_31939_4
crossref_primary_10_1039_D2CP04806J
crossref_primary_10_1016_j_commatsci_2020_109960
crossref_primary_10_1007_s10854_021_06403_6
crossref_primary_10_1021_acs_chemmater_1c03619
crossref_primary_10_1039_D3CP03596D
crossref_primary_10_1038_s41586_019_1751_9
crossref_primary_10_1063_5_0087244
crossref_primary_10_1038_s41524_021_00523_7
crossref_primary_10_3390_cryst11111290
crossref_primary_10_1039_D2TA09210G
crossref_primary_10_54227_mlab_20220056
crossref_primary_10_1002_smtd_202301619
crossref_primary_10_1103_PhysRevMaterials_3_105405
crossref_primary_10_1002_aenm_202001924
crossref_primary_10_1016_j_mtphys_2024_101466
crossref_primary_10_1021_acsaem_0c02019
crossref_primary_10_1002_aenm_202103770
crossref_primary_10_1126_sciadv_abg1449
crossref_primary_10_1039_C6TA02116F
crossref_primary_10_2139_ssrn_4191307
crossref_primary_10_1103_PhysRevB_99_195202
crossref_primary_10_1007_s10853_020_05586_3
crossref_primary_10_1021_acsami_0c01798
crossref_primary_10_1103_PhysRevB_103_165406
crossref_primary_10_1021_acsami_0c01676
crossref_primary_10_1021_acs_jpclett_2c00379
crossref_primary_10_1002_aelm_202001262
crossref_primary_10_1016_j_mtphys_2018_11_001
crossref_primary_10_1021_acs_chemmater_8b03994
crossref_primary_10_1016_j_actamat_2020_07_045
crossref_primary_10_1039_D2CP05258J
crossref_primary_10_1088_1674_1056_ac3cae
crossref_primary_10_1016_j_mtphys_2023_101059
crossref_primary_10_1021_acsami_8b16717
crossref_primary_10_1039_D1RA04270J
crossref_primary_10_1142_S1793604721510139
crossref_primary_10_1109_TED_2017_2777803
crossref_primary_10_1016_j_mtphys_2019_100102
crossref_primary_10_3390_ma16103819
crossref_primary_10_1016_j_mtphys_2023_101293
crossref_primary_10_1021_acsaem_2c01176
crossref_primary_10_1080_00018732_2018_1551715
crossref_primary_10_1007_s11467_018_0756_4
crossref_primary_10_1016_j_jphotochemrev_2019_01_001
crossref_primary_10_1002_eem2_12535
crossref_primary_10_1021_acsaem_8b01609
crossref_primary_10_1021_acs_chemmater_7b00279
crossref_primary_10_1007_s12034_023_02945_z
crossref_primary_10_1016_j_rinp_2024_107850
crossref_primary_10_34133_2020_5016564
crossref_primary_10_1002_adfm_202404279
crossref_primary_10_1002_pssb_202400172
crossref_primary_10_1016_j_jallcom_2021_159161
crossref_primary_10_1063_5_0049197
crossref_primary_10_1002_adma_202208272
crossref_primary_10_1021_acsaem_3c02359
crossref_primary_10_1016_j_cej_2021_130530
crossref_primary_10_1016_j_jpowsour_2019_01_022
crossref_primary_10_1021_acs_inorgchem_9b01038
crossref_primary_10_1111_jace_15069
crossref_primary_10_1007_s40145_020_0407_4
crossref_primary_10_1039_C8TA03837F
crossref_primary_10_1039_D0TA05458E
crossref_primary_10_1002_smll_202104067
crossref_primary_10_1016_j_mtphys_2022_100904
crossref_primary_10_1007_s10825_023_02075_z
crossref_primary_10_1007_s11664_023_10424_8
crossref_primary_10_1016_j_mtphys_2018_11_004
crossref_primary_10_1039_C9TC01824G
crossref_primary_10_1021_acsami_1c12862
crossref_primary_10_1016_j_jallcom_2022_163933
crossref_primary_10_1088_1674_1056_27_4_048403
crossref_primary_10_1039_D4TC00761A
crossref_primary_10_1063_1_5145186
crossref_primary_10_1016_j_jmat_2018_04_001
crossref_primary_10_1039_C7QM00306D
crossref_primary_10_1039_D1MA00780G
crossref_primary_10_1063_1_5138651
crossref_primary_10_1021_acs_chemmater_9b00393
crossref_primary_10_34133_2021_2414286
crossref_primary_10_1016_j_physe_2022_115333
crossref_primary_10_1016_j_jmat_2018_10_004
crossref_primary_10_1021_acsami_2c07044
crossref_primary_10_1021_acs_jpcc_0c06703
crossref_primary_10_1002_aelm_201800904
crossref_primary_10_1021_acsaem_3c00198
crossref_primary_10_3365_KJMM_2023_61_8_608
crossref_primary_10_1021_jacs_6b09222
crossref_primary_10_1016_j_mtphys_2020_100331
crossref_primary_10_1021_acs_chemmater_8b03306
crossref_primary_10_1039_C9TC02188D
crossref_primary_10_1088_1674_1056_27_4_047206
crossref_primary_10_1002_adma_202405299
crossref_primary_10_1016_j_joule_2017_11_005
crossref_primary_10_1016_j_jallcom_2023_172815
crossref_primary_10_1002_anie_202208216
crossref_primary_10_1039_C7TA02080E
crossref_primary_10_1016_j_mtphys_2020_100217
crossref_primary_10_1016_j_cej_2021_130670
crossref_primary_10_1021_acs_chemmater_9b02327
crossref_primary_10_1002_aenm_202100580
crossref_primary_10_1515_zkri_2022_0051
crossref_primary_10_1021_acs_chemmater_2c00637
crossref_primary_10_1063_5_0089871
crossref_primary_10_1140_epjp_s13360_022_02996_x
crossref_primary_10_1016_j_cjsc_2024_100268
crossref_primary_10_1103_PhysRevB_107_205206
crossref_primary_10_1007_s12598_021_01847_5
crossref_primary_10_1002_adfm_202001651
crossref_primary_10_1021_acsami_7b15651
crossref_primary_10_1021_acsami_0c08149
crossref_primary_10_1016_j_mtphys_2021_100508
crossref_primary_10_1021_acsami_3c01956
crossref_primary_10_1002_smll_201703695
crossref_primary_10_1039_C8TA08448C
crossref_primary_10_1002_adma_202400845
crossref_primary_10_1039_D0RA02699A
Cites_doi 10.1103/PhysRev.121.752
10.1116/1.1290372
10.1063/1.3182800
10.1007/978-3-662-03313-5
10.1016/j.jallcom.2014.09.173
10.1063/1.363405
10.1002/adma.201202919
10.1007/BF00892328
10.1007/s11664-010-1073-z
10.1103/PhysRevLett.80.3551
10.1016/0022-3697(59)90051-4
10.1103/PhysRevB.88.165127
10.1088/0953-8984/15/29/315
10.1063/1.3296186
10.1103/PhysRev.138.A873
10.1103/PhysRevB.72.085126
10.1016/0022-3697(57)90013-6
10.1103/PhysRevB.61.4672
10.1038/nature09996
10.1063/1.2965123
10.1039/C3EE43240H
10.1088/0953-8984/21/39/395502
10.1016/0022-3697(77)90203-7
10.1016/j.actamat.2013.09.039
10.1063/1.371287
10.1063/1.1388162
10.1134/S1063783407090053
10.1038/ncomms8584
10.1103/PhysRevB.6.3898
10.1016/0020-0891(84)90066-6
10.1016/S0927-0256(03)00104-6
10.1103/PhysRevLett.77.3865
10.1016/0022-3697(64)90030-7
10.1063/1.1450036
10.1063/1.3099804
10.1103/PhysRevLett.110.146601
10.1016/j.jmat.2015.03.008
10.1021/ja111199y
10.1103/PhysRevB.50.11235
10.1039/c3ee42187b
10.1103/PhysRevLett.108.166601
10.1039/C3EE43438A
10.1103/PhysRevB.80.115329
10.1103/PhysRevB.58.15620
10.1039/c2ee21536e
10.1038/nmat2260
10.1063/1.2245204
10.1007/s11664-009-0703-9
ContentType Journal Article
Copyright Springer Nature Limited 2015
Copyright Nature Publishing Group Dec 2015
Copyright_xml – notice: Springer Nature Limited 2015
– notice: Copyright Nature Publishing Group Dec 2015
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
DBID NPM
AAYXX
CITATION
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
7X8
OTOTI
DOI 10.1038/nmat4430
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Engineering Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1228
ExternalDocumentID 1370980
3959782351
10_1038_nmat4430
26436339
Genre Journal Article
Feature
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABVXF
ABZEH
ACGFS
ACGOD
ACIWK
ADBBV
AENEX
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYZH
NPM
AAYXX
CITATION
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PQEST
PQUKI
Q9U
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c438t-f95430467b9b87e84f675cd607c1540488f09f020cd058f4436365cb735f701b3
ISSN 1476-1122
IngestDate Thu May 18 18:17:43 EDT 2023
Fri Oct 25 04:35:58 EDT 2024
Thu Oct 10 21:03:05 EDT 2024
Thu Sep 12 16:39:49 EDT 2024
Tue Oct 15 23:55:19 EDT 2024
Fri Oct 11 20:47:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-f95430467b9b87e84f675cd607c1540488f09f020cd058f4436365cb735f701b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001299; FG02-09ER46577
PMID 26436339
PQID 1767086332
PQPubID 27576
PageCount 6
ParticipantIDs osti_scitechconnect_1370980
proquest_miscellaneous_1735336081
proquest_journals_1767086332
crossref_primary_10_1038_nmat4430
pubmed_primary_26436339
springer_journals_10_1038_nmat4430
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tang, Chen, Snyder (CR2) 2015; 1
Ackermann, Wold (CR35) 1977; 38
Smith, Moss, Taylor (CR38) 1959; 11
Meisner, Morelli, Hu, Yang, Uher (CR10) 1998; 80
Pei (CR13) 2011; 473
Li, Tang, Zhang, Uher (CR7) 2009; 94
Kuznetsov, Kuznetsova, Rowe (CR22) 2003; 15
Yang, Xi, Zhang, Chen, Yang (CR27) 2009; 38
Zhao (CR14) 2013; 6
Perdew, Burke, Ernzerhof (CR47) 1996; 77
Koza (CR11) 2008; 7
Nagamoto, Tanaka, Koyanagi (CR30) 1998
Cardona (CR39) 1961; 121
Liu (CR16) 2012; 108
Singh, Pickett (CR19) 1994; 50
Caillat, Borshchevsky, Fleurial (CR1) 1996; 80
Giannozzi (CR48) 2009; 21
Wang, Gibbs, Takagiwa, Snyder (CR15) 2014; 7
Liu, Zhao, Zhang, Zhang, Li (CR29) 2008; 93
Kokalj (CR50) 2003; 28
Dixon, Riedl (CR40) 1965; 138
Pei (CR3) 2009; 95
Arushanov, Respaud, Rakoto, Broto, Caillat (CR42) 2000; 61
Agapito, Ferretti, Calzolari, Curtarolo, Buongiorno (CR49) 2013; 88
Gnutzman, Clauseck (CR34) 1974; 3
Rogl (CR8) 2014; 63
Dionne, Woolley (CR41) 1972; 6
Salvador, Yang, Wang, Shi (CR23) 2010; 107
Takagiwa, Pei, Pomrehn, Snyder (CR28) 2013; 1
Zhou, Liu, Zhai, Zhao, Zhang (CR26) 2010; 39
Parker, Chen, Singh (CR17) 2013; 110
Kane (CR37) 1957; 1
Chen (CR4) 2001; 90
Harman (CR43) 1964; 25
Pshenaı̆-Severin, Fedorov (CR45) 2007; 49
Yang (CR32) 2009; 80
Tang (CR5) 2014; 7
Tang, Hanus, Chen, Snyder (CR6) 2015; 6
Nolas, Fowler, Yang (CR12) 2006; 100
Kajikawa (CR31) 2015; 621
Pei, LaLonde, Wang, Snyder (CR21) 2012; 5
Shi (CR9) 2011; 133
Anno, Matsubara, Notohara, Sakakibara, Tashiro (CR24) 1999; 86
Young, Coutts, Kaydanov, Gilmore, Mulligan (CR44) 2000; 18
Chaput, Pécheur, Tobola, Scherrer (CR33) 2005; 72
Kliche, Lutz (CR36) 1984; 24
Yu, Cardona (CR46) 1996
Dyck (CR25) 2002; 91
Sofo, Mahan (CR20) 1998; 58
Pei, Wang, Snyder (CR18) 2012; 24
21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
21524125 - J Am Chem Soc. 2011 May 25;133(20):7837-46
26189943 - Nat Commun. 2015 Jul 20;6:7584
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
9975246 - Phys Rev B Condens Matter. 1994 Oct 15;50(15):11235-11238
22680741 - Phys Rev Lett. 2012 Apr 20;108(16):166601
23074043 - Adv Mater. 2012 Dec 4;24(46):6125-35
25167018 - Phys Rev Lett. 2013 Apr 5;110(14):146601
21544143 - Nature. 2011 May 5;473(7345):66-9
18758457 - Nat Mater. 2008 Oct;7(10):805-10
U Gnutzman (BFnmat4430_CR34) 1974; 3
T Caillat (BFnmat4430_CR1) 1996; 80
H Wang (BFnmat4430_CR15) 2014; 7
D Parker (BFnmat4430_CR17) 2013; 110
MM Koza (BFnmat4430_CR11) 2008; 7
W-S Liu (BFnmat4430_CR29) 2008; 93
Y Kajikawa (BFnmat4430_CR31) 2015; 621
EO Kane (BFnmat4430_CR37) 1957; 1
H Anno (BFnmat4430_CR24) 1999; 86
Y Tang (BFnmat4430_CR5) 2014; 7
LD Chen (BFnmat4430_CR4) 2001; 90
SD Smith (BFnmat4430_CR38) 1959; 11
M Cardona (BFnmat4430_CR39) 1961; 121
E Arushanov (BFnmat4430_CR42) 2000; 61
JR Salvador (BFnmat4430_CR23) 2010; 107
L Chaput (BFnmat4430_CR33) 2005; 72
A Kokalj (BFnmat4430_CR50) 2003; 28
G Meisner (BFnmat4430_CR10) 1998; 80
JP Perdew (BFnmat4430_CR47) 1996; 77
Y Nagamoto (BFnmat4430_CR30) 1998
Y Pei (BFnmat4430_CR18) 2012; 24
DJ Singh (BFnmat4430_CR19) 1994; 50
VL Kuznetsov (BFnmat4430_CR22) 2003; 15
J Yang (BFnmat4430_CR27) 2009; 38
Y Tang (BFnmat4430_CR2) 2015; 1
H Li (BFnmat4430_CR7) 2009; 94
J Yang (BFnmat4430_CR32) 2009; 80
G Kliche (BFnmat4430_CR36) 1984; 24
GS Nolas (BFnmat4430_CR12) 2006; 100
LA Agapito (BFnmat4430_CR49) 2013; 88
G Rogl (BFnmat4430_CR8) 2014; 63
JR Dixon (BFnmat4430_CR40) 1965; 138
G Dionne (BFnmat4430_CR41) 1972; 6
YZ Pei (BFnmat4430_CR3) 2009; 95
Y Pei (BFnmat4430_CR21) 2012; 5
DL Young (BFnmat4430_CR44) 2000; 18
P Giannozzi (BFnmat4430_CR48) 2009; 21
X Shi (BFnmat4430_CR9) 2011; 133
W Liu (BFnmat4430_CR16) 2012; 108
Y Takagiwa (BFnmat4430_CR28) 2013; 1
JS Dyck (BFnmat4430_CR25) 2002; 91
LD Zhao (BFnmat4430_CR14) 2013; 6
JO Sofo (BFnmat4430_CR20) 1998; 58
TC Harman (BFnmat4430_CR43) 1964; 25
DA Pshenaı̆-Severin (BFnmat4430_CR45) 2007; 49
PY Yu (BFnmat4430_CR46) 1996
Y Tang (BFnmat4430_CR6) 2015; 6
Y Pei (BFnmat4430_CR13) 2011; 473
J Ackermann (BFnmat4430_CR35) 1977; 38
A Zhou (BFnmat4430_CR26) 2010; 39
References_xml – volume: 121
  start-page: 752
  year: 1961
  end-page: 758
  ident: CR39
  article-title: Electron effective masses of InAs and GaAs as a function of temperature and doping
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.121.752
  contributor:
    fullname: Cardona
– volume: 18
  start-page: 2978
  year: 2000
  end-page: 2985
  ident: CR44
  article-title: Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1290372
  contributor:
    fullname: Mulligan
– volume: 95
  start-page: 042101
  year: 2009
  ident: CR3
  article-title: Improving thermoelectric performance of caged compounds through light-element filling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3182800
  contributor:
    fullname: Pei
– start-page: 259
  year: 1996
  end-page: 264
  ident: CR46
  publication-title: Fundamentals of Semiconductors
  doi: 10.1007/978-3-662-03313-5
  contributor:
    fullname: Cardona
– volume: 621
  start-page: 170
  year: 2015
  end-page: 178
  ident: CR31
  article-title: Refined analysis of the transport properties of Co Ni Sb according to a model including a deep donor level and the second lowest valleys of the conduction band
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.09.173
  contributor:
    fullname: Kajikawa
– volume: 80
  start-page: 4442
  year: 1996
  end-page: 4449
  ident: CR1
  article-title: Properties of single crystalline semiconducting CoSb
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363405
  contributor:
    fullname: Fleurial
– volume: 24
  start-page: 6125
  year: 2012
  end-page: 6135
  ident: CR18
  article-title: Band engineering of thermoelectric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202919
  contributor:
    fullname: Snyder
– volume: 3
  start-page: 9
  year: 1974
  end-page: 14
  ident: CR34
  article-title: Theory of direct optical-transitions in an optical indirect semiconductor with a superlattice structure
  publication-title: Appl. Phys.
  doi: 10.1007/BF00892328
  contributor:
    fullname: Clauseck
– volume: 39
  start-page: 1832
  year: 2010
  end-page: 1836
  ident: CR26
  article-title: Electronic structures and transport properties of single-filled CoSb
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1073-z
  contributor:
    fullname: Zhang
– volume: 80
  start-page: 3551
  year: 1998
  end-page: 3554
  ident: CR10
  article-title: Structure and lattice thermal conductivity of fractionally filled skutterudites: Solid solutions of fully filled and unfilled end members
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3551
  contributor:
    fullname: Uher
– volume: 11
  start-page: 131
  year: 1959
  end-page: 139
  ident: CR38
  article-title: The energy-dependence of electron mass in indium antimonide determined from measurements of the infrared Faraday effect
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(59)90051-4
  contributor:
    fullname: Taylor
– volume: 88
  start-page: 165127
  year: 2013
  ident: CR49
  article-title: Effective and accurate representation of extended Bloch states on finite Hilbert spaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165127
  contributor:
    fullname: Buongiorno
– volume: 15
  start-page: 5035
  year: 2003
  end-page: 5048
  ident: CR22
  article-title: Effect of partial void filling on the transport properties of Nd Co Sb skutterudites
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/29/315
  contributor:
    fullname: Rowe
– volume: 107
  start-page: 043705
  year: 2010
  ident: CR23
  article-title: Double-filled skutterudites of the type Yb Ca Co Sb : Synthesis and properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3296186
  contributor:
    fullname: Shi
– volume: 138
  start-page: A873
  year: 1965
  end-page: A881
  ident: CR40
  article-title: Electric-susceptibility hole mass of lead telluride
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.A873
  contributor:
    fullname: Riedl
– volume: 72
  start-page: 085126
  year: 2005
  ident: CR33
  article-title: Transport in doped skutterudites: electronic structure calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.085126
  contributor:
    fullname: Scherrer
– volume: 1
  start-page: 249
  year: 1957
  end-page: 261
  ident: CR37
  article-title: Band structure of indium antimonide
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(57)90013-6
  contributor:
    fullname: Kane
– volume: 61
  start-page: 4672
  year: 2000
  end-page: 4676
  ident: CR42
  article-title: Shubnikov–de Haas oscillations in CoSb single crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.4672
  contributor:
    fullname: Caillat
– volume: 473
  start-page: 66
  year: 2011
  end-page: 69
  ident: CR13
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
  doi: 10.1038/nature09996
  contributor:
    fullname: Pei
– volume: 93
  start-page: 042109
  year: 2008
  ident: CR29
  article-title: Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2965123
  contributor:
    fullname: Li
– volume: 7
  start-page: 812
  year: 2014
  end-page: 819
  ident: CR5
  article-title: Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43240H
  contributor:
    fullname: Tang
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR48
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
  contributor:
    fullname: Giannozzi
– volume: 38
  start-page: 1013
  year: 1977
  end-page: 1016
  ident: CR35
  article-title: The preparation and characterization of the cobalt skutterudites CoP , CoAs and CoSb
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(77)90203-7
  contributor:
    fullname: Wold
– volume: 63
  start-page: 30
  year: 2014
  end-page: 43
  ident: CR8
  article-title: n-type skutterudites (R, Ba, Yb) Co Sb (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≍ 2.0
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.039
  contributor:
    fullname: Rogl
– volume: 86
  start-page: 3780
  year: 1999
  end-page: 3786
  ident: CR24
  article-title: Effects of doping on the transport properties of CoSb
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371287
  contributor:
    fullname: Tashiro
– volume: 90
  start-page: 1864
  year: 2001
  end-page: 1868
  ident: CR4
  article-title: Anomalous barium filling fraction and n-type thermoelectric performance of Ba Co Sb
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1388162
  contributor:
    fullname: Chen
– volume: 49
  start-page: 1633
  year: 2007
  end-page: 1637
  ident: CR45
  article-title: Effect of the band structure on the thermoelectric properties of a semiconductor
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783407090053
  contributor:
    fullname: Fedorov
– volume: 6
  start-page: 7584
  year: 2015
  ident: CR6
  article-title: Solubility design leading to high figure of merit in low-cost Ce–CoSb skutterudites
  publication-title: Nature Commun.
  doi: 10.1038/ncomms8584
  contributor:
    fullname: Snyder
– volume: 6
  start-page: 3898
  year: 1972
  end-page: 3913
  ident: CR41
  article-title: Optical properties of some Pb Sn Te alloys determined from infrared plasma reflectivity measurements
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.3898
  contributor:
    fullname: Woolley
– volume: 24
  start-page: 171
  year: 1984
  end-page: 177
  ident: CR36
  article-title: Temperature dependence of the FIR reflection spectra of the skutterudites CoAs and CoSb
  publication-title: Infrared Phys.
  doi: 10.1016/0020-0891(84)90066-6
  contributor:
    fullname: Lutz
– volume: 28
  start-page: 155
  year: 2003
  end-page: 168
  ident: CR50
  article-title: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
  contributor:
    fullname: Kokalj
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR47
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Ernzerhof
– volume: 25
  start-page: 931
  year: 1964
  end-page: 940
  ident: CR43
  article-title: Galvano-thermomagnetic effects in semiconductors and semimetals—IV. mercury selenide
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(64)90030-7
  contributor:
    fullname: Harman
– volume: 91
  start-page: 3698
  year: 2002
  end-page: 3705
  ident: CR25
  article-title: Thermoelectric properties of the n-type filled skutterudite Ba Co Sb doped with Ni
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1450036
  contributor:
    fullname: Dyck
– volume: 94
  start-page: 102114
  year: 2009
  ident: CR7
  article-title: High performance In Ce Co Sb thermoelectric materials with forming nanostructured InSb phase
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3099804
  contributor:
    fullname: Uher
– volume: 110
  start-page: 146601
  year: 2013
  ident: CR17
  article-title: High three-dimensional thermoelectric performance from low-dimensional bands
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.146601
  contributor:
    fullname: Singh
– volume: 1
  start-page: 75
  year: 2015
  end-page: 84
  ident: CR2
  article-title: Temperature dependent solubility of Yb in Yb–CoSb skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2015.03.008
  contributor:
    fullname: Snyder
– volume: 133
  start-page: 7837
  year: 2011
  end-page: 7846
  ident: CR9
  article-title: Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111199y
  contributor:
    fullname: Shi
– volume: 50
  start-page: 11235
  year: 1994
  end-page: 11238
  ident: CR19
  article-title: Skutterudite antimonides: Quasilinear bands and unusual transport
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.11235
  contributor:
    fullname: Pickett
– volume: 6
  start-page: 3346
  year: 2013
  end-page: 3355
  ident: CR14
  article-title: All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42187b
  contributor:
    fullname: Zhao
– volume: 108
  start-page: 166601
  year: 2012
  ident: CR16
  article-title: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg Si Sn solid solutions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.166601
  contributor:
    fullname: Liu
– volume: 7
  start-page: 804
  year: 2014
  end-page: 811
  ident: CR15
  article-title: Tuning bands of PbSe for better thermoelectric efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43438A
  contributor:
    fullname: Snyder
– volume: 80
  start-page: 115329
  year: 2009
  ident: CR32
  article-title: Solubility study of Yb in n-type skutterudites Yb Co Sb and their enhanced thermoelectric properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.115329
  contributor:
    fullname: Yang
– volume: 58
  start-page: 15620
  year: 1998
  end-page: 15623
  ident: CR20
  article-title: Electronic structure of CoSb : A narrow-band-gap semiconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.15620
  contributor:
    fullname: Mahan
– start-page: 302
  year: 1998
  end-page: 305
  ident: CR30
  publication-title: Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on
  contributor:
    fullname: Koyanagi
– volume: 5
  start-page: 7963
  year: 2012
  end-page: 7969
  ident: CR21
  article-title: Low effective mass leading to high thermoelectric performance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21536e
  contributor:
    fullname: Snyder
– volume: 7
  start-page: 805
  year: 2008
  end-page: 810
  ident: CR11
  article-title: Breakdown of phonon glass paradigm in La- and Ce-filled Fe Sb skutterudites
  publication-title: Nature Mater.
  doi: 10.1038/nmat2260
  contributor:
    fullname: Koza
– volume: 1
  start-page: 011101
  year: 2013
  ident: CR28
  article-title: Validity of rigid band approximation of PbTe thermoelectric materials
  publication-title: Appl. Phys. Lett. Mater.
  contributor:
    fullname: Snyder
– volume: 100
  start-page: 043705
  year: 2006
  ident: CR12
  article-title: Assessing the role of filler atoms on the thermal conductivity of filled skutterudites
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2245204
  contributor:
    fullname: Yang
– volume: 38
  start-page: 1397
  year: 2009
  end-page: 1401
  ident: CR27
  article-title: Electrical transport properties of filled CoSb skutterudites: A theoretical study
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-009-0703-9
  contributor:
    fullname: Yang
– volume: 1
  start-page: 75
  year: 2015
  ident: BFnmat4430_CR2
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2015.03.008
  contributor:
    fullname: Y Tang
– volume: 108
  start-page: 166601
  year: 2012
  ident: BFnmat4430_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.166601
  contributor:
    fullname: W Liu
– volume: 6
  start-page: 3346
  year: 2013
  ident: BFnmat4430_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42187b
  contributor:
    fullname: LD Zhao
– volume: 77
  start-page: 3865
  year: 1996
  ident: BFnmat4430_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 7
  start-page: 805
  year: 2008
  ident: BFnmat4430_CR11
  publication-title: Nature Mater.
  doi: 10.1038/nmat2260
  contributor:
    fullname: MM Koza
– volume: 621
  start-page: 170
  year: 2015
  ident: BFnmat4430_CR31
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.09.173
  contributor:
    fullname: Y Kajikawa
– volume: 100
  start-page: 043705
  year: 2006
  ident: BFnmat4430_CR12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2245204
  contributor:
    fullname: GS Nolas
– volume: 15
  start-page: 5035
  year: 2003
  ident: BFnmat4430_CR22
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/29/315
  contributor:
    fullname: VL Kuznetsov
– volume: 80
  start-page: 3551
  year: 1998
  ident: BFnmat4430_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3551
  contributor:
    fullname: G Meisner
– volume: 63
  start-page: 30
  year: 2014
  ident: BFnmat4430_CR8
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.039
  contributor:
    fullname: G Rogl
– volume: 11
  start-page: 131
  year: 1959
  ident: BFnmat4430_CR38
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(59)90051-4
  contributor:
    fullname: SD Smith
– volume: 7
  start-page: 804
  year: 2014
  ident: BFnmat4430_CR15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43438A
  contributor:
    fullname: H Wang
– volume: 1
  start-page: 249
  year: 1957
  ident: BFnmat4430_CR37
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(57)90013-6
  contributor:
    fullname: EO Kane
– volume: 1
  start-page: 011101
  year: 2013
  ident: BFnmat4430_CR28
  publication-title: Appl. Phys. Lett. Mater.
  contributor:
    fullname: Y Takagiwa
– volume: 24
  start-page: 6125
  year: 2012
  ident: BFnmat4430_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202919
  contributor:
    fullname: Y Pei
– volume: 121
  start-page: 752
  year: 1961
  ident: BFnmat4430_CR39
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.121.752
  contributor:
    fullname: M Cardona
– volume: 58
  start-page: 15620
  year: 1998
  ident: BFnmat4430_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.15620
  contributor:
    fullname: JO Sofo
– volume: 3
  start-page: 9
  year: 1974
  ident: BFnmat4430_CR34
  publication-title: Appl. Phys.
  doi: 10.1007/BF00892328
  contributor:
    fullname: U Gnutzman
– volume: 38
  start-page: 1013
  year: 1977
  ident: BFnmat4430_CR35
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(77)90203-7
  contributor:
    fullname: J Ackermann
– volume: 7
  start-page: 812
  year: 2014
  ident: BFnmat4430_CR5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43240H
  contributor:
    fullname: Y Tang
– volume: 88
  start-page: 165127
  year: 2013
  ident: BFnmat4430_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165127
  contributor:
    fullname: LA Agapito
– volume: 50
  start-page: 11235
  year: 1994
  ident: BFnmat4430_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.11235
  contributor:
    fullname: DJ Singh
– volume: 91
  start-page: 3698
  year: 2002
  ident: BFnmat4430_CR25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1450036
  contributor:
    fullname: JS Dyck
– volume: 24
  start-page: 171
  year: 1984
  ident: BFnmat4430_CR36
  publication-title: Infrared Phys.
  doi: 10.1016/0020-0891(84)90066-6
  contributor:
    fullname: G Kliche
– volume: 93
  start-page: 042109
  year: 2008
  ident: BFnmat4430_CR29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2965123
  contributor:
    fullname: W-S Liu
– volume: 95
  start-page: 042101
  year: 2009
  ident: BFnmat4430_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3182800
  contributor:
    fullname: YZ Pei
– volume: 90
  start-page: 1864
  year: 2001
  ident: BFnmat4430_CR4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1388162
  contributor:
    fullname: LD Chen
– volume: 80
  start-page: 4442
  year: 1996
  ident: BFnmat4430_CR1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363405
  contributor:
    fullname: T Caillat
– volume: 6
  start-page: 3898
  year: 1972
  ident: BFnmat4430_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.3898
  contributor:
    fullname: G Dionne
– volume: 473
  start-page: 66
  year: 2011
  ident: BFnmat4430_CR13
  publication-title: Nature
  doi: 10.1038/nature09996
  contributor:
    fullname: Y Pei
– volume: 25
  start-page: 931
  year: 1964
  ident: BFnmat4430_CR43
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(64)90030-7
  contributor:
    fullname: TC Harman
– volume: 28
  start-page: 155
  year: 2003
  ident: BFnmat4430_CR50
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
  contributor:
    fullname: A Kokalj
– volume: 94
  start-page: 102114
  year: 2009
  ident: BFnmat4430_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3099804
  contributor:
    fullname: H Li
– start-page: 259
  volume-title: Fundamentals of Semiconductors
  year: 1996
  ident: BFnmat4430_CR46
  doi: 10.1007/978-3-662-03313-5
  contributor:
    fullname: PY Yu
– volume: 86
  start-page: 3780
  year: 1999
  ident: BFnmat4430_CR24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371287
  contributor:
    fullname: H Anno
– volume: 138
  start-page: A873
  year: 1965
  ident: BFnmat4430_CR40
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.A873
  contributor:
    fullname: JR Dixon
– volume: 61
  start-page: 4672
  year: 2000
  ident: BFnmat4430_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.4672
  contributor:
    fullname: E Arushanov
– volume: 72
  start-page: 085126
  year: 2005
  ident: BFnmat4430_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.085126
  contributor:
    fullname: L Chaput
– volume: 133
  start-page: 7837
  year: 2011
  ident: BFnmat4430_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111199y
  contributor:
    fullname: X Shi
– volume: 6
  start-page: 7584
  year: 2015
  ident: BFnmat4430_CR6
  publication-title: Nature Commun.
  doi: 10.1038/ncomms8584
  contributor:
    fullname: Y Tang
– volume: 5
  start-page: 7963
  year: 2012
  ident: BFnmat4430_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21536e
  contributor:
    fullname: Y Pei
– volume: 21
  start-page: 395502
  year: 2009
  ident: BFnmat4430_CR48
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
  contributor:
    fullname: P Giannozzi
– start-page: 302
  volume-title: Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on
  year: 1998
  ident: BFnmat4430_CR30
  contributor:
    fullname: Y Nagamoto
– volume: 38
  start-page: 1397
  year: 2009
  ident: BFnmat4430_CR27
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-009-0703-9
  contributor:
    fullname: J Yang
– volume: 110
  start-page: 146601
  year: 2013
  ident: BFnmat4430_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.146601
  contributor:
    fullname: D Parker
– volume: 107
  start-page: 043705
  year: 2010
  ident: BFnmat4430_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3296186
  contributor:
    fullname: JR Salvador
– volume: 18
  start-page: 2978
  year: 2000
  ident: BFnmat4430_CR44
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1290372
  contributor:
    fullname: DL Young
– volume: 49
  start-page: 1633
  year: 2007
  ident: BFnmat4430_CR45
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783407090053
  contributor:
    fullname: DA Pshenaı̆-Severin
– volume: 39
  start-page: 1832
  year: 2010
  ident: BFnmat4430_CR26
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1073-z
  contributor:
    fullname: A Zhou
– volume: 80
  start-page: 115329
  year: 2009
  ident: BFnmat4430_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.115329
  contributor:
    fullname: J Yang
SSID ssj0021556
Score 2.6927176
Snippet Filled skutterudites R x Co 4 Sb 12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined...
Filled skutterudites R(x)Co4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with...
Filled skutterudites RxCo4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low...
SourceID osti
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1223
SubjectTerms 119/118
121/135
639/301/1034
639/301/299/2736
Biomaterials
Condensed Matter Physics
Electronics
Heat conductivity
High temperature
Materials Science
Nanotechnology
Optical and Electronic Materials
solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Thermal conductivity
Title Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites
URI https://link.springer.com/article/10.1038/nmat4430
https://www.ncbi.nlm.nih.gov/pubmed/26436339
https://www.proquest.com/docview/1767086332
https://search.proquest.com/docview/1735336081
https://www.osti.gov/biblio/1370980
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67gIHxDdlAxnELQokcWI7x2orIDF22SatXKJ8GVVAUjUN0v573rOdj5YdxoFL1NqO4_j98vye_T4IeVeIPBOCl24R-aneunFT6SkXY0GpEJZcKXUS2wtxfi1PF-FiMukyEA5l_5XSUAa0Rs_Zf6B23ykUwG-gOVyB6nC9E91P0Ix8Y0Js4tk5Ggy6vzFjyo2ToV8vZpbRlhxDAhyTHUvLjaCrY-3mV23qoXY98i3QPoIXGXOaHzrDNfp0WCtEK-Ge60ihDgjC5m2HrQHDVZawVv5se7OfVZZpJH1L0f_rxvn6vofg93S90kmenLN21TjzvuZMWyB8akGjtuuu3bbwoz0TEDuY_b025-rLiBmHgrsgDxpuXQ5lITc5CHoOHo6RGoz4MdzMRms7_JW3rhsmSnwFcxOG9pxoNwq3PqtnMumaHJDDAIANPPVwfr1cnvZKPshnxqPNjr0LeMzkh-7eHRFoWgMrv029-etoXks8lw_JA6uq0LnB2CMyKavH5P4ogOUTsh2hjdaKjtFGNdpo2lDAEx3QRg3asDmije6ijY7QRqGVRhvdQdtTcvVxcXny2bV5PNw8ZHLrqjgK8QBeZHEmRSlDBVpqXnBP5CDA4xKivFiB3pIXwBsUTBFnPAIewiIlPD9jz8i0qqvyBaGiyHkMvaTogBKUQRpxFQSllxZB7ilezMibbmqTtQnXkuyTbkaOcM4TEDExTnKOBmX5NvGZ8GIJtccdKRL7WTeJL7gA3Z-xAB7QVwMjxtO1tCrrFtswUJ04iNgz8tyQsB8CaB3wTiyekbcdTUed743v5V0aHZF7w1d1TKbbTVu-IgdN0b62iPwD8LPAHg
link.rule.ids 230,315,783,787,888,27936,27937,48349,48350,48364,49654,49655,49669
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7o7kE9-H6srlqNVyJLoS1Ho65rXDcxrok3AqW9GMHIron_3ikFXB8HPc9QCtNhvmFeACcplwnnTDlp0IvLXzdOLFztmF5Q2keTK0Q5xPaejx7FxWXTJqeos93rkGT5pbaF4eI0QwTn-xTd87aPGB1PcLt_d9W_adwrtIy2logzB1GEV7eanbn2i_Fp5ahEvwHLH0HR0tb0V_6zy1VYrhAlObNHYA3mVLYOSzN9BjfADJV-s2WWiuSalFmEzpsZo_JOElPsS-KCIBQkn1NxiB2ZZdhNS2NDfX3OLR2pL58FBwS5zvP7hJLiqRx7bQo9VLEJD_3L8fnAqcYtONKnYuLoMPBNnJQnYSK4Er5GZ0KmzOUScZbRdO2GGuGlTFGEGp-SURagqGmgudtL6Ba0sjxTO0B4KlmIq8SmTsBTXhww7XnKjVNPupqlHTiq5RC92K4aURkNpyKq32AH9oyAIkQCpp2tNHk_chL1KHdDgdRuLbeo0roi6nHG0UWj1MMbNGTUFxMEiTOVTw0PRYTLEAl1YNvKu9kCgkN8Jhp24LgW7szi3_a3-xemQ1gYjG-H0fB6dLMHi4i2ApsL04XW5HWq9mG-SKcH1VH-AAbW8Xs
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRULlwKsFlkdxq14jsnFiO0deK6pFSyWo1FuU-HGpmqzILhL_npk4WZbHAXGeiWNn7Mxnj78ZgJ9G6kJKYQOTDPLm6CbIVegCygXlYnS5SjVFbG_k-K86v6A0OaLjwjS33buQpOc0UJamcno8Ma4liavjEtFcHHPcqi_TYRjO5uXT0Wh8Pd9qoZf0vCIpAkQUUZd2duHZZ46oV-GCegtkvgqQNn5nuP7RHm_AWos02YmfGpuwZMstWF3IP_gFqNj0vadfWlY51twuDO6pvMoDK4gEzPKaIURkT9VymC-lReqU6pikd_8rL0fp5ImIwFDrrLopOKv_NeWwiQBi66_wZ3hxe3YZtGUYAh1zNQ1cmsQUP5VFWihpVexwk6GNCKVG_EV_ABemDmGnNmhah6MUXCQ4BXjiZDgo-Db0yqq0u8Ck0SLFVnLiD0Q2yhPhosiGuYl06ITpw_fOJtnEZ9vImig5V1n3BfuwT8bKECFQmltN94H0NBtwGaYKpQedDbN2NdbZQAqJWzfOI3zBXIzriIIjeWmrGelwRL4CEVIfdrzt511A0Ihj4mkffnSGXmj8Rf_23qN0BCu_z4fZ1a_xaB8-IwhL_BWZA-hN72b2ED7VZvatndWPc3r6Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+multi-valley+bands+as+the+electronic+origin+of+high+thermoelectric+performance+in+CoSb3+skutterudites&rft.jtitle=Nature+materials&rft.au=Tang%2C+Yinglu&rft.au=Gibbs%2C+Zachary+M.&rft.au=Agapito%2C+Luis+A.&rft.au=Li%2C+Guodong&rft.date=2015-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=14&rft.issue=12&rft.spage=1223&rft.epage=1228&rft_id=info:doi/10.1038%2Fnmat4430&rft.externalDocID=10_1038_nmat4430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon