Mobile DNA elements: controlling transposition with ATP-dependent molecular switches
Nucleotide-binding proteins are often used as molecular switches to control the assembly or activity of macromolecular machines. Recent work has revealed that such molecular switches also regulate the spread of some mobile DNA elements. Bacteriophage Mu and the bacterial transposon Tn7 each use an A...
Saved in:
Published in: | Trends in Biochemical Sciences Vol. 23; no. 12; pp. 486 - 490 |
---|---|
Main Authors: | , |
Format: | Book Review Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-12-1998
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nucleotide-binding proteins are often used as molecular switches to control the assembly or activity of macromolecular machines. Recent work has revealed that such molecular switches also regulate the spread of some mobile DNA elements. Bacteriophage Mu and the bacterial transposon Tn7 each use an ATP-dependent molecular switch to select a new site for insertion and to coordinate the assembly of the transposition machinery at that site. Strong parallels between these ATP-dependent transposition proteins and other well-characterized molecular switches, such as Ras and EF-Tu, have emerged. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 ObjectType-Feature-3 ObjectType-Review-1 |
ISSN: | 0968-0004 1362-4326 |
DOI: | 10.1016/S0968-0004(98)01325-5 |