Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe
In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sus...
Saved in:
Published in: | Energy (Oxford) Vol. 90; pp. 889 - 899 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-10-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained.
•A novel synchronized thermal and visual investigation technique was applied to a CLPHP.•Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis.•3D frequency spectra for temperature and flow data show significant trends.•A spring-mass-damper system model was developed for the two-phase flow motion.•System stiffness and mass have an effect on the two-phase flow dynamics. |
---|---|
AbstractList | In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. •A novel synchronized thermal and visual investigation technique was applied to a CLPHP.•Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis.•3D frequency spectra for temperature and flow data show significant trends.•A spring-mass-damper system model was developed for the two-phase flow motion.•System stiffness and mass have an effect on the two-phase flow dynamics. |
Author | Spinato, Giulia Borhani, Navid Thome, John R. |
Author_xml | – sequence: 1 givenname: Giulia surname: Spinato fullname: Spinato, Giulia email: giulia.spinato@epfl.ch – sequence: 2 givenname: Navid surname: Borhani fullname: Borhani, Navid email: navid.borhani@epfl.ch – sequence: 3 givenname: John R. surname: Thome fullname: Thome, John R. email: john.thome@epfl.ch |
BookMark | eNqFkE1PJCEQQDlosn7sP_DA0Uu3BQ0NXEw2Zv1ITPaiZ4JN9QyTHmihZ43_Xtz27J5IivcqqXdKjmKKSMgFg5YB6692LUbMm_eWA5MtqJYxc0ROoOuhkULwH-S0lB0ASG3MCdk8R4-5LC76EDd02SItOI1NOdRZiOhpKkOYJrf8-35Lzbx1Bek4pTe6T0tIkYZIHR2mVCo9pTTT-TCVVdiiW-gcZjwnx6ObCv78es_I8-3vp5v75vHP3cPNr8dmEJ1eGtNxeAEpPTeSj147rxE7rtFwrqRiw-gqIjVIoU0nRy0Uc7w3XvUCAV-6M3K57p1zej1gWew-lAHrARHToVimocq9qvZ_UWXACNkJVVGxokNOpWQc7ZzD3uV3y8B-Zrc7u2a3n9ktKFuzV-161bBe_DdgtrUlxgF9yDgs1qfw_YIPIUSRpQ |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2021_117144 crossref_primary_10_1080_14484846_2021_2024340 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121860 crossref_primary_10_1016_j_ijthermalsci_2017_01_009 crossref_primary_10_1016_j_enconman_2018_11_060 crossref_primary_10_1016_j_expthermflusci_2018_04_018 crossref_primary_10_1002_fld_4222 crossref_primary_10_1016_j_enconman_2019_05_014 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_163 crossref_primary_10_1103_PhysRevFluids_4_103901 crossref_primary_10_1007_s10973_023_12115_2 crossref_primary_10_1016_j_applthermaleng_2019_114534 crossref_primary_10_1016_j_enconman_2016_04_028 crossref_primary_10_3390_app13106351 crossref_primary_10_1088_1742_6596_923_1_012022 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119814 crossref_primary_10_1016_j_energy_2016_05_061 crossref_primary_10_1016_j_applthermaleng_2020_115128 crossref_primary_10_1016_j_energy_2018_01_057 crossref_primary_10_1007_s00231_022_03227_w crossref_primary_10_1016_j_ijheatmasstransfer_2021_120930 crossref_primary_10_1016_j_rser_2018_04_042 crossref_primary_10_1016_j_expthermflusci_2019_109981 crossref_primary_10_1016_j_applthermaleng_2018_05_121 crossref_primary_10_1016_j_apenergy_2018_04_020 crossref_primary_10_1016_j_applthermaleng_2021_117334 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124327 crossref_primary_10_3390_aerospace10020179 crossref_primary_10_1016_j_ijft_2022_100278 crossref_primary_10_1016_j_applthermaleng_2022_118540 crossref_primary_10_1016_j_icheatmasstransfer_2017_08_005 crossref_primary_10_1016_j_rser_2021_110995 crossref_primary_10_1007_s11071_021_07188_3 crossref_primary_10_1016_j_enconman_2022_115548 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_092 crossref_primary_10_1016_j_applthermaleng_2020_115813 crossref_primary_10_1016_j_applthermaleng_2020_115678 crossref_primary_10_1299_mej_16_00160 crossref_primary_10_1016_j_cep_2018_09_017 crossref_primary_10_1016_j_ijthermalsci_2015_11_006 crossref_primary_10_1088_1361_6439_acf13b crossref_primary_10_1016_j_tsep_2023_101902 crossref_primary_10_1016_j_icheatmasstransfer_2021_105583 crossref_primary_10_3390_fluids9050107 |
Cites_doi | 10.1007/BF02982332 10.1080/01457630701677114 10.1016/j.ijheatmasstransfer.2011.10.006 10.1016/j.enbuild.2014.04.036 10.1016/S1290-0729(03)00100-5 10.1007/s10404-005-0061-8 10.1016/j.ijthermalsci.2008.04.004 10.1016/S1359-4311(03)00159-5 10.1016/S1359-4311(03)00168-6 10.1016/j.ijthermalsci.2013.07.025 10.1080/01457632.2011.556495 10.1016/j.applthermaleng.2013.09.041 10.1016/S0065-2717(08)70061-3 10.5098/fhp.v1.2.3003 10.1016/j.applthermaleng.2014.12.045 10.1016/j.ijheatmasstransfer.2010.06.011 10.1016/j.ijheatmasstransfer.2013.10.041 10.1016/j.ijmultiphaseflow.2014.04.009 10.1016/j.energy.2014.03.098 10.1016/j.ijthermalsci.2003.05.003 10.1016/S0017-9310(01)00203-4 10.1016/j.enpol.2008.08.016 10.1016/S1359-4311(01)00063-1 10.1016/j.ijheatmasstransfer.2005.02.034 10.1016/j.ijheatmasstransfer.2005.01.013 10.1109/6144.926386 10.1080/01457630701756173 10.1007/s00231-004-0535-3 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M |
DOI | 10.1016/j.energy.2015.07.119 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Environment Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 899 |
ExternalDocumentID | 10_1016_j_energy_2015_07_119 S0360544215010142 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AAHBH AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7ST C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M |
ID | FETCH-LOGICAL-c438t-9320b055d2952fd8ad8ee328e9227571cfa932580548935f8471a269d764e0eb3 |
ISSN | 0360-5442 |
IngestDate | Fri Oct 25 04:17:06 EDT 2024 Fri Oct 25 07:08:54 EDT 2024 Fri Nov 22 00:14:56 EST 2024 Fri Feb 23 02:20:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-phase flow oscillations Time-frequency analysis Spring-mass-damper system Time-strip technique CLPHP (closed loop pulsating heat pipes) |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-9320b055d2952fd8ad8ee328e9227571cfa932580548935f8471a269d764e0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1790945347 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1808056789 proquest_miscellaneous_1790945347 crossref_primary_10_1016_j_energy_2015_07_119 elsevier_sciencedirect_doi_10_1016_j_energy_2015_07_119 |
PublicationCentury | 2000 |
PublicationDate | October 2015 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Khandekar, Gautam, Sharma (bib24) 2009; 48 Giovagnoni (bib46) 2001 Charoensawan, Khandekar, Groll, Terdtoon (bib11) 2003; 23 Tong, Wong, Ooi (bib12) 2001; 21 Kim, Bui, Jung, Lee (bib28) 2003; 17 Sakulchangsatjatai, Chareonsawan, Waowaew, Terdtoon, Murakami (bib39) 2008; 29 Beitelmal, Fabris (bib7) 2014; 80 Zhang, Faghri (bib42) 2002; 45 Spinato, Borhani, d'Entremont, Thome (bib16) 2015; 78 Khandekar, Panigrahi, Lefèvre, Bonjour (bib43) 2010; 1 Cheng, Ma (bib34) 2011; 32 Cai, Chen, Asfia (bib30) 2006; 128 Kline, McClintock (bib45) 1953 Karthikeyan, Khandekar, Pillai, Sharma (bib19) 2014; 62 Kim, Bui, Jung, Lee (bib25) 2003; 17 Zuo, North, Ray (bib38) 1999; 36 Shafiee, Topal (bib4) 2009; 37 Daimaru, Yoshida, Nagai, Okamoto, Ando, Sugita (bib27) 2014 Das, Lefévre, Bonjour, Khandekar (bib23) 2010 Dobson, Harms (bib35) 1999 Mameli, Khandekar, Marengo (bib20) 2014; 75 Zhang, Faghri (bib10) 2008; 29 Khandekar, Charoensawan, Groll, Terdtoon (bib17) 2003; 23 Commission of the European Communities (bib2) 2007 Akachi, H. Structure of a Heat Pipe. US Patent 4,921,041, Google Patents (1990). Shafii, Faghri, Zhang (bib41) 2001; 123 Khandekar, Groll (bib13) 2003 Mameli, Marengo, Zinna (bib31) 2012; 55 Khandekar, Groll (bib14) 2004; 43 Peng, Pai, Ma (bib33) 2014; 69 Borhani, Thome (bib44) 2014; 67 Japikse (bib8) 1973; 9 Dobson (bib36) 2004; 43 Commission of the European Communities (bib1) 2007 Borhani, Agostini, Thome (bib21) 2010; 53 (bib3) 2014 McKinsey (bib6) 2008 Wong, Tong, Lim, Ooi (bib37) 1999 Xu, Li, Wong (bib18) 2005; 48 Nine, Tanshen, Munkhbayar, Chung, Jeong (bib32) 2014; 70 Spinato, Borhani, d'Entremont, Thome (bib47) 2014 Ma, Hanlon, Chen (bib29) 2005; 2 Holley, Faghri (bib40) 2005; 48 Das, Lefèvre, Khandekar, Bonjour (bib22) 2011 Zuo, North, Wert (bib26) 2001; 24 Xu, Zhang (bib15) 2005; 41 Dijkstra (bib5) 2012 Giovagnoni (10.1016/j.energy.2015.07.119_bib46) 2001 Khandekar (10.1016/j.energy.2015.07.119_bib17) 2003; 23 Das (10.1016/j.energy.2015.07.119_bib22) 2011 Xu (10.1016/j.energy.2015.07.119_bib18) 2005; 48 Kim (10.1016/j.energy.2015.07.119_bib28) 2003; 17 Mameli (10.1016/j.energy.2015.07.119_bib20) 2014; 75 Commission of the European Communities (10.1016/j.energy.2015.07.119_bib1) 2007 Beitelmal (10.1016/j.energy.2015.07.119_bib7) 2014; 80 Zhang (10.1016/j.energy.2015.07.119_bib42) 2002; 45 Zhang (10.1016/j.energy.2015.07.119_bib10) 2008; 29 Zuo (10.1016/j.energy.2015.07.119_bib38) 1999; 36 Khandekar (10.1016/j.energy.2015.07.119_bib43) 2010; 1 Spinato (10.1016/j.energy.2015.07.119_bib47) 2014 Shafiee (10.1016/j.energy.2015.07.119_bib4) 2009; 37 Holley (10.1016/j.energy.2015.07.119_bib40) 2005; 48 Sakulchangsatjatai (10.1016/j.energy.2015.07.119_bib39) 2008; 29 Daimaru (10.1016/j.energy.2015.07.119_bib27) 2014 Ma (10.1016/j.energy.2015.07.119_bib29) 2005; 2 Borhani (10.1016/j.energy.2015.07.119_bib44) 2014; 67 Khandekar (10.1016/j.energy.2015.07.119_bib24) 2009; 48 Zuo (10.1016/j.energy.2015.07.119_bib26) 2001; 24 (10.1016/j.energy.2015.07.119_bib3) 2014 Xu (10.1016/j.energy.2015.07.119_bib15) 2005; 41 Cheng (10.1016/j.energy.2015.07.119_bib34) 2011; 32 Kline (10.1016/j.energy.2015.07.119_bib45) 1953 10.1016/j.energy.2015.07.119_bib9 Charoensawan (10.1016/j.energy.2015.07.119_bib11) 2003; 23 Wong (10.1016/j.energy.2015.07.119_bib37) 1999 Tong (10.1016/j.energy.2015.07.119_bib12) 2001; 21 Peng (10.1016/j.energy.2015.07.119_bib33) 2014; 69 Dobson (10.1016/j.energy.2015.07.119_bib35) 1999 Das (10.1016/j.energy.2015.07.119_bib23) 2010 Khandekar (10.1016/j.energy.2015.07.119_bib13) 2003 McKinsey (10.1016/j.energy.2015.07.119_bib6) 2008 Commission of the European Communities (10.1016/j.energy.2015.07.119_bib2) 2007 Borhani (10.1016/j.energy.2015.07.119_bib21) 2010; 53 Karthikeyan (10.1016/j.energy.2015.07.119_bib19) 2014; 62 Mameli (10.1016/j.energy.2015.07.119_bib31) 2012; 55 Shafii (10.1016/j.energy.2015.07.119_bib41) 2001; 123 Dijkstra (10.1016/j.energy.2015.07.119_bib5) 2012 Kim (10.1016/j.energy.2015.07.119_bib25) 2003; 17 Cai (10.1016/j.energy.2015.07.119_bib30) 2006; 128 Spinato (10.1016/j.energy.2015.07.119_bib16) 2015; 78 Dobson (10.1016/j.energy.2015.07.119_bib36) 2004; 43 Japikse (10.1016/j.energy.2015.07.119_bib8) 1973; 9 Khandekar (10.1016/j.energy.2015.07.119_bib14) 2004; 43 Nine (10.1016/j.energy.2015.07.119_bib32) 2014; 70 |
References_xml | – year: 2007 ident: bib1 article-title: Limiting Global Climate Change to 2 Degrees Celsius - the Way Ahead for 2020 and Beyond, COM contributor: fullname: Commission of the European Communities – volume: 21 start-page: 1845 year: 2001 end-page: 1862 ident: bib12 article-title: Closed-loop pulsating heat pipe publication-title: Appl Therm Eng contributor: fullname: Ooi – volume: 78 start-page: 364 year: 2015 end-page: 372 ident: bib16 article-title: Time-strip visualization and thermo-hydrodynamics in a closed loop pulsating heat pipe publication-title: Appl Therm Eng contributor: fullname: Thome – volume: 17 start-page: 1533 year: 2003 end-page: 1542 ident: bib25 article-title: The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe publication-title: KSME Int J contributor: fullname: Lee – year: 2014 ident: bib27 article-title: Mathematical modeling and experimantal validation of oscillating heat pipes publication-title: 44th International Conference on Environmental system, 13-17 July, 2014 Tuscon, Arizona contributor: fullname: Sugita – year: 2008 ident: bib6 article-title: The carbon impacts and opportunities of information and communications contributor: fullname: McKinsey – volume: 24 start-page: 220 year: 2001 end-page: 225 ident: bib26 article-title: High heat flux heat pipe mechanism for cooling of electronics publication-title: IEEE Trans Comp Packag Technol contributor: fullname: Wert – volume: 23 start-page: 2021 year: 2003 end-page: 2033 ident: bib17 article-title: Closed loop pulsating heat pipes part B: visualization and semi-empirical modeling publication-title: Appl Therm Eng contributor: fullname: Terdtoon – volume: 9 start-page: 1 year: 1973 end-page: 111 ident: bib8 article-title: Advanced in thermosyphon technology publication-title: Adv Heat Transf contributor: fullname: Japikse – start-page: 361 year: 1999 end-page: 366 ident: bib35 article-title: Lumped parameter analysis of closed and open oscillatory heat pipe publication-title: 11th International heat pipe Conference Tokyo, Japan contributor: fullname: Harms – year: 2001 ident: bib46 article-title: Analisi Delle Vibrazioni Nei Sistemi Meccanici contributor: fullname: Giovagnoni – volume: 69 start-page: 424 year: 2014 end-page: 437 ident: bib33 article-title: Nonlinear thermomechanical finite-element modeling, analysis and characterizaion of multi-turn oscillating heat pipes publication-title: Int J Heat Mass Transf contributor: fullname: Ma – year: 2003 ident: bib13 article-title: On the definition of pulsating heat pipes: an overview publication-title: 5th Minsk International Seminar (heat pipes, heat pumps and refrigerators), Minsk, Belarus contributor: fullname: Groll – volume: 70 start-page: 135 year: 2014 end-page: 142 ident: bib32 article-title: Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe publication-title: Energy contributor: fullname: Jeong – volume: 45 start-page: 755 year: 2002 end-page: 764 ident: bib42 article-title: Heat transfer in a pulsating heat pipe with open end publication-title: Int J Heat Mass Transf contributor: fullname: Faghri – volume: 48 start-page: 2635 year: 2005 end-page: 2651 ident: bib40 article-title: Analysis of pulsating heat pipe with capillary wick and varying channel diameter publication-title: Int J Heat Mass Transf contributor: fullname: Faghri – volume: 23 start-page: 2009 year: 2003 end-page: 2020 ident: bib11 article-title: Closed loop pulsating heat pipes part A: parametric experimental investigations publication-title: Appl Therm Eng contributor: fullname: Terdtoon – volume: 43 start-page: 13 year: 2004 end-page: 20 ident: bib14 article-title: An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes publication-title: Int J Therm Sci contributor: fullname: Groll – start-page: 378 year: 1999 end-page: 392 ident: bib37 article-title: Theoretical modeling of pulsating heat pipes publication-title: 11th, International heat pipe conference Tokyo, Japan contributor: fullname: Ooi – volume: 75 start-page: 140 year: 2014 end-page: 152 ident: bib20 article-title: Local heat transfer measurements and thermo-fluid characterization of a pulsating heat pipe publication-title: Int J Therm Sci contributor: fullname: Marengo – volume: 29 start-page: 20 year: 2008 end-page: 44 ident: bib10 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Trans Eng contributor: fullname: Faghri – volume: 48 start-page: 3338 year: 2005 end-page: 3351 ident: bib18 article-title: High speed flow visualization of a closed loop pulsating heat pipe publication-title: Int J Heat Mass Trans contributor: fullname: Wong – volume: 2 start-page: 171 year: 2005 end-page: 179 ident: bib29 article-title: An investigation of oscillating motions in a miniature pulsating heat pipe publication-title: Microfluid Nanofluidics contributor: fullname: Chen – volume: 29 start-page: 239 year: 2008 end-page: 254 ident: bib39 article-title: Mathematical modeling of closed-end pulsating heat pipes operating with a bottom heat mode publication-title: Heat Transf Eng contributor: fullname: Murakami – volume: 17 start-page: 1533 year: 2003 end-page: 1542 ident: bib28 article-title: The study of pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe publication-title: KSME Int J contributor: fullname: Lee – year: 2010 ident: bib23 article-title: Parametric study of a two-phase oscillating flow in a capillary tube publication-title: 15th IHPC contributor: fullname: Khandekar – year: 2012 ident: bib5 article-title: Power markets, power prices & data centers contributor: fullname: Dijkstra – volume: 43 start-page: 113 year: 2004 end-page: 119 ident: bib36 article-title: Theoretical and experimental modelling of an open oscillatory heat pipe including gravity publication-title: Int J Therm Sci contributor: fullname: Dobson – start-page: 1 year: 2011 end-page: 6 ident: bib22 article-title: Thermally induced oscillatory two-phase flow in a mini-channel towards understanding pulsating heat pipes publication-title: 9th International Conference on nanochannels, microchannels, and minichannels contributor: fullname: Bonjour – volume: 62 start-page: 470 year: 2014 end-page: 480 ident: bib19 article-title: Infrared thermography of a pulsating heat pipe: flow regimes and multiple quasi steady states publication-title: Appl Therm Eng contributor: fullname: Sharma – volume: 123 start-page: 1159 year: 2001 ident: bib41 article-title: Thermal modeling of unlooped and looped pulsating heat pipes publication-title: J Heat Transf contributor: fullname: Zhang – start-page: 3 year: 1953 end-page: 8 ident: bib45 article-title: Describing uncertainties in single sample experiments publication-title: Mech Eng contributor: fullname: McClintock – volume: 80 start-page: 562 year: 2014 end-page: 569 ident: bib7 article-title: Servers and data centers energy performance metrics publication-title: Energy Build contributor: fullname: Fabris – year: 2014 ident: bib3 publication-title: Nuclear power in Germany – volume: 48 start-page: 535 year: 2009 end-page: 546 ident: bib24 article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe publication-title: Int J Therm Sci contributor: fullname: Sharma – volume: 32 start-page: 1037 year: 2011 end-page: 1046 ident: bib34 article-title: A mathematical model of an oscillating heat pipe publication-title: Heat Transf Eng contributor: fullname: Ma – volume: 37 start-page: 181 year: 2009 end-page: 189 ident: bib4 article-title: When will fossil fuel reserves be dimished? publication-title: Energy Policy contributor: fullname: Topal – volume: 55 start-page: 1036 year: 2012 end-page: 1047 ident: bib31 article-title: Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings publication-title: Int J Heat Mass Transf contributor: fullname: Zinna – volume: 67 start-page: 144 year: 2014 end-page: 152 ident: bib44 article-title: Intermittent dewetting and dryout of annular flows publication-title: Int J Multiph Flow contributor: fullname: Thome – volume: 41 start-page: 685 year: 2005 end-page: 694 ident: bib15 article-title: Start-up and steady Thermal oscillation of a pulsating heat pipe publication-title: Heat Mass Trans contributor: fullname: Zhang – year: 2007 ident: bib2 article-title: An Energy Policy for Europe, COM contributor: fullname: Commission of the European Communities – volume: 36 start-page: 237 year: 1999 end-page: 243 ident: bib38 article-title: Combined pulsating and capillary heat pipe mechanism for cooling of high heat flux electronics publication-title: Am Soc Mech Eng contributor: fullname: Ray – volume: 1 start-page: 1 year: 2010 end-page: 20 ident: bib43 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Front Heat Pipes contributor: fullname: Bonjour – volume: 128 start-page: 1329 year: 2006 end-page: 1334 ident: bib30 article-title: Operating characteristic investigations in pulsating heat pipe publication-title: J Heat Transf contributor: fullname: Asfia – volume: 53 start-page: 4809 year: 2010 end-page: 4818 ident: bib21 article-title: A novel time strip flow visualisation technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel evaporator publication-title: Int J Heat Mass Trans contributor: fullname: Thome – year: 2014 ident: bib47 article-title: Time-Strip Flow Visualization of Flow Patterns in a Closed Loop Pulsating Heat Pipe publication-title: 5th International Conference on heat transfer and fluid flow in microscale Marseille, France contributor: fullname: Thome – volume: 17 start-page: 1533 year: 2003 ident: 10.1016/j.energy.2015.07.119_bib25 article-title: The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe publication-title: KSME Int J doi: 10.1007/BF02982332 contributor: fullname: Kim – volume: 29 start-page: 20 year: 2008 ident: 10.1016/j.energy.2015.07.119_bib10 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Trans Eng doi: 10.1080/01457630701677114 contributor: fullname: Zhang – year: 2007 ident: 10.1016/j.energy.2015.07.119_bib2 contributor: fullname: Commission of the European Communities – year: 2010 ident: 10.1016/j.energy.2015.07.119_bib23 article-title: Parametric study of a two-phase oscillating flow in a capillary tube contributor: fullname: Das – start-page: 1 year: 2011 ident: 10.1016/j.energy.2015.07.119_bib22 article-title: Thermally induced oscillatory two-phase flow in a mini-channel towards understanding pulsating heat pipes contributor: fullname: Das – volume: 55 start-page: 1036 year: 2012 ident: 10.1016/j.energy.2015.07.119_bib31 article-title: Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.10.006 contributor: fullname: Mameli – volume: 80 start-page: 562 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib7 article-title: Servers and data centers energy performance metrics publication-title: Energy Build doi: 10.1016/j.enbuild.2014.04.036 contributor: fullname: Beitelmal – volume: 43 start-page: 13 year: 2004 ident: 10.1016/j.energy.2015.07.119_bib14 article-title: An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes publication-title: Int J Therm Sci doi: 10.1016/S1290-0729(03)00100-5 contributor: fullname: Khandekar – volume: 2 start-page: 171 year: 2005 ident: 10.1016/j.energy.2015.07.119_bib29 article-title: An investigation of oscillating motions in a miniature pulsating heat pipe publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-005-0061-8 contributor: fullname: Ma – year: 2008 ident: 10.1016/j.energy.2015.07.119_bib6 contributor: fullname: McKinsey – volume: 48 start-page: 535 year: 2009 ident: 10.1016/j.energy.2015.07.119_bib24 article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2008.04.004 contributor: fullname: Khandekar – volume: 23 start-page: 2009 year: 2003 ident: 10.1016/j.energy.2015.07.119_bib11 article-title: Closed loop pulsating heat pipes part A: parametric experimental investigations publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(03)00159-5 contributor: fullname: Charoensawan – year: 2014 ident: 10.1016/j.energy.2015.07.119_bib27 article-title: Mathematical modeling and experimantal validation of oscillating heat pipes contributor: fullname: Daimaru – volume: 23 start-page: 2021 year: 2003 ident: 10.1016/j.energy.2015.07.119_bib17 article-title: Closed loop pulsating heat pipes part B: visualization and semi-empirical modeling publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(03)00168-6 contributor: fullname: Khandekar – volume: 75 start-page: 140 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib20 article-title: Local heat transfer measurements and thermo-fluid characterization of a pulsating heat pipe publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.07.025 contributor: fullname: Mameli – start-page: 378 year: 1999 ident: 10.1016/j.energy.2015.07.119_bib37 article-title: Theoretical modeling of pulsating heat pipes contributor: fullname: Wong – volume: 32 start-page: 1037 year: 2011 ident: 10.1016/j.energy.2015.07.119_bib34 article-title: A mathematical model of an oscillating heat pipe publication-title: Heat Transf Eng doi: 10.1080/01457632.2011.556495 contributor: fullname: Cheng – volume: 62 start-page: 470 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib19 article-title: Infrared thermography of a pulsating heat pipe: flow regimes and multiple quasi steady states publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.09.041 contributor: fullname: Karthikeyan – volume: 9 start-page: 1 year: 1973 ident: 10.1016/j.energy.2015.07.119_bib8 article-title: Advanced in thermosyphon technology publication-title: Adv Heat Transf doi: 10.1016/S0065-2717(08)70061-3 contributor: fullname: Japikse – volume: 17 start-page: 1533 year: 2003 ident: 10.1016/j.energy.2015.07.119_bib28 article-title: The study of pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe publication-title: KSME Int J doi: 10.1007/BF02982332 contributor: fullname: Kim – year: 2014 ident: 10.1016/j.energy.2015.07.119_bib47 article-title: Time-Strip Flow Visualization of Flow Patterns in a Closed Loop Pulsating Heat Pipe contributor: fullname: Spinato – volume: 1 start-page: 1 year: 2010 ident: 10.1016/j.energy.2015.07.119_bib43 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Front Heat Pipes doi: 10.5098/fhp.v1.2.3003 contributor: fullname: Khandekar – start-page: 3 year: 1953 ident: 10.1016/j.energy.2015.07.119_bib45 article-title: Describing uncertainties in single sample experiments publication-title: Mech Eng contributor: fullname: Kline – volume: 78 start-page: 364 year: 2015 ident: 10.1016/j.energy.2015.07.119_bib16 article-title: Time-strip visualization and thermo-hydrodynamics in a closed loop pulsating heat pipe publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.12.045 contributor: fullname: Spinato – year: 2003 ident: 10.1016/j.energy.2015.07.119_bib13 article-title: On the definition of pulsating heat pipes: an overview contributor: fullname: Khandekar – volume: 53 start-page: 4809 year: 2010 ident: 10.1016/j.energy.2015.07.119_bib21 article-title: A novel time strip flow visualisation technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel evaporator publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2010.06.011 contributor: fullname: Borhani – start-page: 361 year: 1999 ident: 10.1016/j.energy.2015.07.119_bib35 article-title: Lumped parameter analysis of closed and open oscillatory heat pipe contributor: fullname: Dobson – volume: 69 start-page: 424 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib33 article-title: Nonlinear thermomechanical finite-element modeling, analysis and characterizaion of multi-turn oscillating heat pipes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.10.041 contributor: fullname: Peng – volume: 67 start-page: 144 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib44 article-title: Intermittent dewetting and dryout of annular flows publication-title: Int J Multiph Flow doi: 10.1016/j.ijmultiphaseflow.2014.04.009 contributor: fullname: Borhani – ident: 10.1016/j.energy.2015.07.119_bib9 – volume: 70 start-page: 135 year: 2014 ident: 10.1016/j.energy.2015.07.119_bib32 article-title: Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe publication-title: Energy doi: 10.1016/j.energy.2014.03.098 contributor: fullname: Nine – volume: 43 start-page: 113 year: 2004 ident: 10.1016/j.energy.2015.07.119_bib36 article-title: Theoretical and experimental modelling of an open oscillatory heat pipe including gravity publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2003.05.003 contributor: fullname: Dobson – volume: 36 start-page: 237 year: 1999 ident: 10.1016/j.energy.2015.07.119_bib38 article-title: Combined pulsating and capillary heat pipe mechanism for cooling of high heat flux electronics publication-title: Am Soc Mech Eng contributor: fullname: Zuo – volume: 45 start-page: 755 year: 2002 ident: 10.1016/j.energy.2015.07.119_bib42 article-title: Heat transfer in a pulsating heat pipe with open end publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(01)00203-4 contributor: fullname: Zhang – year: 2007 ident: 10.1016/j.energy.2015.07.119_bib1 contributor: fullname: Commission of the European Communities – year: 2014 ident: 10.1016/j.energy.2015.07.119_bib3 – year: 2012 ident: 10.1016/j.energy.2015.07.119_bib5 contributor: fullname: Dijkstra – volume: 37 start-page: 181 year: 2009 ident: 10.1016/j.energy.2015.07.119_bib4 article-title: When will fossil fuel reserves be dimished? publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.016 contributor: fullname: Shafiee – volume: 21 start-page: 1845 year: 2001 ident: 10.1016/j.energy.2015.07.119_bib12 article-title: Closed-loop pulsating heat pipe publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(01)00063-1 contributor: fullname: Tong – volume: 123 start-page: 1159 year: 2001 ident: 10.1016/j.energy.2015.07.119_bib41 article-title: Thermal modeling of unlooped and looped pulsating heat pipes publication-title: J Heat Transf contributor: fullname: Shafii – volume: 48 start-page: 3338 year: 2005 ident: 10.1016/j.energy.2015.07.119_bib18 article-title: High speed flow visualization of a closed loop pulsating heat pipe publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2005.02.034 contributor: fullname: Xu – volume: 48 start-page: 2635 year: 2005 ident: 10.1016/j.energy.2015.07.119_bib40 article-title: Analysis of pulsating heat pipe with capillary wick and varying channel diameter publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.01.013 contributor: fullname: Holley – year: 2001 ident: 10.1016/j.energy.2015.07.119_bib46 contributor: fullname: Giovagnoni – volume: 24 start-page: 220 year: 2001 ident: 10.1016/j.energy.2015.07.119_bib26 article-title: High heat flux heat pipe mechanism for cooling of electronics publication-title: IEEE Trans Comp Packag Technol doi: 10.1109/6144.926386 contributor: fullname: Zuo – volume: 29 start-page: 239 year: 2008 ident: 10.1016/j.energy.2015.07.119_bib39 article-title: Mathematical modeling of closed-end pulsating heat pipes operating with a bottom heat mode publication-title: Heat Transf Eng doi: 10.1080/01457630701756173 contributor: fullname: Sakulchangsatjatai – volume: 128 start-page: 1329 year: 2006 ident: 10.1016/j.energy.2015.07.119_bib30 article-title: Operating characteristic investigations in pulsating heat pipe publication-title: J Heat Transf contributor: fullname: Cai – volume: 41 start-page: 685 year: 2005 ident: 10.1016/j.energy.2015.07.119_bib15 article-title: Start-up and steady Thermal oscillation of a pulsating heat pipe publication-title: Heat Mass Trans doi: 10.1007/s00231-004-0535-3 contributor: fullname: Xu |
SSID | ssj0005899 |
Score | 2.4231355 |
Snippet | In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 889 |
SubjectTerms | Channels Circulation CLPHP (closed loop pulsating heat pipes) Devices Dynamical systems Dynamics Heat pipes Oscillating Spring-mass-damper system Thermal management Time-frequency analysis Time-strip technique Two-phase flow oscillations |
Title | Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe |
URI | https://dx.doi.org/10.1016/j.energy.2015.07.119 https://search.proquest.com/docview/1790945347 https://search.proquest.com/docview/1808056789 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagPcAFQaGiQJGRuEWusom9sY8VDRQOHNhW6s1yEoemipKoadT-_M7EeTRUPCUu0crrrLOez-Px5JsZQt4LaTIRZLDScp4wnnEs85L6LMlSKUwY8rVBP-TxJvp6Jo9iHs9v8Oe2_yppaANZY-TsX0h7-lFogM8gc7iC1OH6R3I_XUSroFnZ2jJnrQuUAvMSs1eWyIDDr69r1pzDRublZX3tuZI-6ALBkMm6hd5lXTde05WtuwFVt9cUzYJAFLv4QUxceuO48pN3YdMUlekrNXmfiq4s5uN_fXnuykmBgp9o9Y6gYkeOsPft4K5XYiUmftvgKhvDZWZukgvR8pngfKF-XbXQQX9KV09o3Ipd7aR7Wt45HC4ObP_3kJ8nMAPralC-y_zZGxwVBwXTFwsTw369HYBWAqW4ffg5PvsyM4JkX250esox0rKnA94f62eWzA97em-onDwlT4YTBj100HhGHthqhzwaA9DbHbIbz8GN0HHQ7u1z8n2BHQrYoUvs0DvYoRN2KGKHOuzQoqKGOuxQxA6dsEMROxSx84KcfoxPPhyzoRAHS3korxjY-H7iC5EFSgR5BstbWhsG0qogiES0SnMDXYSEaQbzV-Ro8ZhgrbJoza1vk3CXbFV1ZV8SCvurSk2okkSteR4lRgoRZUkuhExXRgV7hI2TqhuXb0WPRMQL7YSgUQjaj-D0qvZINM68HmxGZwtqAMtv7nw3CkqDSsX3ZKaydddqTFqnuAh59Is-mI9VgKWnXv3zE7wmj-el84ZsXV12dp88bLPu7QDNW59kqsY |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+self-sustained+oscillating+two-phase+flow+motion+in+a+closed+loop+pulsating+heat+pipe&rft.jtitle=Energy+%28Oxford%29&rft.au=Spinato%2C+Giulia&rft.au=Borhani%2C+Navid&rft.au=Thome%2C+John+R.&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=90&rft.spage=889&rft.epage=899&rft_id=info:doi/10.1016%2Fj.energy.2015.07.119&rft.externalDocID=S0360544215010142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |