The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment
Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant...
Saved in:
Published in: | Medical & biological engineering & computing Vol. 57; no. 3; pp. 677 - 687 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-03-2019
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (
P
value < 0.001) and fundus image alone (
P
value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (
P
value = 0.002) and deep belief network algorithms (
P
value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis.
Graphical abstract
The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image. |
---|---|
AbstractList | Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891-0.921) and 82.6% (81.0-84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900-0.928) and 83.5% (81.8-85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956-0.979) and 90.5% (89.2-91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value < 0.001) and fundus image alone (P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan's multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image. Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891-0.921) and 82.6% (81.0-84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900-0.928) and 83.5% (81.8-85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956-0.979) and 90.5% (89.2-91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value < 0.001) and fundus image alone (P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan's multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image. Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone ( P value < 0.001) and fundus image alone ( P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine ( P value = 0.002) and deep belief network algorithms ( P value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image. Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value < 0.001) and fundus image alone (P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. |
Author | Selvaperumal, Sundaramoorthy Yoo, Tae Keun Ramasubramanian, Bhoopalan Choi, Joon Yul Seo, Jeong Gi Kim, Deok Won |
Author_xml | – sequence: 1 givenname: Tae Keun orcidid: 0000-0003-0890-8614 surname: Yoo fullname: Yoo, Tae Keun email: eyetaekeunyoo@gmail.com organization: Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine – sequence: 2 givenname: Joon Yul surname: Choi fullname: Choi, Joon Yul organization: Department of Electrical and Computer Engineering, Seoul National University – sequence: 3 givenname: Jeong Gi surname: Seo fullname: Seo, Jeong Gi organization: Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine – sequence: 4 givenname: Bhoopalan surname: Ramasubramanian fullname: Ramasubramanian, Bhoopalan organization: Department of Electronics and Communication Engineering, Syed Ammal Engineering College – sequence: 5 givenname: Sundaramoorthy surname: Selvaperumal fullname: Selvaperumal, Sundaramoorthy organization: Department of Electronics and Communication Engineering, Syed Ammal Engineering College – sequence: 6 givenname: Deok Won surname: Kim fullname: Kim, Deok Won organization: Department of Medical Engineering Seoul, South Korea, Yonsei University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30349958$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctu1TAQhi1URE8LD8AGWWLDJuBJnBs7dEQLUqVuDuvIscfBVWIHO0G0b8UbMjmngITEyvbM98_F_wU788EjYy9BvAUh6ncJoIQ6E9Bk0EKZPTxhO6glZEJKecZ2AqSgLDTn7CKlOyFyKHP5jJ0XopBtWzY79vPwFfkcUnK9G91yz4PlC4V0mHrn1eKC30K3-wNX3nC7erMm7iY1YOI2RLrOMXx3fjjKjFODD2lxmiut16j0saJBnPmIKvoN3GSkzyKOakHDJ6XXUUWiBvQYj03fc8VnAtxEU8R7jj9mjG5CvzxnT60aE754PC_Zl6uPh_2n7Ob2-vP-w02mZdEsGWghja5laStZoJFoq7JRom9sXsu-B2l1WxnAAortWdiKvqeUte1LNNbI4pK9OdWl_b6tmJZucknjOCqPYU1dDnWb5xLqnNDX_6B3YY2epiMqL9pWQFURBSdKR_rviLabaSNargPRbX52Jz878rPb_OweSPPqsfLaT2j-KH4bSEB-AhKl_IDxb-v_V_0FsjWwxQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0284060 crossref_primary_10_3390_healthcare11152228 crossref_primary_10_1080_1206212X_2023_2286032 crossref_primary_10_1007_s00347_020_01210_6 crossref_primary_10_3390_app12146872 crossref_primary_10_1007_s11042_024_18553_w crossref_primary_10_1002_mp_15541 crossref_primary_10_1109_TMI_2021_3059956 crossref_primary_10_1111_aos_14928 crossref_primary_10_1007_s00417_022_05738_y crossref_primary_10_1007_s00417_020_04709_5 crossref_primary_10_1016_j_pdpdt_2023_103629 crossref_primary_10_1016_j_cmpb_2020_105761 crossref_primary_10_1016_j_cmpb_2021_106294 crossref_primary_10_1055_a_1232_3629 crossref_primary_10_1088_1361_6560_ad0520 crossref_primary_10_1186_s12886_024_03381_1 crossref_primary_10_1016_j_bspc_2022_103619 crossref_primary_10_1038_s41598_023_38610_y crossref_primary_10_1166_jmihi_2021_3906 crossref_primary_10_1007_s11517_020_02154_4 crossref_primary_10_1155_2020_7493419 crossref_primary_10_1093_jamia_ocaa302 crossref_primary_10_1109_TMI_2024_3352602 crossref_primary_10_1016_j_iswa_2024_200334 crossref_primary_10_1093_dmfr_twad003 crossref_primary_10_1016_j_neucom_2022_07_070 crossref_primary_10_3390_bios12070542 crossref_primary_10_1097_01_APO_0000656984_56467_2c crossref_primary_10_52538_iduhes_1339320 crossref_primary_10_3928_23258160_20220817_01 crossref_primary_10_1364_BOE_435124 crossref_primary_10_4015_S1016237221500368 crossref_primary_10_1364_BOE_516764 crossref_primary_10_1371_journal_pone_0231322 crossref_primary_10_1111_jmi_13152 crossref_primary_10_1007_s11517_021_02469_w crossref_primary_10_1016_j_preteyeres_2021_101034 crossref_primary_10_1016_j_media_2024_103214 crossref_primary_10_4015_S1016237221500290 crossref_primary_10_1109_ACCESS_2020_3032348 crossref_primary_10_1136_bjophthalmol_2020_315817 crossref_primary_10_3390_s23156706 crossref_primary_10_7717_peerj_8668 crossref_primary_10_1016_j_compbiomed_2020_103628 crossref_primary_10_1038_s41433_021_01540_y crossref_primary_10_1007_s11517_020_02127_7 crossref_primary_10_18287_2412_6179_CO_892 crossref_primary_10_1016_j_compbiomed_2020_103666 crossref_primary_10_1007_s11831_023_09927_8 crossref_primary_10_1016_j_bbe_2022_05_005 crossref_primary_10_1007_s11042_023_16835_3 crossref_primary_10_1167_tvst_9_2_22 crossref_primary_10_1016_j_compbiomed_2020_103980 crossref_primary_10_1097_OPX_0000000000001845 crossref_primary_10_1109_JBHI_2022_3171523 crossref_primary_10_1007_s11517_021_02321_1 crossref_primary_10_1016_j_eclinm_2021_100875 crossref_primary_10_1080_08820538_2021_1889617 crossref_primary_10_1080_08164622_2022_2111201 crossref_primary_10_3389_fninf_2022_876927 crossref_primary_10_1167_tvst_10_6_32 crossref_primary_10_1038_s41598_023_35197_2 crossref_primary_10_1167_tvst_10_6_30 crossref_primary_10_3390_diagnostics12020532 crossref_primary_10_1007_s10278_024_01105_x crossref_primary_10_1109_ACCESS_2022_3178372 crossref_primary_10_4015_S1016237222500375 crossref_primary_10_1016_j_compbiomed_2022_105319 crossref_primary_10_1109_TIM_2021_3122172 crossref_primary_10_1007_s10792_024_03072_2 crossref_primary_10_1167_tvst_9_2_8 crossref_primary_10_1007_s00417_022_05919_9 crossref_primary_10_2196_28868 crossref_primary_10_1097_IAE_0000000000003325 crossref_primary_10_1167_tvst_9_2_56 crossref_primary_10_1177_2474126420914168 crossref_primary_10_1136_bjophthalmol_2021_318844 crossref_primary_10_1016_j_bspc_2021_102538 crossref_primary_10_1016_j_bspc_2021_102858 crossref_primary_10_1016_j_compbiomed_2022_106283 crossref_primary_10_1007_s00500_023_08862_x crossref_primary_10_3390_life12030454 crossref_primary_10_1097_IIO_0000000000000519 crossref_primary_10_1109_LSP_2021_3057548 |
Cites_doi | 10.1016/j.ophtha.2012.10.036 10.1016/j.cell.2018.02.010 10.1038/eye.2015.44 10.1016/j.oret.2016.12.009 10.2307/2531595 10.1007/s00417-017-3839-y 10.1002/sim.2993 10.1016/S0031-3203(96)00142-2 10.1001/jamaophthalmol.2017.3782 10.1364/BOE.8.000579 10.1155/2013/385915 10.1016/j.ajo.2006.10.004 10.1371/journal.pone.0187336 10.1016/j.ophtha.2014.07.055 10.1167/iovs.17-22721 10.3174/ajnr.A3352 10.1016/j.ophtha.2018.02.037 10.1364/BOE.8.002732 10.1016/j.eswa.2009.11.040 10.1001/archopht.123.2.200 10.1023/A:1010920819831 10.1001/jama.2016.17216 10.1093/bioinformatics/bti033 10.1016/j.compbiomed.2017.01.018 10.1007/s00417-017-3850-3 10.1167/17.12.5 10.1016/S2214-109X(13)70145-1 10.1093/bioinformatics/btt234 10.1002/sim.4238 10.1186/1472-6947-13-106 10.1097/IAE.0000000000000471 10.1148/radiol.2493072045 10.1016/j.neuroimage.2011.09.069 10.1364/OE.18.021293 10.1016/j.neuroimage.2014.04.056 10.1023/A:1010933404324 10.1007/978-3-319-62416-7_28 10.1007/s10792-018-0940-0 10.1137/1.9781611972719.16 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2018 Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2018 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved. |
DBID | NPM AAYXX CITATION 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-018-1915-z |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database (ProQuest) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medicine (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Business Collection (Alumni Edition) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 687 |
ExternalDocumentID | 10_1007_s11517_018_1915_z 30349958 |
Genre | Journal Article |
GroupedDBID | --- -4W -5B -5G -BR -EM -~C -~X .4S .86 .DC .VR 04C 06D 0R~ 0VY 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 40D 40E 5GY 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARTL AATNV AATVU AAUYE AAWCG AAWTL AAYFA AAYIU AAYQN ABBBX ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACBMV ACBRV ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEFTE AEGAL AEGNC AEJHL AEJRE AEMOZ AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKMHD AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CCPQU CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N9A NAPCQ NB0 NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R89 R9I RHV ROL RPX RSV RXW S16 S27 S3B SAP SBY SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZL0 ZMTXR ZOVNA ~8M ~EX ~KM -Y2 .55 .GJ 1SB 2.D 28- 2VQ 3V. 53G 5QI AAAVM AACDK AAEOY AAJBT AANXM AAQLM AARHV AASML AAYTO AAYZH ABAKF ABULA ACAOD ACBNA ACBXY ACDTI ACZOJ ADYPR AEBTG AEFIE AEFQL AEKMD AEMSY AFBBN AFEXP AFGCZ AGGDS AGJBK AGQEE AGRTI AIGIU AJBLW ALIPV BBWZM CAG COF G8K H13 IHE LAI N2Q NDZJH NPM PQBZA R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 TAE X7M ZGI ZXP AAYXX ABDPE CITATION 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c438t-1c04dc745f643ed4ef658a0b8f274bb14fc96d1e3134bb13f6002547fb5edfd43 |
IEDL.DBID | AEJHL |
ISSN | 0140-0118 |
IngestDate | Fri Oct 25 22:48:15 EDT 2024 Thu Oct 10 22:49:15 EDT 2024 Thu Nov 21 23:14:46 EST 2024 Wed Oct 16 00:50:36 EDT 2024 Sat Dec 16 12:02:26 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multimodal deep learning OCT Fundus photograph Age-related macular degeneration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-1c04dc745f643ed4ef658a0b8f274bb14fc96d1e3134bb13f6002547fb5edfd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0890-8614 |
PMID | 30349958 |
PQID | 2123990166 |
PQPubID | 54161 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2179224172 proquest_journals_2123990166 crossref_primary_10_1007_s11517_018_1915_z pubmed_primary_30349958 springer_journals_10_1007_s11517_018_1915_z |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ferris, Wilkinson, Bird (CR2) 2013; 120 Smith, Chan, Nagasaki, Ahmad, Barbazetto, Sparrow, Figueroa, Merriam (CR30) 2005; 123 Wang, Zeng (CR19) 2013; 29 Mokwa, Ristau, Keane, Kirchhof, Sadda, Liakopoulos (CR33) 2013; 2013 Treder, Lauermann, Eter (CR12) 2017; 256 CR17 Wallis, Funke, Ecker, Gatys, Wichmann, Bethge (CR18) 2017; 17 CR38 Liu, Liu, Halabi (CR36) 2011; 30 Zhang, Shen (CR39) 2012; 59 Wei, Yuan, Hu, Wang (CR23) 2010; 37 Statnikov, Aliferis, Tsamardinos, Hardin, Levy (CR24) 2005; 21 DeLong, DeLong, Clarke-Pearson (CR27) 1988; 44 Breiman (CR21) 2001; 45 Prahs, Radeck, Mayer, Cvetkov, Cvetkova, Helbig, Märker (CR13) 2017; 256 Wong, Su, Li, Cheung, Klein, Cheng, Wong (CR1) 2014; 2 Chen, Wong, Heriot (CR31) 2007; 143 Burlina, Pacheco, Joshi, Freund, Bressler (CR6) 2017; 82 Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27 Schaal, Freund, Litts, Zhang, Messinger, Curcio (CR16) 2015; 35 Mitra, Bourgeat, Fripp, Ghose, Rose, Salvado, Connelly, Campbell, Palmer, Sharma, Christensen, Carey (CR40) 2014; 98 Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (CR14) 2018; 172 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR32) 2016; 316 Yang, Reisman, Wang, Fukuma, Hangai, Yoshimura, Tomidokoro, Araie, Raza, Hood, Chan (CR35) 2010; 18 Lam, Yu, Huang, Rubin (CR4) 2018; 59 CR7 Wilde, Patel, Lakshmanan, Amankwah, Dhar-Munshi, Amoaku (CR9) 2015; 29 Hand, Till (CR25) 2001; 45 CR22 CR20 Yun, Kwon (CR44) 1993; 34 CR41 Choi, Yoo, Seo, Kwak, Um, Rim (CR3) 2017; 12 Fang, Cunefare, Wang, Guymer, Li, Farsiu (CR15) 2017; 8 Grassmann, Mengelkamp, Brandl, Harsch, Zimmermann, Linkohr, Peters, Heid, Palm, Weber (CR8) 2018; 125 Fellah, Caudal, De Paula (CR42) 2013; 34 Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (CR5) 2017; 135 Karri, Chakraborty, Chatterjee (CR10) 2017; 8 Yabuuchi, Matsuo, Kamitani, Setoguchi, Okafuji, Soeda, Sakai, Hatakenaka, Nakashima, Oda, Honda (CR37) 2008; 249 Larochelle, Bengio, Louradour, Lamblin (CR43) 2009; 10 Oh, Yoo, Park (CR29) 2013; 13 Castillo, Mowatt, Elders, Lois, Fraser, Hernández, Amoaku, Burr, Lotery, Ramsay, Azuara-Blanco (CR34) 2015; 122 Bradley (CR28) 1997; 30 Lee, Baughman, Lee (CR11) 2017; 1 F Grassmann (1915_CR8) 2018; 125 CY Chen (1915_CR31) 2007; 143 FL Ferris (1915_CR2) 2013; 120 D Zhang (1915_CR39) 2012; 59 H Larochelle (1915_CR43) 2009; 10 C Wilde (1915_CR9) 2015; 29 P Prahs (1915_CR13) 2017; 256 CS Lee (1915_CR11) 2017; 1 P Burlina (1915_CR6) 2017; 82 Y Wang (1915_CR19) 2013; 29 RT Smith (1915_CR30) 2005; 123 V Gulshan (1915_CR32) 2016; 316 1915_CR20 1915_CR22 A Statnikov (1915_CR24) 2005; 21 MM Castillo (1915_CR34) 2015; 122 ER DeLong (1915_CR27) 1988; 44 L Breiman (1915_CR21) 2001; 45 PM Burlina (1915_CR5) 2017; 135 1915_CR7 Q Yang (1915_CR35) 2010; 18 SPK Karri (1915_CR10) 2017; 8 WL Wong (1915_CR1) 2014; 2 AP Bradley (1915_CR28) 1997; 30 1915_CR41 DJ Hand (1915_CR25) 2001; 45 YS Yun (1915_CR44) 1993; 34 KB Schaal (1915_CR16) 2015; 35 JY Choi (1915_CR3) 2017; 12 1915_CR17 TSA Wallis (1915_CR18) 2017; 17 EF Schisterman (1915_CR26) 2008; 27 DS Kermany (1915_CR14) 2018; 172 NF Mokwa (1915_CR33) 2013; 2013 E Oh (1915_CR29) 2013; 13 H Yabuuchi (1915_CR37) 2008; 249 L Fang (1915_CR15) 2017; 8 C Liu (1915_CR36) 2011; 30 M Treder (1915_CR12) 2017; 256 J Mitra (1915_CR40) 2014; 98 C Lam (1915_CR4) 2018; 59 JM Wei (1915_CR23) 2010; 37 1915_CR38 S Fellah (1915_CR42) 2013; 34 |
References_xml | – volume: 10 start-page: 1 year: 2009 end-page: 40 ident: CR43 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res contributor: fullname: Lamblin – ident: CR22 – volume: 120 start-page: 844 year: 2013 end-page: 851 ident: CR2 article-title: Clinical classification of age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.10.036 contributor: fullname: Bird – volume: 172 start-page: 1122 year: 2018 end-page: 1131 ident: CR14 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 contributor: fullname: Zhang – volume: 29 start-page: 602 year: 2015 end-page: 609 ident: CR9 article-title: The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography publication-title: Eye doi: 10.1038/eye.2015.44 contributor: fullname: Amoaku – volume: 1 start-page: 322 year: 2017 end-page: 327 ident: CR11 article-title: Deep learning is effective for classifying normal versus age-related macular degeneration optical coherence tomography images publication-title: Ophthalmol Retina doi: 10.1016/j.oret.2016.12.009 contributor: fullname: Lee – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR27 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: Clarke-Pearson – volume: 256 start-page: 91 year: 2017 end-page: 98 ident: CR13 article-title: OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-017-3839-y contributor: fullname: Märker – volume: 27 start-page: 297 year: 2008 end-page: 315 ident: CR26 article-title: Youden index and the optimal threshold for markers with mass at zero publication-title: Stat Med doi: 10.1002/sim.2993 contributor: fullname: Hu – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: CR28 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn doi: 10.1016/S0031-3203(96)00142-2 contributor: fullname: Bradley – volume: 135 start-page: 1170 year: 2017 end-page: 1176 ident: CR5 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.3782 contributor: fullname: Bressler – volume: 8 start-page: 579 year: 2017 end-page: 592 ident: CR10 article-title: Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration publication-title: Biomed Opt Express doi: 10.1364/BOE.8.000579 contributor: fullname: Chatterjee – volume: 2013 start-page: 385915 year: 2013 end-page: 385916 ident: CR33 article-title: Grading of age-related macular degeneration: comparison between color fundus photography, fluorescein angiography, and spectral domain optical coherence tomography publication-title: J Ophthalmol doi: 10.1155/2013/385915 contributor: fullname: Liakopoulos – volume: 143 start-page: 510 year: 2007 end-page: 512 ident: CR31 article-title: Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration: a short-term study publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2006.10.004 contributor: fullname: Heriot – volume: 12 year: 2017 ident: CR3 article-title: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database publication-title: PLoS One doi: 10.1371/journal.pone.0187336 contributor: fullname: Rim – volume: 122 start-page: 399 year: 2015 end-page: 406 ident: CR34 article-title: Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.07.055 contributor: fullname: Azuara-Blanco – volume: 59 start-page: 590 year: 2018 end-page: 596 ident: CR4 article-title: Retinal lesion detection with deep learning using image patches publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-22721 contributor: fullname: Rubin – volume: 34 start-page: 1326 year: 2013 end-page: 1333 ident: CR42 article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3352 contributor: fullname: De Paula – volume: 125 start-page: 1410 year: 2018 end-page: 1420 ident: CR8 article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.02.037 contributor: fullname: Weber – volume: 8 start-page: 2732 year: 2017 end-page: 2744 ident: CR15 article-title: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search publication-title: Biomed Opt Express doi: 10.1364/BOE.8.002732 contributor: fullname: Farsiu – volume: 37 start-page: 3799 year: 2010 end-page: 3809 ident: CR23 article-title: A novel measure for evaluating classifiers publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.11.040 contributor: fullname: Wang – volume: 123 start-page: 200 year: 2005 end-page: 206 ident: CR30 article-title: Automated detection of macular drusen using geometric background leveling and threshold selection publication-title: Arch Ophthalmol doi: 10.1001/archopht.123.2.200 contributor: fullname: Merriam – volume: 45 start-page: 171 year: 2001 end-page: 186 ident: CR25 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Mach Learn doi: 10.1023/A:1010920819831 contributor: fullname: Till – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR32 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 contributor: fullname: Webster – volume: 21 start-page: 631 year: 2005 end-page: 643 ident: CR24 article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis publication-title: Bioinformatics (Oxford England) doi: 10.1093/bioinformatics/bti033 contributor: fullname: Levy – volume: 82 start-page: 80 year: 2017 end-page: 86 ident: CR6 article-title: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.01.018 contributor: fullname: Bressler – volume: 256 start-page: 259 year: 2017 end-page: 265 ident: CR12 article-title: Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-017-3850-3 contributor: fullname: Eter – volume: 17 start-page: 5 year: 2017 ident: CR18 article-title: A parametric texture model based on deep convolutional features closely matches texture appearance for humans publication-title: J Vis doi: 10.1167/17.12.5 contributor: fullname: Bethge – ident: CR38 – volume: 2 start-page: 106 year: 2014 end-page: 116 ident: CR1 article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(13)70145-1 contributor: fullname: Wong – volume: 29 start-page: 126 year: 2013 end-page: 134 ident: CR19 article-title: Predicting drug-target interactions using restricted Boltzmann machines publication-title: Bioinformatics (Oxford England) doi: 10.1093/bioinformatics/btt234 contributor: fullname: Zeng – volume: 30 start-page: 2005 year: 2011 end-page: 2014 ident: CR36 article-title: A min-max combination of biomarkers to improve diagnostic accuracy publication-title: Stat Med doi: 10.1002/sim.4238 contributor: fullname: Halabi – volume: 13 year: 2013 ident: CR29 article-title: Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-13-106 contributor: fullname: Park – volume: 35 start-page: 1339 year: 2015 end-page: 1350 ident: CR16 article-title: Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology publication-title: Retina doi: 10.1097/IAE.0000000000000471 contributor: fullname: Curcio – ident: CR17 – volume: 249 start-page: 909 year: 2008 end-page: 916 ident: CR37 article-title: Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization? publication-title: Radiology doi: 10.1148/radiol.2493072045 contributor: fullname: Honda – volume: 34 start-page: 111 year: 1993 end-page: 116 ident: CR44 article-title: Postmortem change of adhesive forces between the retina and the retinal pigment epithelium publication-title: J Korean Ophthalmol Soc contributor: fullname: Kwon – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: CR39 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 contributor: fullname: Shen – ident: CR7 – volume: 18 start-page: 21293 year: 2010 end-page: 21307 ident: CR35 article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information publication-title: Opt Express doi: 10.1364/OE.18.021293 contributor: fullname: Chan – volume: 98 start-page: 324 year: 2014 end-page: 335 ident: CR40 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.056 contributor: fullname: Carey – ident: CR41 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR21 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – ident: CR20 – volume: 123 start-page: 200 year: 2005 ident: 1915_CR30 publication-title: Arch Ophthalmol doi: 10.1001/archopht.123.2.200 contributor: fullname: RT Smith – volume: 27 start-page: 297 year: 2008 ident: 1915_CR26 publication-title: Stat Med doi: 10.1002/sim.2993 contributor: fullname: EF Schisterman – volume: 8 start-page: 2732 year: 2017 ident: 1915_CR15 publication-title: Biomed Opt Express doi: 10.1364/BOE.8.002732 contributor: fullname: L Fang – ident: 1915_CR41 doi: 10.1007/978-3-319-62416-7_28 – volume: 13 year: 2013 ident: 1915_CR29 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-13-106 contributor: fullname: E Oh – volume: 10 start-page: 1 year: 2009 ident: 1915_CR43 publication-title: J Mach Learn Res contributor: fullname: H Larochelle – volume: 2 start-page: 106 year: 2014 ident: 1915_CR1 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(13)70145-1 contributor: fullname: WL Wong – volume: 18 start-page: 21293 year: 2010 ident: 1915_CR35 publication-title: Opt Express doi: 10.1364/OE.18.021293 contributor: fullname: Q Yang – volume: 98 start-page: 324 year: 2014 ident: 1915_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.056 contributor: fullname: J Mitra – volume: 59 start-page: 895 year: 2012 ident: 1915_CR39 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 contributor: fullname: D Zhang – volume: 125 start-page: 1410 year: 2018 ident: 1915_CR8 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.02.037 contributor: fullname: F Grassmann – volume: 1 start-page: 322 year: 2017 ident: 1915_CR11 publication-title: Ophthalmol Retina doi: 10.1016/j.oret.2016.12.009 contributor: fullname: CS Lee – volume: 122 start-page: 399 year: 2015 ident: 1915_CR34 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.07.055 contributor: fullname: MM Castillo – volume: 172 start-page: 1122 year: 2018 ident: 1915_CR14 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 contributor: fullname: DS Kermany – volume: 82 start-page: 80 year: 2017 ident: 1915_CR6 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.01.018 contributor: fullname: P Burlina – volume: 8 start-page: 579 year: 2017 ident: 1915_CR10 publication-title: Biomed Opt Express doi: 10.1364/BOE.8.000579 contributor: fullname: SPK Karri – volume: 35 start-page: 1339 year: 2015 ident: 1915_CR16 publication-title: Retina doi: 10.1097/IAE.0000000000000471 contributor: fullname: KB Schaal – volume: 34 start-page: 1326 year: 2013 ident: 1915_CR42 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3352 contributor: fullname: S Fellah – volume: 29 start-page: 602 year: 2015 ident: 1915_CR9 publication-title: Eye doi: 10.1038/eye.2015.44 contributor: fullname: C Wilde – volume: 30 start-page: 1145 year: 1997 ident: 1915_CR28 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(96)00142-2 contributor: fullname: AP Bradley – volume: 45 start-page: 5 year: 2001 ident: 1915_CR21 publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 316 start-page: 2402 year: 2016 ident: 1915_CR32 publication-title: JAMA doi: 10.1001/jama.2016.17216 contributor: fullname: V Gulshan – volume: 256 start-page: 259 year: 2017 ident: 1915_CR12 publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-017-3850-3 contributor: fullname: M Treder – volume: 44 start-page: 837 year: 1988 ident: 1915_CR27 publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: ER DeLong – volume: 45 start-page: 171 year: 2001 ident: 1915_CR25 publication-title: Mach Learn doi: 10.1023/A:1010920819831 contributor: fullname: DJ Hand – volume: 59 start-page: 590 year: 2018 ident: 1915_CR4 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-22721 contributor: fullname: C Lam – volume: 21 start-page: 631 year: 2005 ident: 1915_CR24 publication-title: Bioinformatics (Oxford England) doi: 10.1093/bioinformatics/bti033 contributor: fullname: A Statnikov – volume: 30 start-page: 2005 year: 2011 ident: 1915_CR36 publication-title: Stat Med doi: 10.1002/sim.4238 contributor: fullname: C Liu – volume: 135 start-page: 1170 year: 2017 ident: 1915_CR5 publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.3782 contributor: fullname: PM Burlina – volume: 120 start-page: 844 year: 2013 ident: 1915_CR2 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.10.036 contributor: fullname: FL Ferris – volume: 143 start-page: 510 year: 2007 ident: 1915_CR31 publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2006.10.004 contributor: fullname: CY Chen – volume: 37 start-page: 3799 year: 2010 ident: 1915_CR23 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.11.040 contributor: fullname: JM Wei – ident: 1915_CR20 – volume: 17 start-page: 5 year: 2017 ident: 1915_CR18 publication-title: J Vis doi: 10.1167/17.12.5 contributor: fullname: TSA Wallis – volume: 34 start-page: 111 year: 1993 ident: 1915_CR44 publication-title: J Korean Ophthalmol Soc contributor: fullname: YS Yun – volume: 256 start-page: 91 year: 2017 ident: 1915_CR13 publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-017-3839-y contributor: fullname: P Prahs – ident: 1915_CR17 – volume: 2013 start-page: 385915 year: 2013 ident: 1915_CR33 publication-title: J Ophthalmol doi: 10.1155/2013/385915 contributor: fullname: NF Mokwa – volume: 249 start-page: 909 year: 2008 ident: 1915_CR37 publication-title: Radiology doi: 10.1148/radiol.2493072045 contributor: fullname: H Yabuuchi – volume: 12 year: 2017 ident: 1915_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0187336 contributor: fullname: JY Choi – ident: 1915_CR38 – volume: 29 start-page: 126 year: 2013 ident: 1915_CR19 publication-title: Bioinformatics (Oxford England) doi: 10.1093/bioinformatics/btt234 contributor: fullname: Y Wang – ident: 1915_CR7 doi: 10.1007/s10792-018-0940-0 – ident: 1915_CR22 doi: 10.1137/1.9781611972719.16 |
SSID | ssj0021524 |
Score | 2.589416 |
Snippet | Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 677 |
SubjectTerms | Accuracy Age Age related diseases Algorithms Artificial neural networks Belief networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications Confidence intervals Deep learning Diagnostic systems Human Physiology Imaging Macular degeneration Medical diagnosis Medical imaging Neural networks Optical Coherence Tomography Original Article Radiology Retina Test procedures Transfer learning |
Title | The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment |
URI | https://link.springer.com/article/10.1007/s11517-018-1915-z https://www.ncbi.nlm.nih.gov/pubmed/30349958 https://www.proquest.com/docview/2123990166 https://search.proquest.com/docview/2179224172 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkCouvMpjecmVempllMR24nBDsGiFoBxKpd6iOLZXCJFdbcgB_hX_kLHzWCHaA9zyGI8tzdjzjWc8BviujZAmUQmNlWaUS5FTFfGEFtIKHukgSq3bcBv9Tn79ledDVyYn6rcuyvvjLiLpF-r5WTe0TS5LEp2eNBT0eRGW0fQI1O3l0-Hl6Kp3s9Ai8T5xEfFzF8v8F5O31ugdxHwXHvVW52LtM-Ndh9UWY5LTRik2YMGUm_Dluo2if4UX1A0ynVRtZuwTmViCOJAgY_STvajcp5uzW5KXmqDp03VF7h5w6akIglx8bHcifDPdZOthZyQvinqWF56jNmZK2kspxr4Ztqf-7IzR5CH3CbBINfaFr12nJyQnUyTwF43Nnsj89oEt-HMxvD0b0fbqBlpwJh9pWARcFwkXFhGP0dxYRDp5oKRFL1ipkNsijXVoWMjcK7OxP5afWCWMtpqzbVgqJ6XZBWK0sYoFUtlYcstMKhUytFqowIZWxgP40YkwmzYVOrJ5LWYnhAyFkDkhZM8DOOiEnLWTtcqc9XbhwRh5fet_4zRzsZO8NJPa0SSpQztJNICdRjn63pir8ZMKOYCfnSrMmf93KHsfot6HFYRqaZP9dgBLj7PaHMJipeujVv9fAbZVA_Q |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SMCF92M8g8QJFKld0jblhoAxxOvAkLhVTZMgDnTTSg_wr_iHOGm7CQEHuPXhOJHsxF9ixwY4UDoQOpIRDaVilIsgpbLNI5oJE_C28tqxsQdu3fvo9lGcnds0Oay5C-Oi3RuXpFupx5fd0DjZMEnc9cR-QN8nYZrHIUdVnj657F10RvssNEl8FLmIALpxZv7E5Ks5-oYxv_lHndnpLPxrwIswX6NMclKpxRJM6HwZZm5qP_oKfKB2kEG_qGNj30jfEESCBBnjTtkJy366O-2RNFcEjZ8qC_L8gotPQRDm4mN9FuGaqSpeDzsjaZaVwzRzHJXWA1KXpXhyzbA9dbdntCIvqQuBRaonl_radnpMUjJAAldqbPhGxvUHVuGhc9477dK6eAPNOBOv1M88rrKIBwYxj1ZcG8Q6qSeFwX2wlD43WRwqXzOf2VdmQncxPzIy0MooztZgKu_negOIVtpI5glpQsEN07GQyNCoQHrGNyJswWEjw2RQ5ehIxtmYrRASFEJihZC8t2C7kXJST9cisfbbOghD5LU_-o0TzXpP0lz3S0sTxRbvRO0WrFfaMeqN2Sw_cSBacNSowpj5r0PZ_BP1Hsx2ezfXyfXl7dUWzCFwi6tYuG2Yeh2WegcmC1Xu1pPhEz_8B-Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VkFAvhdLX8qor9dTKIlk7icMFIdjVtlBaqVTqLYpjD-qBbLTZHOBf9R927CS7QsAB9ZaHPRNpxplvPA8DfDQ2UjbRCY-1EVyqKOd6KBNeKIzk0ATDFN2G2-RncvFbnY5cm5yjvhbGZ7v3Icm2psF1aSrnB5XBg2XhGxkqlzJJHlAaRvx2BdYkOTKk6GvHo6-T84XPReZJLrIYCUz3gc2HiNw1Tffw5r1YqTdB443__vhNeNGhT3bcqstLeGbLLVj_1sXXX8Ff0hpWTesuZ_aGTZERQmTEhDxoL0T36PvJJctLw8gomqZmf67pp1Qzgr902e1R-GmmzeMjZiwvimaWF56isbZi3XEVV34azee-qsYadp371FgadeVbYjumhyxnFQ3wR5DNbtjyXILX8Gs8ujyZ8O5QB15IoeY8LAJpikRGSFjIGmmRMFAeaIXkH2sdSizS2IRWhMLdCox9wX6COrIGjRRvYLWclvYdMGssahEojbGSKGyqNBFEE-kAQ1TxAD718syqtndHtuzS7ISQkRAyJ4TsdgC7vcSzbhnXmbPrLnAYE60Pi9e0AF1UJS_ttHFjktThoGQ4gLetpiy4Cdf9J43UAD73arEk_uinbD9p9HtY_3E6zs6_XJztwHPCc2mbIrcLq_NZY_dgpTbNfrcu_gHh3BCn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+possibility+of+the+combination+of+OCT+and+fundus+images+for+improving+the+diagnostic+accuracy+of+deep+learning+for+age-related+macular+degeneration%3A+a+preliminary+experiment&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Yoo%2C+Tae+Keun&rft.au=Choi%2C+Joon+Yul&rft.au=Seo%2C+Jeong+Gi&rft.au=Ramasubramanian%2C+Bhoopalan&rft.date=2019-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=3&rft.spage=677&rft.epage=687&rft_id=info:doi/10.1007%2Fs11517-018-1915-z&rft.externalDocID=10_1007_s11517_018_1915_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |