The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment

Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing Vol. 57; no. 3; pp. 677 - 687
Main Authors: Yoo, Tae Keun, Choi, Joon Yul, Seo, Jeong Gi, Ramasubramanian, Bhoopalan, Selvaperumal, Sundaramoorthy, Kim, Deok Won
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-03-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone ( P value < 0.001) and fundus image alone ( P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine ( P value = 0.002) and deep belief network algorithms ( P value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image.
AbstractList Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891-0.921) and 82.6% (81.0-84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900-0.928) and 83.5% (81.8-85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956-0.979) and 90.5% (89.2-91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value < 0.001) and fundus image alone (P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan's multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image.
Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891-0.921) and 82.6% (81.0-84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900-0.928) and 83.5% (81.8-85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956-0.979) and 90.5% (89.2-91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value &lt; 0.001) and fundus image alone (P value &lt; 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan's multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image.
Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone ( P value < 0.001) and fundus image alone ( P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine ( P value = 0.002) and deep belief network algorithms ( P value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis. Graphical abstract The basic architectural structure of the tested multimodal deep learning model based on pre-trained deep convolutional neural network and random forest using the combination of OCT and fundus image.
Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus and optical coherence tomography (OCT) images in clinical settings are the most important modalities investigating AMD. Whether concomitant use of fundus and OCT data in DL technique is beneficial has not been so clearly identified. This experimental analysis used OCT and fundus image data of postmortems from the Project Macula. The DL based on OCT, fundus, and combination of OCT and fundus were invented to diagnose AMD. These models consisted of pre-trained VGG-19 and transfer learning using random forest. Following the data augmentation and training process, the DL using OCT alone showed diagnostic efficiency with area under the curve (AUC) of 0.906 (95% confidence interval, 0.891–0.921) and 82.6% (81.0–84.3%) accuracy rate. The DL using fundus alone exhibited AUC of 0.914 (0.900–0.928) and 83.5% (81.8–85.0%) accuracy rate. Combined usage of the fundus with OCT increased the diagnostic power with AUC of 0.969 (0.956–0.979) and 90.5% (89.2–91.8%) accuracy rate. The Delong test showed that the DL using both OCT and fundus data outperformed the DL using OCT alone (P value < 0.001) and fundus image alone (P value < 0.001). This multimodal random forest model showed even better performance than a restricted Boltzmann machine (P value = 0.002) and deep belief network algorithms (P value = 0.042). According to Duncan’s multiple range test, the multimodal methods significantly improved the performance obtained by the single-modal methods. In this preliminary study, a multimodal DL algorithm based on the combination of OCT and fundus image raised the diagnostic accuracy compared to this data alone. Future diagnostic DL needs to adopt the multimodal process to combine various types of imaging for a more precise AMD diagnosis.
Author Selvaperumal, Sundaramoorthy
Yoo, Tae Keun
Ramasubramanian, Bhoopalan
Choi, Joon Yul
Seo, Jeong Gi
Kim, Deok Won
Author_xml – sequence: 1
  givenname: Tae Keun
  orcidid: 0000-0003-0890-8614
  surname: Yoo
  fullname: Yoo, Tae Keun
  email: eyetaekeunyoo@gmail.com
  organization: Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine
– sequence: 2
  givenname: Joon Yul
  surname: Choi
  fullname: Choi, Joon Yul
  organization: Department of Electrical and Computer Engineering, Seoul National University
– sequence: 3
  givenname: Jeong Gi
  surname: Seo
  fullname: Seo, Jeong Gi
  organization: Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine
– sequence: 4
  givenname: Bhoopalan
  surname: Ramasubramanian
  fullname: Ramasubramanian, Bhoopalan
  organization: Department of Electronics and Communication Engineering, Syed Ammal Engineering College
– sequence: 5
  givenname: Sundaramoorthy
  surname: Selvaperumal
  fullname: Selvaperumal, Sundaramoorthy
  organization: Department of Electronics and Communication Engineering, Syed Ammal Engineering College
– sequence: 6
  givenname: Deok Won
  surname: Kim
  fullname: Kim, Deok Won
  organization: Department of Medical Engineering Seoul, South Korea, Yonsei University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30349958$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi1URE8LD8AGWWLDJuBJnBs7dEQLUqVuDuvIscfBVWIHO0G0b8UbMjmngITEyvbM98_F_wU788EjYy9BvAUh6ncJoIQ6E9Bk0EKZPTxhO6glZEJKecZ2AqSgLDTn7CKlOyFyKHP5jJ0XopBtWzY79vPwFfkcUnK9G91yz4PlC4V0mHrn1eKC30K3-wNX3nC7erMm7iY1YOI2RLrOMXx3fjjKjFODD2lxmiut16j0saJBnPmIKvoN3GSkzyKOakHDJ6XXUUWiBvQYj03fc8VnAtxEU8R7jj9mjG5CvzxnT60aE754PC_Zl6uPh_2n7Ob2-vP-w02mZdEsGWghja5laStZoJFoq7JRom9sXsu-B2l1WxnAAortWdiKvqeUte1LNNbI4pK9OdWl_b6tmJZucknjOCqPYU1dDnWb5xLqnNDX_6B3YY2epiMqL9pWQFURBSdKR_rviLabaSNargPRbX52Jz878rPb_OweSPPqsfLaT2j-KH4bSEB-AhKl_IDxb-v_V_0FsjWwxQ
CitedBy_id crossref_primary_10_1371_journal_pone_0284060
crossref_primary_10_3390_healthcare11152228
crossref_primary_10_1080_1206212X_2023_2286032
crossref_primary_10_1007_s00347_020_01210_6
crossref_primary_10_3390_app12146872
crossref_primary_10_1007_s11042_024_18553_w
crossref_primary_10_1002_mp_15541
crossref_primary_10_1109_TMI_2021_3059956
crossref_primary_10_1111_aos_14928
crossref_primary_10_1007_s00417_022_05738_y
crossref_primary_10_1007_s00417_020_04709_5
crossref_primary_10_1016_j_pdpdt_2023_103629
crossref_primary_10_1016_j_cmpb_2020_105761
crossref_primary_10_1016_j_cmpb_2021_106294
crossref_primary_10_1055_a_1232_3629
crossref_primary_10_1088_1361_6560_ad0520
crossref_primary_10_1186_s12886_024_03381_1
crossref_primary_10_1016_j_bspc_2022_103619
crossref_primary_10_1038_s41598_023_38610_y
crossref_primary_10_1166_jmihi_2021_3906
crossref_primary_10_1007_s11517_020_02154_4
crossref_primary_10_1155_2020_7493419
crossref_primary_10_1093_jamia_ocaa302
crossref_primary_10_1109_TMI_2024_3352602
crossref_primary_10_1016_j_iswa_2024_200334
crossref_primary_10_1093_dmfr_twad003
crossref_primary_10_1016_j_neucom_2022_07_070
crossref_primary_10_3390_bios12070542
crossref_primary_10_1097_01_APO_0000656984_56467_2c
crossref_primary_10_52538_iduhes_1339320
crossref_primary_10_3928_23258160_20220817_01
crossref_primary_10_1364_BOE_435124
crossref_primary_10_4015_S1016237221500368
crossref_primary_10_1364_BOE_516764
crossref_primary_10_1371_journal_pone_0231322
crossref_primary_10_1111_jmi_13152
crossref_primary_10_1007_s11517_021_02469_w
crossref_primary_10_1016_j_preteyeres_2021_101034
crossref_primary_10_1016_j_media_2024_103214
crossref_primary_10_4015_S1016237221500290
crossref_primary_10_1109_ACCESS_2020_3032348
crossref_primary_10_1136_bjophthalmol_2020_315817
crossref_primary_10_3390_s23156706
crossref_primary_10_7717_peerj_8668
crossref_primary_10_1016_j_compbiomed_2020_103628
crossref_primary_10_1038_s41433_021_01540_y
crossref_primary_10_1007_s11517_020_02127_7
crossref_primary_10_18287_2412_6179_CO_892
crossref_primary_10_1016_j_compbiomed_2020_103666
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1016_j_bbe_2022_05_005
crossref_primary_10_1007_s11042_023_16835_3
crossref_primary_10_1167_tvst_9_2_22
crossref_primary_10_1016_j_compbiomed_2020_103980
crossref_primary_10_1097_OPX_0000000000001845
crossref_primary_10_1109_JBHI_2022_3171523
crossref_primary_10_1007_s11517_021_02321_1
crossref_primary_10_1016_j_eclinm_2021_100875
crossref_primary_10_1080_08820538_2021_1889617
crossref_primary_10_1080_08164622_2022_2111201
crossref_primary_10_3389_fninf_2022_876927
crossref_primary_10_1167_tvst_10_6_32
crossref_primary_10_1038_s41598_023_35197_2
crossref_primary_10_1167_tvst_10_6_30
crossref_primary_10_3390_diagnostics12020532
crossref_primary_10_1007_s10278_024_01105_x
crossref_primary_10_1109_ACCESS_2022_3178372
crossref_primary_10_4015_S1016237222500375
crossref_primary_10_1016_j_compbiomed_2022_105319
crossref_primary_10_1109_TIM_2021_3122172
crossref_primary_10_1007_s10792_024_03072_2
crossref_primary_10_1167_tvst_9_2_8
crossref_primary_10_1007_s00417_022_05919_9
crossref_primary_10_2196_28868
crossref_primary_10_1097_IAE_0000000000003325
crossref_primary_10_1167_tvst_9_2_56
crossref_primary_10_1177_2474126420914168
crossref_primary_10_1136_bjophthalmol_2021_318844
crossref_primary_10_1016_j_bspc_2021_102538
crossref_primary_10_1016_j_bspc_2021_102858
crossref_primary_10_1016_j_compbiomed_2022_106283
crossref_primary_10_1007_s00500_023_08862_x
crossref_primary_10_3390_life12030454
crossref_primary_10_1097_IIO_0000000000000519
crossref_primary_10_1109_LSP_2021_3057548
Cites_doi 10.1016/j.ophtha.2012.10.036
10.1016/j.cell.2018.02.010
10.1038/eye.2015.44
10.1016/j.oret.2016.12.009
10.2307/2531595
10.1007/s00417-017-3839-y
10.1002/sim.2993
10.1016/S0031-3203(96)00142-2
10.1001/jamaophthalmol.2017.3782
10.1364/BOE.8.000579
10.1155/2013/385915
10.1016/j.ajo.2006.10.004
10.1371/journal.pone.0187336
10.1016/j.ophtha.2014.07.055
10.1167/iovs.17-22721
10.3174/ajnr.A3352
10.1016/j.ophtha.2018.02.037
10.1364/BOE.8.002732
10.1016/j.eswa.2009.11.040
10.1001/archopht.123.2.200
10.1023/A:1010920819831
10.1001/jama.2016.17216
10.1093/bioinformatics/bti033
10.1016/j.compbiomed.2017.01.018
10.1007/s00417-017-3850-3
10.1167/17.12.5
10.1016/S2214-109X(13)70145-1
10.1093/bioinformatics/btt234
10.1002/sim.4238
10.1186/1472-6947-13-106
10.1097/IAE.0000000000000471
10.1148/radiol.2493072045
10.1016/j.neuroimage.2011.09.069
10.1364/OE.18.021293
10.1016/j.neuroimage.2014.04.056
10.1023/A:1010933404324
10.1007/978-3-319-62416-7_28
10.1007/s10792-018-0940-0
10.1137/1.9781611972719.16
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2018
Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2018
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved.
DBID NPM
AAYXX
CITATION
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-018-1915-z
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medicine (ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ProQuest Business Collection (Alumni Edition)
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 687
ExternalDocumentID 10_1007_s11517_018_1915_z
30349958
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
04C
06D
0R~
0VY
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYFA
AAYIU
AAYQN
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N9A
NAPCQ
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R89
R9I
RHV
ROL
RPX
RSV
RXW
S16
S27
S3B
SAP
SBY
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZL0
ZMTXR
ZOVNA
~8M
~EX
~KM
-Y2
.55
.GJ
1SB
2.D
28-
2VQ
3V.
53G
5QI
AAAVM
AACDK
AAEOY
AAJBT
AANXM
AAQLM
AARHV
AASML
AAYTO
AAYZH
ABAKF
ABULA
ACAOD
ACBNA
ACBXY
ACDTI
ACZOJ
ADYPR
AEBTG
AEFIE
AEFQL
AEKMD
AEMSY
AFBBN
AFEXP
AFGCZ
AGGDS
AGJBK
AGQEE
AGRTI
AIGIU
AJBLW
ALIPV
BBWZM
CAG
COF
G8K
H13
IHE
LAI
N2Q
NDZJH
NPM
PQBZA
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
T16
TAE
X7M
ZGI
ZXP
AAYXX
ABDPE
CITATION
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-1c04dc745f643ed4ef658a0b8f274bb14fc96d1e3134bb13f6002547fb5edfd43
IEDL.DBID AEJHL
ISSN 0140-0118
IngestDate Fri Oct 25 22:48:15 EDT 2024
Thu Oct 10 22:49:15 EDT 2024
Thu Nov 21 23:14:46 EST 2024
Wed Oct 16 00:50:36 EDT 2024
Sat Dec 16 12:02:26 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multimodal deep learning
OCT
Fundus photograph
Age-related macular degeneration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-1c04dc745f643ed4ef658a0b8f274bb14fc96d1e3134bb13f6002547fb5edfd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0890-8614
PMID 30349958
PQID 2123990166
PQPubID 54161
PageCount 11
ParticipantIDs proquest_miscellaneous_2179224172
proquest_journals_2123990166
crossref_primary_10_1007_s11517_018_1915_z
pubmed_primary_30349958
springer_journals_10_1007_s11517_018_1915_z
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ferris, Wilkinson, Bird (CR2) 2013; 120
Smith, Chan, Nagasaki, Ahmad, Barbazetto, Sparrow, Figueroa, Merriam (CR30) 2005; 123
Wang, Zeng (CR19) 2013; 29
Mokwa, Ristau, Keane, Kirchhof, Sadda, Liakopoulos (CR33) 2013; 2013
Treder, Lauermann, Eter (CR12) 2017; 256
CR17
Wallis, Funke, Ecker, Gatys, Wichmann, Bethge (CR18) 2017; 17
CR38
Liu, Liu, Halabi (CR36) 2011; 30
Zhang, Shen (CR39) 2012; 59
Wei, Yuan, Hu, Wang (CR23) 2010; 37
Statnikov, Aliferis, Tsamardinos, Hardin, Levy (CR24) 2005; 21
DeLong, DeLong, Clarke-Pearson (CR27) 1988; 44
Breiman (CR21) 2001; 45
Prahs, Radeck, Mayer, Cvetkov, Cvetkova, Helbig, Märker (CR13) 2017; 256
Wong, Su, Li, Cheung, Klein, Cheng, Wong (CR1) 2014; 2
Chen, Wong, Heriot (CR31) 2007; 143
Burlina, Pacheco, Joshi, Freund, Bressler (CR6) 2017; 82
Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27
Schaal, Freund, Litts, Zhang, Messinger, Curcio (CR16) 2015; 35
Mitra, Bourgeat, Fripp, Ghose, Rose, Salvado, Connelly, Campbell, Palmer, Sharma, Christensen, Carey (CR40) 2014; 98
Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (CR14) 2018; 172
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR32) 2016; 316
Yang, Reisman, Wang, Fukuma, Hangai, Yoshimura, Tomidokoro, Araie, Raza, Hood, Chan (CR35) 2010; 18
Lam, Yu, Huang, Rubin (CR4) 2018; 59
CR7
Wilde, Patel, Lakshmanan, Amankwah, Dhar-Munshi, Amoaku (CR9) 2015; 29
Hand, Till (CR25) 2001; 45
CR22
CR20
Yun, Kwon (CR44) 1993; 34
CR41
Choi, Yoo, Seo, Kwak, Um, Rim (CR3) 2017; 12
Fang, Cunefare, Wang, Guymer, Li, Farsiu (CR15) 2017; 8
Grassmann, Mengelkamp, Brandl, Harsch, Zimmermann, Linkohr, Peters, Heid, Palm, Weber (CR8) 2018; 125
Fellah, Caudal, De Paula (CR42) 2013; 34
Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (CR5) 2017; 135
Karri, Chakraborty, Chatterjee (CR10) 2017; 8
Yabuuchi, Matsuo, Kamitani, Setoguchi, Okafuji, Soeda, Sakai, Hatakenaka, Nakashima, Oda, Honda (CR37) 2008; 249
Larochelle, Bengio, Louradour, Lamblin (CR43) 2009; 10
Oh, Yoo, Park (CR29) 2013; 13
Castillo, Mowatt, Elders, Lois, Fraser, Hernández, Amoaku, Burr, Lotery, Ramsay, Azuara-Blanco (CR34) 2015; 122
Bradley (CR28) 1997; 30
Lee, Baughman, Lee (CR11) 2017; 1
F Grassmann (1915_CR8) 2018; 125
CY Chen (1915_CR31) 2007; 143
FL Ferris (1915_CR2) 2013; 120
D Zhang (1915_CR39) 2012; 59
H Larochelle (1915_CR43) 2009; 10
C Wilde (1915_CR9) 2015; 29
P Prahs (1915_CR13) 2017; 256
CS Lee (1915_CR11) 2017; 1
P Burlina (1915_CR6) 2017; 82
Y Wang (1915_CR19) 2013; 29
RT Smith (1915_CR30) 2005; 123
V Gulshan (1915_CR32) 2016; 316
1915_CR20
1915_CR22
A Statnikov (1915_CR24) 2005; 21
MM Castillo (1915_CR34) 2015; 122
ER DeLong (1915_CR27) 1988; 44
L Breiman (1915_CR21) 2001; 45
PM Burlina (1915_CR5) 2017; 135
1915_CR7
Q Yang (1915_CR35) 2010; 18
SPK Karri (1915_CR10) 2017; 8
WL Wong (1915_CR1) 2014; 2
AP Bradley (1915_CR28) 1997; 30
1915_CR41
DJ Hand (1915_CR25) 2001; 45
YS Yun (1915_CR44) 1993; 34
KB Schaal (1915_CR16) 2015; 35
JY Choi (1915_CR3) 2017; 12
1915_CR17
TSA Wallis (1915_CR18) 2017; 17
EF Schisterman (1915_CR26) 2008; 27
DS Kermany (1915_CR14) 2018; 172
NF Mokwa (1915_CR33) 2013; 2013
E Oh (1915_CR29) 2013; 13
H Yabuuchi (1915_CR37) 2008; 249
L Fang (1915_CR15) 2017; 8
C Liu (1915_CR36) 2011; 30
M Treder (1915_CR12) 2017; 256
J Mitra (1915_CR40) 2014; 98
C Lam (1915_CR4) 2018; 59
JM Wei (1915_CR23) 2010; 37
1915_CR38
S Fellah (1915_CR42) 2013; 34
References_xml – volume: 10
  start-page: 1
  year: 2009
  end-page: 40
  ident: CR43
  article-title: Exploring strategies for training deep neural networks
  publication-title: J Mach Learn Res
  contributor:
    fullname: Lamblin
– ident: CR22
– volume: 120
  start-page: 844
  year: 2013
  end-page: 851
  ident: CR2
  article-title: Clinical classification of age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.10.036
  contributor:
    fullname: Bird
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: CR14
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 602
  year: 2015
  end-page: 609
  ident: CR9
  article-title: The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography
  publication-title: Eye
  doi: 10.1038/eye.2015.44
  contributor:
    fullname: Amoaku
– volume: 1
  start-page: 322
  year: 2017
  end-page: 327
  ident: CR11
  article-title: Deep learning is effective for classifying normal versus age-related macular degeneration optical coherence tomography images
  publication-title: Ophthalmol Retina
  doi: 10.1016/j.oret.2016.12.009
  contributor:
    fullname: Lee
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR27
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
  contributor:
    fullname: Clarke-Pearson
– volume: 256
  start-page: 91
  year: 2017
  end-page: 98
  ident: CR13
  article-title: OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-017-3839-y
  contributor:
    fullname: Märker
– volume: 27
  start-page: 297
  year: 2008
  end-page: 315
  ident: CR26
  article-title: Youden index and the optimal threshold for markers with mass at zero
  publication-title: Stat Med
  doi: 10.1002/sim.2993
  contributor:
    fullname: Hu
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: CR28
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
  contributor:
    fullname: Bradley
– volume: 135
  start-page: 1170
  year: 2017
  end-page: 1176
  ident: CR5
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.3782
  contributor:
    fullname: Bressler
– volume: 8
  start-page: 579
  year: 2017
  end-page: 592
  ident: CR10
  article-title: Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.000579
  contributor:
    fullname: Chatterjee
– volume: 2013
  start-page: 385915
  year: 2013
  end-page: 385916
  ident: CR33
  article-title: Grading of age-related macular degeneration: comparison between color fundus photography, fluorescein angiography, and spectral domain optical coherence tomography
  publication-title: J Ophthalmol
  doi: 10.1155/2013/385915
  contributor:
    fullname: Liakopoulos
– volume: 143
  start-page: 510
  year: 2007
  end-page: 512
  ident: CR31
  article-title: Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration: a short-term study
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2006.10.004
  contributor:
    fullname: Heriot
– volume: 12
  year: 2017
  ident: CR3
  article-title: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187336
  contributor:
    fullname: Rim
– volume: 122
  start-page: 399
  year: 2015
  end-page: 406
  ident: CR34
  article-title: Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.07.055
  contributor:
    fullname: Azuara-Blanco
– volume: 59
  start-page: 590
  year: 2018
  end-page: 596
  ident: CR4
  article-title: Retinal lesion detection with deep learning using image patches
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22721
  contributor:
    fullname: Rubin
– volume: 34
  start-page: 1326
  year: 2013
  end-page: 1333
  ident: CR42
  article-title: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis?
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3352
  contributor:
    fullname: De Paula
– volume: 125
  start-page: 1410
  year: 2018
  end-page: 1420
  ident: CR8
  article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.02.037
  contributor:
    fullname: Weber
– volume: 8
  start-page: 2732
  year: 2017
  end-page: 2744
  ident: CR15
  article-title: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002732
  contributor:
    fullname: Farsiu
– volume: 37
  start-page: 3799
  year: 2010
  end-page: 3809
  ident: CR23
  article-title: A novel measure for evaluating classifiers
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.11.040
  contributor:
    fullname: Wang
– volume: 123
  start-page: 200
  year: 2005
  end-page: 206
  ident: CR30
  article-title: Automated detection of macular drusen using geometric background leveling and threshold selection
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.123.2.200
  contributor:
    fullname: Merriam
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: CR25
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Mach Learn
  doi: 10.1023/A:1010920819831
  contributor:
    fullname: Till
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR32
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
  contributor:
    fullname: Webster
– volume: 21
  start-page: 631
  year: 2005
  end-page: 643
  ident: CR24
  article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
  publication-title: Bioinformatics (Oxford England)
  doi: 10.1093/bioinformatics/bti033
  contributor:
    fullname: Levy
– volume: 82
  start-page: 80
  year: 2017
  end-page: 86
  ident: CR6
  article-title: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.01.018
  contributor:
    fullname: Bressler
– volume: 256
  start-page: 259
  year: 2017
  end-page: 265
  ident: CR12
  article-title: Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-017-3850-3
  contributor:
    fullname: Eter
– volume: 17
  start-page: 5
  year: 2017
  ident: CR18
  article-title: A parametric texture model based on deep convolutional features closely matches texture appearance for humans
  publication-title: J Vis
  doi: 10.1167/17.12.5
  contributor:
    fullname: Bethge
– ident: CR38
– volume: 2
  start-page: 106
  year: 2014
  end-page: 116
  ident: CR1
  article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(13)70145-1
  contributor:
    fullname: Wong
– volume: 29
  start-page: 126
  year: 2013
  end-page: 134
  ident: CR19
  article-title: Predicting drug-target interactions using restricted Boltzmann machines
  publication-title: Bioinformatics (Oxford England)
  doi: 10.1093/bioinformatics/btt234
  contributor:
    fullname: Zeng
– volume: 30
  start-page: 2005
  year: 2011
  end-page: 2014
  ident: CR36
  article-title: A min-max combination of biomarkers to improve diagnostic accuracy
  publication-title: Stat Med
  doi: 10.1002/sim.4238
  contributor:
    fullname: Halabi
– volume: 13
  year: 2013
  ident: CR29
  article-title: Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-13-106
  contributor:
    fullname: Park
– volume: 35
  start-page: 1339
  year: 2015
  end-page: 1350
  ident: CR16
  article-title: Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000471
  contributor:
    fullname: Curcio
– ident: CR17
– volume: 249
  start-page: 909
  year: 2008
  end-page: 916
  ident: CR37
  article-title: Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization?
  publication-title: Radiology
  doi: 10.1148/radiol.2493072045
  contributor:
    fullname: Honda
– volume: 34
  start-page: 111
  year: 1993
  end-page: 116
  ident: CR44
  article-title: Postmortem change of adhesive forces between the retina and the retinal pigment epithelium
  publication-title: J Korean Ophthalmol Soc
  contributor:
    fullname: Kwon
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: CR39
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
  contributor:
    fullname: Shen
– ident: CR7
– volume: 18
  start-page: 21293
  year: 2010
  end-page: 21307
  ident: CR35
  article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information
  publication-title: Opt Express
  doi: 10.1364/OE.18.021293
  contributor:
    fullname: Chan
– volume: 98
  start-page: 324
  year: 2014
  end-page: 335
  ident: CR40
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.056
  contributor:
    fullname: Carey
– ident: CR41
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR21
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– ident: CR20
– volume: 123
  start-page: 200
  year: 2005
  ident: 1915_CR30
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.123.2.200
  contributor:
    fullname: RT Smith
– volume: 27
  start-page: 297
  year: 2008
  ident: 1915_CR26
  publication-title: Stat Med
  doi: 10.1002/sim.2993
  contributor:
    fullname: EF Schisterman
– volume: 8
  start-page: 2732
  year: 2017
  ident: 1915_CR15
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002732
  contributor:
    fullname: L Fang
– ident: 1915_CR41
  doi: 10.1007/978-3-319-62416-7_28
– volume: 13
  year: 2013
  ident: 1915_CR29
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-13-106
  contributor:
    fullname: E Oh
– volume: 10
  start-page: 1
  year: 2009
  ident: 1915_CR43
  publication-title: J Mach Learn Res
  contributor:
    fullname: H Larochelle
– volume: 2
  start-page: 106
  year: 2014
  ident: 1915_CR1
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(13)70145-1
  contributor:
    fullname: WL Wong
– volume: 18
  start-page: 21293
  year: 2010
  ident: 1915_CR35
  publication-title: Opt Express
  doi: 10.1364/OE.18.021293
  contributor:
    fullname: Q Yang
– volume: 98
  start-page: 324
  year: 2014
  ident: 1915_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.056
  contributor:
    fullname: J Mitra
– volume: 59
  start-page: 895
  year: 2012
  ident: 1915_CR39
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
  contributor:
    fullname: D Zhang
– volume: 125
  start-page: 1410
  year: 2018
  ident: 1915_CR8
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.02.037
  contributor:
    fullname: F Grassmann
– volume: 1
  start-page: 322
  year: 2017
  ident: 1915_CR11
  publication-title: Ophthalmol Retina
  doi: 10.1016/j.oret.2016.12.009
  contributor:
    fullname: CS Lee
– volume: 122
  start-page: 399
  year: 2015
  ident: 1915_CR34
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.07.055
  contributor:
    fullname: MM Castillo
– volume: 172
  start-page: 1122
  year: 2018
  ident: 1915_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
  contributor:
    fullname: DS Kermany
– volume: 82
  start-page: 80
  year: 2017
  ident: 1915_CR6
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.01.018
  contributor:
    fullname: P Burlina
– volume: 8
  start-page: 579
  year: 2017
  ident: 1915_CR10
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.000579
  contributor:
    fullname: SPK Karri
– volume: 35
  start-page: 1339
  year: 2015
  ident: 1915_CR16
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000471
  contributor:
    fullname: KB Schaal
– volume: 34
  start-page: 1326
  year: 2013
  ident: 1915_CR42
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3352
  contributor:
    fullname: S Fellah
– volume: 29
  start-page: 602
  year: 2015
  ident: 1915_CR9
  publication-title: Eye
  doi: 10.1038/eye.2015.44
  contributor:
    fullname: C Wilde
– volume: 30
  start-page: 1145
  year: 1997
  ident: 1915_CR28
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
  contributor:
    fullname: AP Bradley
– volume: 45
  start-page: 5
  year: 2001
  ident: 1915_CR21
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 316
  start-page: 2402
  year: 2016
  ident: 1915_CR32
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
  contributor:
    fullname: V Gulshan
– volume: 256
  start-page: 259
  year: 2017
  ident: 1915_CR12
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-017-3850-3
  contributor:
    fullname: M Treder
– volume: 44
  start-page: 837
  year: 1988
  ident: 1915_CR27
  publication-title: Biometrics
  doi: 10.2307/2531595
  contributor:
    fullname: ER DeLong
– volume: 45
  start-page: 171
  year: 2001
  ident: 1915_CR25
  publication-title: Mach Learn
  doi: 10.1023/A:1010920819831
  contributor:
    fullname: DJ Hand
– volume: 59
  start-page: 590
  year: 2018
  ident: 1915_CR4
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22721
  contributor:
    fullname: C Lam
– volume: 21
  start-page: 631
  year: 2005
  ident: 1915_CR24
  publication-title: Bioinformatics (Oxford England)
  doi: 10.1093/bioinformatics/bti033
  contributor:
    fullname: A Statnikov
– volume: 30
  start-page: 2005
  year: 2011
  ident: 1915_CR36
  publication-title: Stat Med
  doi: 10.1002/sim.4238
  contributor:
    fullname: C Liu
– volume: 135
  start-page: 1170
  year: 2017
  ident: 1915_CR5
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.3782
  contributor:
    fullname: PM Burlina
– volume: 120
  start-page: 844
  year: 2013
  ident: 1915_CR2
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.10.036
  contributor:
    fullname: FL Ferris
– volume: 143
  start-page: 510
  year: 2007
  ident: 1915_CR31
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2006.10.004
  contributor:
    fullname: CY Chen
– volume: 37
  start-page: 3799
  year: 2010
  ident: 1915_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.11.040
  contributor:
    fullname: JM Wei
– ident: 1915_CR20
– volume: 17
  start-page: 5
  year: 2017
  ident: 1915_CR18
  publication-title: J Vis
  doi: 10.1167/17.12.5
  contributor:
    fullname: TSA Wallis
– volume: 34
  start-page: 111
  year: 1993
  ident: 1915_CR44
  publication-title: J Korean Ophthalmol Soc
  contributor:
    fullname: YS Yun
– volume: 256
  start-page: 91
  year: 2017
  ident: 1915_CR13
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-017-3839-y
  contributor:
    fullname: P Prahs
– ident: 1915_CR17
– volume: 2013
  start-page: 385915
  year: 2013
  ident: 1915_CR33
  publication-title: J Ophthalmol
  doi: 10.1155/2013/385915
  contributor:
    fullname: NF Mokwa
– volume: 249
  start-page: 909
  year: 2008
  ident: 1915_CR37
  publication-title: Radiology
  doi: 10.1148/radiol.2493072045
  contributor:
    fullname: H Yabuuchi
– volume: 12
  year: 2017
  ident: 1915_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187336
  contributor:
    fullname: JY Choi
– ident: 1915_CR38
– volume: 29
  start-page: 126
  year: 2013
  ident: 1915_CR19
  publication-title: Bioinformatics (Oxford England)
  doi: 10.1093/bioinformatics/btt234
  contributor:
    fullname: Y Wang
– ident: 1915_CR7
  doi: 10.1007/s10792-018-0940-0
– ident: 1915_CR22
  doi: 10.1137/1.9781611972719.16
SSID ssj0021524
Score 2.589416
Snippet Recently, researchers have built new deep learning (DL) models using a single image modality to diagnose age-related macular degeneration (AMD). Retinal fundus...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 677
SubjectTerms Accuracy
Age
Age related diseases
Algorithms
Artificial neural networks
Belief networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer Applications
Confidence intervals
Deep learning
Diagnostic systems
Human Physiology
Imaging
Macular degeneration
Medical diagnosis
Medical imaging
Neural networks
Optical Coherence Tomography
Original Article
Radiology
Retina
Test procedures
Transfer learning
Title The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment
URI https://link.springer.com/article/10.1007/s11517-018-1915-z
https://www.ncbi.nlm.nih.gov/pubmed/30349958
https://www.proquest.com/docview/2123990166
https://search.proquest.com/docview/2179224172
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkCouvMpjecmVempllMR24nBDsGiFoBxKpd6iOLZXCJFdbcgB_hX_kLHzWCHaA9zyGI8tzdjzjWc8BviujZAmUQmNlWaUS5FTFfGEFtIKHukgSq3bcBv9Tn79ledDVyYn6rcuyvvjLiLpF-r5WTe0TS5LEp2eNBT0eRGW0fQI1O3l0-Hl6Kp3s9Ai8T5xEfFzF8v8F5O31ugdxHwXHvVW52LtM-Ndh9UWY5LTRik2YMGUm_Dluo2if4UX1A0ynVRtZuwTmViCOJAgY_STvajcp5uzW5KXmqDp03VF7h5w6akIglx8bHcifDPdZOthZyQvinqWF56jNmZK2kspxr4Ztqf-7IzR5CH3CbBINfaFr12nJyQnUyTwF43Nnsj89oEt-HMxvD0b0fbqBlpwJh9pWARcFwkXFhGP0dxYRDp5oKRFL1ipkNsijXVoWMjcK7OxP5afWCWMtpqzbVgqJ6XZBWK0sYoFUtlYcstMKhUytFqowIZWxgP40YkwmzYVOrJ5LWYnhAyFkDkhZM8DOOiEnLWTtcqc9XbhwRh5fet_4zRzsZO8NJPa0SSpQztJNICdRjn63pir8ZMKOYCfnSrMmf93KHsfot6HFYRqaZP9dgBLj7PaHMJipeujVv9fAbZVA_Q
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SMCF92M8g8QJFKld0jblhoAxxOvAkLhVTZMgDnTTSg_wr_iHOGm7CQEHuPXhOJHsxF9ixwY4UDoQOpIRDaVilIsgpbLNI5oJE_C28tqxsQdu3fvo9lGcnds0Oay5C-Oi3RuXpFupx5fd0DjZMEnc9cR-QN8nYZrHIUdVnj657F10RvssNEl8FLmIALpxZv7E5Ks5-oYxv_lHndnpLPxrwIswX6NMclKpxRJM6HwZZm5qP_oKfKB2kEG_qGNj30jfEESCBBnjTtkJy366O-2RNFcEjZ8qC_L8gotPQRDm4mN9FuGaqSpeDzsjaZaVwzRzHJXWA1KXpXhyzbA9dbdntCIvqQuBRaonl_radnpMUjJAAldqbPhGxvUHVuGhc9477dK6eAPNOBOv1M88rrKIBwYxj1ZcG8Q6qSeFwX2wlD43WRwqXzOf2VdmQncxPzIy0MooztZgKu_negOIVtpI5glpQsEN07GQyNCoQHrGNyJswWEjw2RQ5ehIxtmYrRASFEJihZC8t2C7kXJST9cisfbbOghD5LU_-o0TzXpP0lz3S0sTxRbvRO0WrFfaMeqN2Sw_cSBacNSowpj5r0PZ_BP1Hsx2ezfXyfXl7dUWzCFwi6tYuG2Yeh2WegcmC1Xu1pPhEz_8B-Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VkFAvhdLX8qor9dTKIlk7icMFIdjVtlBaqVTqLYpjD-qBbLTZHOBf9R927CS7QsAB9ZaHPRNpxplvPA8DfDQ2UjbRCY-1EVyqKOd6KBNeKIzk0ATDFN2G2-RncvFbnY5cm5yjvhbGZ7v3Icm2psF1aSrnB5XBg2XhGxkqlzJJHlAaRvx2BdYkOTKk6GvHo6-T84XPReZJLrIYCUz3gc2HiNw1Tffw5r1YqTdB443__vhNeNGhT3bcqstLeGbLLVj_1sXXX8Ff0hpWTesuZ_aGTZERQmTEhDxoL0T36PvJJctLw8gomqZmf67pp1Qzgr902e1R-GmmzeMjZiwvimaWF56isbZi3XEVV34azee-qsYadp371FgadeVbYjumhyxnFQ3wR5DNbtjyXILX8Gs8ujyZ8O5QB15IoeY8LAJpikRGSFjIGmmRMFAeaIXkH2sdSizS2IRWhMLdCox9wX6COrIGjRRvYLWclvYdMGssahEojbGSKGyqNBFEE-kAQ1TxAD718syqtndHtuzS7ISQkRAyJ4TsdgC7vcSzbhnXmbPrLnAYE60Pi9e0AF1UJS_ttHFjktThoGQ4gLetpiy4Cdf9J43UAD73arEk_uinbD9p9HtY_3E6zs6_XJztwHPCc2mbIrcLq_NZY_dgpTbNfrcu_gHh3BCn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+possibility+of+the+combination+of+OCT+and+fundus+images+for+improving+the+diagnostic+accuracy+of+deep+learning+for+age-related+macular+degeneration%3A+a+preliminary+experiment&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Yoo%2C+Tae+Keun&rft.au=Choi%2C+Joon+Yul&rft.au=Seo%2C+Jeong+Gi&rft.au=Ramasubramanian%2C+Bhoopalan&rft.date=2019-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=3&rft.spage=677&rft.epage=687&rft_id=info:doi/10.1007%2Fs11517-018-1915-z&rft.externalDocID=10_1007_s11517_018_1915_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon