The mechanism of Single strand binding protein–RecG binding: Implications for SSB interactome function
The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein function...
Saved in:
Published in: | Protein science Vol. 29; no. 5; pp. 1211 - 1227 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-05-2020
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes. |
---|---|
AbstractList | The
Escherichia coli
single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes. The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes. |
Author | Mulkin, Jeffrey A. Wilczek, Luke A. Ding, Wenfei Zhang, Jia Xiang Hsieh, Karin R. Tan, Hui Yin Bianco, Piero R. |
AuthorAffiliation | 2 Department of Biochemistry University at Buffalo Buffalo New York United States 4 Present address: Department of Chemistry Brown University Providence Rhode Island United States 3 Present address: Department of Chemistry and Biochemistry University of Notre Dame South Bend Indiana United States 1 Center for Single Molecule Biophysics University at Buffalo Buffalo New York United States |
AuthorAffiliation_xml | – name: 3 Present address: Department of Chemistry and Biochemistry University of Notre Dame South Bend Indiana United States – name: 4 Present address: Department of Chemistry Brown University Providence Rhode Island United States – name: 1 Center for Single Molecule Biophysics University at Buffalo Buffalo New York United States – name: 2 Department of Biochemistry University at Buffalo Buffalo New York United States |
Author_xml | – sequence: 1 givenname: Wenfei surname: Ding fullname: Ding, Wenfei organization: University at Buffalo – sequence: 2 givenname: Hui Yin surname: Tan fullname: Tan, Hui Yin organization: University at Buffalo – sequence: 3 givenname: Jia Xiang surname: Zhang fullname: Zhang, Jia Xiang organization: University at Buffalo – sequence: 4 givenname: Luke A. surname: Wilczek fullname: Wilczek, Luke A. organization: University at Buffalo – sequence: 5 givenname: Karin R. surname: Hsieh fullname: Hsieh, Karin R. organization: University at Buffalo – sequence: 6 givenname: Jeffrey A. surname: Mulkin fullname: Mulkin, Jeffrey A. organization: University at Buffalo – sequence: 7 givenname: Piero R. orcidid: 0000-0003-2974-7952 surname: Bianco fullname: Bianco, Piero R. email: pbianco2014@gmail.com organization: University at Buffalo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32196797$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kdtqFTEUhoNU7G4VfAIJeOPNtDnM5OCFoEVrodDSXcG7kMms6U6ZSXaTGaV3voNv6JOY3ZNa8GqRtT6-rMW_g7ZCDIDQS0r2KCFsf53iHldN8wQtaC10pbT4uoUWRAtaKS7UNtrJ-ZIQUlPGn6FtzqgWUssFWp2vAI_gVjb4POLY46UPFwPgPCUbOtz60JUGLj9M4MOvHz_PwB3et9_io3E9eGcnH0PGfUx4ufyAfZggWTfFEXA_B7eZPkdPeztkeHFXd9GXTx_PDz5XxyeHRwfvjytXlwsqrinpFQOmpeZ917YgFAcrpQSue2e51NB2nbOi1J6LGiRrXNcQ2XTOCeC76N2tdz23I3QOQjlkMOvkR5uuTbTe_DsJfmUu4jcjqaql5EXw5k6Q4tUMeTKjzw6GwQaIczaMKyqYYlwU9PUj9DLOKZTzCqVrqWhNmz9Cl2LOCfqHZSgxm_jKO5pNfAV99ffyD-B9XgWoboHvfoDr_4rM6dnJjfA3NZqpJw |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2020_102942 crossref_primary_10_1002_pro_4140 crossref_primary_10_1016_j_jmb_2022_167580 crossref_primary_10_3390_genes11050471 crossref_primary_10_1016_j_ijbiomac_2024_131544 crossref_primary_10_3389_fmolb_2022_784451 crossref_primary_10_1021_acsomega_1c00722 crossref_primary_10_1093_nar_gkac1169 crossref_primary_10_3390_ijms23158613 crossref_primary_10_1093_nar_gkad162 crossref_primary_10_1016_j_bbagen_2021_130006 crossref_primary_10_1080_10409238_2024_2330372 crossref_primary_10_1074_jbc_RA120_013013 crossref_primary_10_1016_j_jmb_2024_168590 crossref_primary_10_1016_j_jbc_2023_104773 crossref_primary_10_3390_pharmaceutics15041032 crossref_primary_10_1128_jb_00184_23 crossref_primary_10_3389_fgene_2021_634615 crossref_primary_10_1093_nar_gkab142 |
Cites_doi | 10.1093/bioinformatics/btx584 10.1073/pnas.1809842115 10.1002/pro.3114 10.1016/j.jmb.2014.12.020 10.1038/sj.onc.1209874 10.1093/nar/gkr199 10.1074/jbc.RA118.006870 10.2174/0929866023408760 10.1002/pro.3115 10.1073/pnas.1500851112 10.1073/pnas.1318001111 10.1038/sj.emboj.7601697 10.1074/jbc.M115.655134 10.1073/pnas.0800741105 10.1073/pnas.94.13.6652 10.1046/j.1432-1033.2003.03944.x 10.1074/jbc.M412054200 10.1038/77943 10.1021/bi00349a004 10.1021/acs.biochem.8b00036 10.1016/S0021-9258(18)32867-9 10.7554/eLife.14294 10.1073/pnas.78.7.4274 10.1128/mr.54.4.342-380.1990 10.1016/S0065-3233(02)61006-X 10.1371/journal.pone.0094669 10.1002/1097-0134(20010101)42:1<108::AID-PROT110>3.0.CO;2-O 10.1002/j.1460-2075.1993.tb05627.x 10.2174/1389203033487207 10.1093/emboj/cdg043 10.1021/bi900361r 10.1093/nar/gkx917 10.1002/(SICI)1097-0282(1997)43:5<383::AID-BIP4>3.0.CO;2-R 10.1016/j.pbiomolbio.2016.11.001 10.1111/gtc.12334 10.1080/10409230802341296 10.1016/j.febslet.2012.05.025 10.1038/emboj.2011.305 10.1038/nbt1096-1246 10.1371/journal.pone.0027216 10.1021/acs.biochem.5b01283 10.1007/978-1-4939-2425-7_15 10.1038/sj.emboj.7601848 10.1007/s12551-012-0081-z 10.1385/1-59259-890-0:571 10.1016/j.str.2017.07.017 10.1093/nar/gkh980 10.1016/j.cell.2009.11.043 10.1002/pro.633 10.1073/pnas.092547099 10.1111/gtc.12729 10.1074/jbc.M110.118273 10.1016/j.str.2015.03.009 10.1038/srep09625 10.1073/pnas.1010243107 10.1038/81978 10.1016/j.febslet.2015.03.014 10.1016/j.jmb.2008.12.065 10.3109/10409238.2010.488216 10.1021/bi100069s 10.1016/0092-8674(94)90367-0 10.1093/nar/gkt107 10.1128/JB.00267-17 10.2174/1389203053545444 10.1093/nar/24.14.2706 10.1038/nprot.2006.202 10.1042/BJ20050411 10.1186/1472-6807-1-5 10.1093/nar/25.19.3875 10.1016/j.str.2004.09.004 10.1039/C8RA07306F 10.1093/nar/gkn795 10.1093/nar/gkt1238 10.1007/s11033-018-4232-6 10.1016/S0092-8674(01)00501-3 10.1002/pro.3072 10.1074/jbc.M109.096487 10.1016/j.febslet.2012.04.042 10.1021/bi5001867 10.1016/j.jmb.2007.01.007 10.3389/fgene.2018.00390 10.1016/j.sbi.2004.01.001 |
ContentType | Journal Article |
Copyright | 2020 The Protein Society 2020 The Protein Society. |
Copyright_xml | – notice: 2020 The Protein Society – notice: 2020 The Protein Society. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pro.3855 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Ding et al |
EISSN | 1469-896X |
EndPage | 1227 |
ExternalDocumentID | 10_1002_pro_3855 32196797 PRO3855 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: GM100156 – fundername: NIGMS NIH HHS grantid: R01 GM144414 – fundername: NIGMS NIH HHS grantid: R01 GM100156 – fundername: NIH HHS grantid: GM100156 – fundername: ; grantid: GM100156 |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4385-3910f82e29793fdbbe683ea777e39fca379ebddca69ebf364e725cd5075dcc6e3 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:25:36 EDT 2024 Sat Aug 17 05:42:49 EDT 2024 Tue Nov 19 04:59:26 EST 2024 Thu Nov 21 22:26:18 EST 2024 Sat Nov 02 12:25:30 EDT 2024 Sat Aug 24 01:07:09 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | DNA helicase SH3 domain SSB interactome RecG single-strand binding protein OB-fold PXXP motif |
Language | English |
License | 2020 The Protein Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4385-3910f82e29793fdbbe683ea777e39fca379ebddca69ebf364e725cd5075dcc6e3 |
Notes | Funding information National Institutes of Health, Grant/Award Number: GM100156 Wenfei Ding and Hui Yin Tan contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information National Institutes of Health, Grant/Award Number: GM100156 |
ORCID | 0000-0003-2974-7952 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.3855 |
PMID | 32196797 |
PQID | 2394781415 |
PQPubID | 1016442 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184773 proquest_miscellaneous_2381628236 proquest_journals_2394781415 crossref_primary_10_1002_pro_3855 pubmed_primary_32196797 wiley_primary_10_1002_pro_3855_PRO3855 |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Bethesda |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1990; 54 2010; 107 2015; 589 1997; 43 2000; 7 2017; 45 2002; 99 2008; 36 2015; 1278 2008; 105 2015; 427 2018; 45 2017; 199 2001; 107 2013; 5 2009; 48 2001; 42 2004; 32 2018; 9 2018; 8 2015; 290 1997; 94 2019; 24 2006; 25 2011; 20 1986 2003; 4 2014; 9 2018; 34 1996; 24 2017; 127 2007; 26 1981; 78 1994; 76 2014; 53 2007; 367 1983; 258 2005; 390 2015; 5 2012; 586 2017; 26 2002; 9 2017; 25 1997; 25 2013; 41 2011; 30 2010; 285 2005 2006; 1 2011; 39 1996; 14 2014; 111 2011; 6 2014; 42 2016; 55 2009; 139 2010; 45 2016; 5 2015; 23 2005; 280 1993; 12 2010; 49 2002; 61 2004; 14 2015; 112 2004; 12 2018; 115 2004; 271 1986; 25 2019; 47 2016; 21 2009; 386 2005; 6 2008; 43 2001; 1 2019; 294 2003; 22 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 Shinn MK (e_1_2_8_21_1) 2019; 47 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Dawson RMC (e_1_2_8_83_1) 1986 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 Williams KR (e_1_2_8_7_1) 1983; 258 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 112 start-page: E3095 year: 2015 end-page: E3103 article-title: Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 227 year: 2017 end-page: 241 article-title: The IDL of . SSB links ssDNA and protein binding by mediating protein‐protein interactions publication-title: Protein Sci – volume: 111 start-page: 1373 year: 2014 end-page: 1378 article-title: Structural mechanisms of PriA‐mediated DNA replication restart publication-title: Proc Natl Acad Sci U S A – volume: 199 start-page: e00267 year: 2017 end-page: e00217 article-title: A priA mutant expressed in two pieces has almost full activity in K‐12 publication-title: J Bacteriol – volume: 4 start-page: 195 year: 2003 end-page: 206 article-title: OB‐fold: Growing bigger with functional consistency publication-title: Curr Protein Pept Sci – volume: 6 year: 2011 article-title: Chimeras of and single‐stranded DNA binding proteins: Characterization and function in publication-title: PLoS One – volume: 139 start-page: 1279 year: 2009 end-page: 1289 article-title: Structural insight into translesion synthesis by DNA Pol II publication-title: Cell – volume: 43 start-page: 289 year: 2008 end-page: 318 article-title: SSB as an organizer/mobilizer of genome maintenance complexes publication-title: Crit Rev Biochem Mol Biol – volume: 55 start-page: 1784 year: 2016 end-page: 1800 article-title: Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 2. The model of encounter complex involving the double mutant of the c‐Crk N‐SH3 domain and peptide Sos publication-title: Biochemistry – volume: 258 start-page: 3346 year: 1983 end-page: 3355 article-title: Limited proteolysis studies on the single‐stranded DNA binding protein: Evidence for a functionally homologous domain in both the and T4 DNA binding proteins publication-title: J Biol Chem – volume: 14 start-page: 1246 year: 1996 end-page: 1251 article-title: The molecular structure of green fluorescent protein publication-title: Nat Biotechnol – volume: 26 start-page: 700 year: 2017 end-page: 717 article-title: The intrinsically disordered linker of . SSB is critical for the release from single‐stranded DNA publication-title: Protein Sci – volume: 367 start-page: 647 year: 2007 end-page: 664 article-title: Characterization of the ATPase activity of the RecG protein reveals that the preferred cofactor is negatively supercoiled DNA publication-title: J Mol Biol – volume: 99 start-page: 5908 year: 2002 end-page: 5912 article-title: The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity publication-title: Proc Natl Acad Sci U S A – volume: 271 start-page: 439 year: 2004 end-page: 449 article-title: Crystal structure of the chi:psi sub‐assembly of the DNA polymerase clamp‐loader complex publication-title: Eur J Biochem – volume: 280 start-page: 13921 year: 2005 end-page: 13927 article-title: DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity publication-title: J Biol Chem – year: 1986 – volume: 5 year: 2016 article-title: Structural basis for DNA 5‐end resection by RecJ publication-title: Elife – volume: 45 start-page: 12125 year: 2017 end-page: 12139 article-title: Molecular mechanism of DNA association with single‐stranded DNA binding protein publication-title: Nucleic Acids Res – volume: 39 start-page: 6305 year: 2011 end-page: 6314 article-title: Mechanism of RecO recruitment to DNA by single‐stranded DNA binding protein publication-title: Nucleic Acids Res – volume: 105 start-page: 9169 year: 2008 end-page: 9174 article-title: Structural basis of single‐stranded DNA‐binding protein stimulation of exonuclease I publication-title: Proc Natl Acad Sci U S A – volume: 23 start-page: 893 year: 2015 end-page: 902 article-title: The SH3 domain acts as a scaffold for the N‐terminal intrinsically disordered regions of c‐Src publication-title: Structure – volume: 8 start-page: 35280 year: 2018 end-page: 35288 article-title: The glycine‐rich flexible region in SSB is crucial for PriA stimulation publication-title: RSC Adv – volume: 9 start-page: 185 year: 2002 end-page: 193 article-title: Promiscuous binding nature of SH3 domains to their target proteins publication-title: Protein Pept Lett – volume: 107 start-page: 79 year: 2001 end-page: 89 article-title: Structural analysis of DNA replication fork reversal by RecG publication-title: Cell – volume: 94 start-page: 6652 year: 1997 end-page: 6657 article-title: Crystal structure of the homo‐tetrameric DNA binding domain of single‐stranded DNA‐binding protein determined by multiwavelength x‐ray diffraction on the selenomethionyl protein at 2.9‐A resolution publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 5 year: 2001 article-title: Functional evolution of two subtly different (similar) folds publication-title: BMC Struct Biol – volume: 22 start-page: 724 year: 2003 end-page: 734 article-title: A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins publication-title: EMBO J – volume: 30 start-page: 4236 year: 2011 end-page: 4247 article-title: Structure of the SSB‐DNA polymerase III interface and its role in DNA replication publication-title: EMBO J – volume: 47 start-page: 8581 year: 2019 end-page: 8594 article-title: Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? publication-title: Nucleic Acids Res – volume: 586 start-page: 2609 year: 2012 end-page: 2614 article-title: SH3 domain ligand binding: What's the consensus and where's the specificity? publication-title: FEBS Lett – volume: 24 start-page: 814 year: 2019 end-page: 826 article-title: Super‐resolution imaging reveals changes in SSB localization in response to DNA damage publication-title: Genes Cells – volume: 1 start-page: 2876 year: 2006 end-page: 2890 article-title: Using circular dichroism spectra to estimate protein secondary structure publication-title: Nat Protoc – start-page: 571 year: 2005 end-page: 607 – volume: 25 start-page: 21 year: 1986 end-page: 25 article-title: Large‐scale overproduction and rapid purification of the ssb gene product. Expression of the ssb gene under lambda PL control publication-title: Biochemistry – volume: 586 start-page: 2606 year: 2012 end-page: 2608 article-title: SH3 domains come of age publication-title: FEBS Lett – volume: 32 start-page: 6378 year: 2004 end-page: 6387 article-title: PriA helicase and SSB interact physically and functionally publication-title: Nucleic Acids Res – volume: 76 start-page: 933 year: 1994 end-page: 945 article-title: Structural basis for the binding of proline‐rich peptides to SH3 domains publication-title: Cell – volume: 14 start-page: 36 year: 2004 end-page: 42 article-title: From RPA to BRCA2: Lessons from single‐stranded DNA binding by the OB‐fold publication-title: Curr Opin Struct Biol – volume: 7 start-page: 1125 year: 2000 end-page: 1128 article-title: Structure of exonuclease I suggests how processivity is achieved publication-title: Nat Struct Biol – volume: 9 year: 2014 article-title: A genetic analysis of the functional interactions within single‐stranded DNA binding protein publication-title: PLoS One – volume: 25 start-page: 5864 year: 2006 end-page: 5874 article-title: The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability publication-title: Oncogene – volume: 25 start-page: 3875 year: 1997 end-page: 3880 article-title: DNA binding and helicase domains of the recombination protein RecG publication-title: Nucleic Acids Res – volume: 34 start-page: 459 year: 2018 end-page: 468 article-title: Protein‐protein interaction specificity is captured by contact preferences and interface composition publication-title: Bioinformatics – volume: 42 start-page: 108 year: 2001 end-page: 124 article-title: Protein‐protein interfaces: Analysis of amino acid conservation in homodimers publication-title: Proteins – volume: 5 start-page: 29 year: 2013 end-page: 39 article-title: SH3 domains: Modules of protein‐protein interactions publication-title: Biophys Rev – volume: 36 start-page: 7029 year: 2008 end-page: 7042 article-title: RecG interacts directly with SSB: Implications for stalled replication fork regression publication-title: Nucleic Acids Res – volume: 12 start-page: 1967 year: 2004 end-page: 1975 article-title: Crystal structure of PriB, a component of the replication restart primosome publication-title: Structure – volume: 290 start-page: 14626 year: 2015 end-page: 14636 article-title: Interaction with single‐stranded DNA‐binding protein stimulates ribonuclease HI enzymatic activity publication-title: J Biol Chem – volume: 53 start-page: 1925 year: 2014 end-page: 1934 article-title: Bound or free: Interaction of the C‐terminal domain of single‐stranded DNA‐binding protein (SSB) with the tetrameric core of SSB publication-title: Biochemistry – volume: 61 start-page: 211 year: 2002 end-page: 268 article-title: How SH3 domains recognize proline publication-title: Adv Protein Chem – volume: 427 start-page: 763 year: 2015 end-page: 774 article-title: Intrinsically disordered C‐terminal tails of . single‐stranded DNA binding protein regulate cooperative binding to single‐stranded DNA publication-title: J Mol Biol – volume: 41 start-page: 4507 year: 2013 end-page: 4517 article-title: The helicase‐binding domain of DnaG primase interacts with the highly conserved C‐terminal region of single‐stranded DNA‐binding protein publication-title: Nucleic Acids Res – volume: 45 start-page: 865 year: 2018 end-page: 870 article-title: AlkB interacts with single‐stranded DNA binding protein SSB by an intrinsically disordered region of SSB publication-title: Mol Biol Rep – volume: 26 start-page: 638 year: 2017 end-page: 649 article-title: SSB and the RecG DNA helicase: An intimate association to rescue a stalled replication fork publication-title: Protein Sci – volume: 285 start-page: 17246 year: 2010 end-page: 17252 article-title: Regulation of single‐stranded DNA binding by the C termini of single‐stranded DNA‐binding (SSB) protein publication-title: J Biol Chem – volume: 9 start-page: 390 year: 2018 article-title: Processing of DNA ends in the maintenance of genome stability publication-title: Front Genet – volume: 115 start-page: E9075 year: 2018 end-page: E9084 article-title: Structure‐specific DNA replication‐fork recognition directs helicase and replication restart activities of the PriA helicase publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 1005 year: 2011 end-page: 1020 article-title: Novel, fluorescent, SSB protein chimeras with broad utility publication-title: Protein Sci – volume: 589 start-page: 1156 year: 2015 end-page: 1163 article-title: A single PXXP motif in the C‐terminal region of srGAP3 mediates binding to multiple SH3 domains publication-title: FEBS Lett – volume: 127 start-page: 111 year: 2017 end-page: 118 article-title: The tale of SSB publication-title: Prog Biophys Mol Biol – volume: 26 start-page: 2584 year: 2007 end-page: 2593 article-title: Structural basis of the 3′‐end recognition of a leading strand in stalled replication forks by PriA publication-title: EMBO J – volume: 78 start-page: 4274 year: 1981 end-page: 4278 article-title: Sequences of the ssb gene and protein publication-title: Proc Natl Acad Sci U S A – volume: 107 start-page: 21743 year: 2010 end-page: 21748 article-title: Recognition of tandem PxxP motifs as a unique Src homology 3‐binding mode triggers pathogen‐driven actin assembly publication-title: Proc Natl Acad Sci U S A – volume: 1278 start-page: 239 year: 2015 end-page: 265 article-title: Circular dichroism (CD) analyses of protein‐protein interactions publication-title: Methods Mol Biol – volume: 285 start-page: 9762 year: 2010 end-page: 9769 article-title: Structure of RecJ exonuclease defines its specificity for single‐stranded DNA publication-title: J Biol Chem – volume: 26 start-page: 4239 year: 2007 end-page: 4251 article-title: Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks publication-title: EMBO J – volume: 386 start-page: 612 year: 2009 end-page: 625 article-title: Identification of the SSB binding site on . RecQ reveals a conserved surface for binding SSB's C terminus publication-title: J Mol Biol – volume: 57 start-page: 2084 year: 2018 end-page: 2093 article-title: Structures of the catalytic domain of bacterial primase DnaG in complexes with DNA provide insight into key priming events publication-title: Biochemistry – volume: 49 start-page: 3555 year: 2010 end-page: 3566 article-title: Binding specificity of single‐stranded DNA binding protein for the chi subunit of DNA pol III holoenzyme and PriA helicase publication-title: Biochemistry – volume: 12 start-page: 17 year: 1993 end-page: 22 article-title: Dissociation of synthetic Holliday junctions by . RecG protein publication-title: EMBO J – volume: 390 start-page: 641 year: 2005 end-page: 653 article-title: Specificity and versatility of SH3 and other proline‐recognition domains: Structural basis and implications for cellular signal transduction publication-title: Biochem J – volume: 43 start-page: 383 year: 1997 end-page: 400 article-title: SH3 domains and drug design: Ligands, structure, and biological function publication-title: Biopolymers – volume: 7 start-page: 648 year: 2000 end-page: 652 article-title: Structure of the DNA binding domain of . SSB bound to ssDNA publication-title: Nat Struct Biol – volume: 294 start-page: 2801 year: 2019 end-page: 2814 article-title: Function of a strand‐separation pin element in the PriA DNA replication restart helicase publication-title: J Biol Chem – volume: 54 start-page: 342 year: 1990 end-page: 380 article-title: The single‐stranded DNA‐binding protein of publication-title: Microbiol Rev – volume: 48 start-page: 6764 year: 2009 end-page: 6771 article-title: Peptide inhibitors identify roles for SSB C‐terminal residues in SSB/exonuclease I complex formation publication-title: Biochemistry – volume: 6 start-page: 143 year: 2005 end-page: 150 article-title: SH3‐like fold proteins are structurally conserved and functionally divergent publication-title: Curr Protein Pept Sci – volume: 42 start-page: 2750 year: 2014 end-page: 2757 article-title: Intramolecular binding mode of the C‐terminus of single‐stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy publication-title: Nucleic Acids Res – volume: 21 start-page: 163 year: 2016 end-page: 184 article-title: SSB binds to the RecG and PriA helicases in vivo in the absence of DNA publication-title: Genes Cells – volume: 24 start-page: 2706 year: 1996 end-page: 2711 article-title: In vitro and in vivo function of the C‐terminus of single‐stranded DNA binding protein publication-title: Nucleic Acids Res – volume: 5 start-page: 9625 year: 2015 article-title: Remodeling of RecG helicase at the DNA replication fork by SSB protein publication-title: Sci Rep – volume: 25 start-page: 1598 year: 2017 end-page: 1610 article-title: Comprehensive analysis of the human SH3 domain family reveals a wide variety of non‐canonical specificities publication-title: Structure – volume: 45 start-page: 266 year: 2010 end-page: 275 article-title: Oligonucleotide/oligosaccharide‐binding fold proteins: A growing family of genome guardians publication-title: Crit Rev Biochem Mol Biol – ident: e_1_2_8_62_1 doi: 10.1093/bioinformatics/btx584 – ident: e_1_2_8_69_1 doi: 10.1073/pnas.1809842115 – ident: e_1_2_8_10_1 doi: 10.1002/pro.3114 – ident: e_1_2_8_11_1 doi: 10.1016/j.jmb.2014.12.020 – ident: e_1_2_8_79_1 doi: 10.1038/sj.onc.1209874 – volume: 47 start-page: 8581 year: 2019 ident: e_1_2_8_21_1 article-title: Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? publication-title: Nucleic Acids Res contributor: fullname: Shinn MK – ident: e_1_2_8_34_1 doi: 10.1093/nar/gkr199 – ident: e_1_2_8_35_1 doi: 10.1074/jbc.RA118.006870 – ident: e_1_2_8_75_1 doi: 10.2174/0929866023408760 – ident: e_1_2_8_47_1 doi: 10.1002/pro.3115 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.1500851112 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1318001111 – ident: e_1_2_8_68_1 doi: 10.1038/sj.emboj.7601697 – ident: e_1_2_8_20_1 doi: 10.1074/jbc.M115.655134 – volume-title: Data for biochemical research year: 1986 ident: e_1_2_8_83_1 contributor: fullname: Dawson RMC – ident: e_1_2_8_18_1 doi: 10.1073/pnas.0800741105 – ident: e_1_2_8_65_1 doi: 10.1073/pnas.94.13.6652 – ident: e_1_2_8_72_1 doi: 10.1046/j.1432-1033.2003.03944.x – ident: e_1_2_8_48_1 doi: 10.1074/jbc.M412054200 – ident: e_1_2_8_8_1 doi: 10.1038/77943 – ident: e_1_2_8_85_1 doi: 10.1021/bi00349a004 – ident: e_1_2_8_70_1 doi: 10.1021/acs.biochem.8b00036 – volume: 258 start-page: 3346 year: 1983 ident: e_1_2_8_7_1 article-title: Limited proteolysis studies on the Escherichia coli single‐stranded DNA binding protein: Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)32867-9 contributor: fullname: Williams KR – ident: e_1_2_8_31_1 doi: 10.7554/eLife.14294 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.78.7.4274 – ident: e_1_2_8_9_1 doi: 10.1128/mr.54.4.342-380.1990 – ident: e_1_2_8_78_1 doi: 10.1016/S0065-3233(02)61006-X – ident: e_1_2_8_39_1 doi: 10.1371/journal.pone.0094669 – ident: e_1_2_8_23_1 doi: 10.1002/1097-0134(20010101)42:1<108::AID-PROT110>3.0.CO;2-O – ident: e_1_2_8_84_1 doi: 10.1002/j.1460-2075.1993.tb05627.x – ident: e_1_2_8_74_1 doi: 10.2174/1389203033487207 – ident: e_1_2_8_46_1 doi: 10.1093/emboj/cdg043 – ident: e_1_2_8_17_1 doi: 10.1021/bi900361r – ident: e_1_2_8_63_1 doi: 10.1093/nar/gkx917 – ident: e_1_2_8_51_1 doi: 10.1002/(SICI)1097-0282(1997)43:5<383::AID-BIP4>3.0.CO;2-R – ident: e_1_2_8_22_1 doi: 10.1016/j.pbiomolbio.2016.11.001 – ident: e_1_2_8_12_1 doi: 10.1111/gtc.12334 – ident: e_1_2_8_2_1 doi: 10.1080/10409230802341296 – ident: e_1_2_8_28_1 doi: 10.1016/j.febslet.2012.05.025 – ident: e_1_2_8_15_1 doi: 10.1038/emboj.2011.305 – ident: e_1_2_8_60_1 doi: 10.1038/nbt1096-1246 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pone.0027216 – ident: e_1_2_8_37_1 doi: 10.1021/acs.biochem.5b01283 – ident: e_1_2_8_56_1 doi: 10.1007/978-1-4939-2425-7_15 – ident: e_1_2_8_3_1 doi: 10.1038/sj.emboj.7601848 – ident: e_1_2_8_24_1 doi: 10.1007/s12551-012-0081-z – ident: e_1_2_8_58_1 doi: 10.1385/1-59259-890-0:571 – ident: e_1_2_8_73_1 doi: 10.1016/j.str.2017.07.017 – ident: e_1_2_8_54_1 doi: 10.1093/nar/gkh980 – ident: e_1_2_8_71_1 doi: 10.1016/j.cell.2009.11.043 – ident: e_1_2_8_53_1 doi: 10.1002/pro.633 – ident: e_1_2_8_66_1 doi: 10.1073/pnas.092547099 – ident: e_1_2_8_82_1 doi: 10.1111/gtc.12729 – ident: e_1_2_8_26_1 doi: 10.1074/jbc.M110.118273 – ident: e_1_2_8_36_1 doi: 10.1016/j.str.2015.03.009 – ident: e_1_2_8_43_1 doi: 10.1038/srep09625 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1010243107 – ident: e_1_2_8_67_1 doi: 10.1038/81978 – ident: e_1_2_8_77_1 doi: 10.1016/j.febslet.2015.03.014 – ident: e_1_2_8_16_1 doi: 10.1016/j.jmb.2008.12.065 – ident: e_1_2_8_42_1 doi: 10.3109/10409238.2010.488216 – ident: e_1_2_8_19_1 doi: 10.1021/bi100069s – ident: e_1_2_8_49_1 doi: 10.1016/0092-8674(94)90367-0 – ident: e_1_2_8_61_1 doi: 10.1093/nar/gkt107 – ident: e_1_2_8_45_1 doi: 10.1128/JB.00267-17 – ident: e_1_2_8_76_1 doi: 10.2174/1389203053545444 – ident: e_1_2_8_6_1 doi: 10.1093/nar/24.14.2706 – ident: e_1_2_8_55_1 doi: 10.1038/nprot.2006.202 – ident: e_1_2_8_29_1 doi: 10.1042/BJ20050411 – ident: e_1_2_8_30_1 doi: 10.1186/1472-6807-1-5 – ident: e_1_2_8_44_1 doi: 10.1093/nar/25.19.3875 – ident: e_1_2_8_64_1 doi: 10.1016/j.str.2004.09.004 – ident: e_1_2_8_38_1 doi: 10.1039/C8RA07306F – ident: e_1_2_8_13_1 doi: 10.1093/nar/gkn795 – ident: e_1_2_8_25_1 doi: 10.1093/nar/gkt1238 – ident: e_1_2_8_41_1 doi: 10.1007/s11033-018-4232-6 – ident: e_1_2_8_33_1 doi: 10.1016/S0092-8674(01)00501-3 – ident: e_1_2_8_4_1 doi: 10.1002/pro.3072 – ident: e_1_2_8_32_1 doi: 10.1074/jbc.M109.096487 – ident: e_1_2_8_52_1 doi: 10.1016/j.febslet.2012.04.042 – ident: e_1_2_8_27_1 doi: 10.1021/bi5001867 – ident: e_1_2_8_59_1 doi: 10.1016/j.jmb.2007.01.007 – ident: e_1_2_8_80_1 doi: 10.3389/fgene.2018.00390 – ident: e_1_2_8_81_1 doi: 10.1016/j.sbi.2004.01.001 |
SSID | ssj0004123 |
Score | 2.466043 |
Snippet | The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds... The Escherichia coli single-strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds... The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1211 |
SubjectTerms | Binding Sites Biological activity Deoxyribonucleic acid DNA DNA helicase DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics Domains E coli Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Genomes Models, Molecular Mutation OB‐fold Oligonucleotides Oligonucleotides - chemistry Oligosaccharides Oligosaccharides - chemistry Point Mutation Prokaryotes Protein structure Proteins PXXP motif RecG SH3 domain single‐strand binding protein SSB interactome |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXuBCoQUaKMiVUG-hWdvxT2-ltJQLVCxI3KIknqgrdZOqyx648Q59wz4JM85m21WFhMQpSsZRLHvG83ni-QbgLRKK8GgxzdBnqQ7Spc64LK1pM-JKbcsKY-hibD__cB-OmSbnYMiF6fkhlgE3toy4XrOBl9Vs_5Y0lBaYd8rlnF9Om4SYvaHOblMiR7KvIm9GqVPGDbyzmdwfXlz1RPfg5f1TknfRa3Q_Jxv_0_En8HgBOsVhryVPYQ3bTdg6bGnDPf0l9kQ8Bhrj65vw8GgoAbcF56REYoqcHDyZTUXXiDF5ugsUHB9pg6gmMSdGRLKHSXvz-5pQ6Mfh8YH4dOe4uiB0LMbj94IJKjg1q5uiYK_K0mfw_eT429FpuijNkNaa-p4qQhmNkyg92XcTKppRp7C01qLyTV0q67EKoS4NXRtlNFqZ14HAZx7q2qB6Dutt1-I2iDwzpSfwjOganVfaB61Ib5zS6KvgqwR2h2kqLnsGjqLnWpZ03xU8lAnsDPNXLGxwVnDRdyb0GpF4dymmEeRfImWL3ZzbuJGRXPQ9gRf9dC8_omgxN9bbBOyKIiwbMDP3qqSdnEeGbnL42lqVwF5UhL_2uzj7-oWvL_-14St4JHnDH09c7sD6z6s5voYHszB_E_X_D6jWC9E priority: 102 providerName: Wiley-Blackwell |
Title | The mechanism of Single strand binding protein–RecG binding: Implications for SSB interactome function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.3855 https://www.ncbi.nlm.nih.gov/pubmed/32196797 https://www.proquest.com/docview/2394781415 https://search.proquest.com/docview/2381628236 https://pubmed.ncbi.nlm.nih.gov/PMC7184773 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xvcAFQctPoFSuhHrLbjZOYptbWVp-JMqKgMQtSuKJGqlJKpY9cOMdeEOehBlnvdqq4sIlVjKWYnnG8TfOzDcAL5FQhEGFYYQmChMb61BnOgprckZ0maiyQnd0kauLb_rNGdPkpD4XxgXt11U77a-6ad9eutjK666e-Tix2fLjgr6niVJyNoEJYUPvovtkyHk81o_P5qGWmfaMs1HMyW1TqVOuViNppWaKqZ52t6NbGPN2qOQuhHV70PkDuL8Bj-J0HORDuIP9Phyc9uQ4dz_FiXDhnO6cfB_uLnwptwO4JGMQHXKSb7vqxNCInHasKxR8ztFbUbUut0U40oa2__PrN6HJt_7xK_F-J-xcEMoVef5aMNEEp1gNHQreHVn6CL6en31ZvAs3JRbCOqGZCCWhhUbHGBtap42tSDNaYqmUQmmaupTKYGVtXWbUNjJLUMVpbQlEprauM5SPYa8fenwKIo2y0hAIRtRNklaJsYkk_WuZoKmsqQI49jNdXI9MGsXImRzT_VCwYgI49CooNmtpVXDxdibmmpP4eCumGeRfG2WPw5r76HkWc_H2AJ6MGtu-xKs6AHVDl9sOzLB9U0KG55i2N4YWwInT-j_HXSw_f-L22X-_4jnci9mTd6GUh7D34_saX8BkZddHMJFyeeSMnK75h4u_Jb4Dqw |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RcigXfloogQKuhHoLzcaOf9pTKS2tKKVii8QtSuKJuhKbIJY9cOMdeMM-SWeczbarCgmJU5TYUSx7xvN5MvMNwGskFOHQYJygS2LlUxtbbZO4osOILZQpSgyui6E5_WrfHTBNzm6fC9PxQ8wdbqwZYb9mBWeH9PY1ayjtMG-kzbIluKs0ySHnb8iz66TIQdrVkdeD2Epte-bZJN3u31y0RbcA5u04yZv4NRigwwf_NfSHcH-GO8VeJyiP4A42q7C219CZe_xLbIkQCRpc7Kuwst9XgVuDC5IjMUbODx5NxqKtxZCM3TcU7CJpvChHIS1GBL6HUXP5-w8B0ff94x1xfCNiXRBAFsPhW8EcFZyd1Y5RsGHl1sfw5fDgfP8onlVniCtFY48lAY3appg6UvHal7SoVmJhjEHp6qqQxmHpfVVoutZSKzRpVnnCn5mvKo3yCSw3bYNPQWSJLhzhZ0Rbq6xUzitJomOlQld6V0aw2a9T_r0j4cg7uuWU7tucpzKCjX4B85kaTnKu-86cXgNq3pw30wzyX5GiwXbKfexAp1z3PYL1br3nH5G0n2vjTARmQRLmHZice7GlGV0Ekm6y-coYGcFWkIS_jjs_-_yJr8_-teMrWDk6_3iSnxyffngO91I-_4cAzA1Y_vljii9gaeKnL4MyXAFyXA_5 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RIgEXfloKgQKuhHoLzdpObPdW2i5UoLJiQeIWJfFEXYlNqm73wI134A15EmaczbarCgmJU5SMo1ieGc9nx_MNwGskFOHQYJygS2LtpY1tZpO4osWILbQpSgxbF2Nz-s0eHTNNzn6fC9PxQyw33NgzwnzNDn7u670r0lCaYN4om6ZrcFsTCmfefKVGVzmRA9mVkc8GsVWZ7YlnE7nXv7kaim7gy5vHJK_D1xB_hg_-p-cP4f4CdYqDzkwewS1sNmDzoKEV9_SH2BXhHGjYYN-Au4d9DbhNOCMrElPk7ODJbCraWowp1H1HwRskjRflJCTFiMD2MGl-__xFMPRd_3hfnFw7ry4IHovx-K1ghgrOzWqnKDissvQxfB0efzl8Hy9qM8SVpr7HimBGbSVKRw5e-5JUahUWxhhUrq4KZRyW3ldFRtdaZRqNTCtP6DP1VZWh2oL1pm3wKYg0yQpH6BnR1jottfNakeFYpdGV3pUR7PRqys87Co68I1uWdN_mPJQRbPf6yxdOOMu56jszeg1IvLMU0wjyP5GiwXbObewgk1z1PYInnbqXH1E0m2fGmQjMiiEsGzA196qkmZwFim6K-NoYFcFuMIS_9jsfff7E12f_2vAV3BkdDfOPJ6cfnsM9yYv_cPpyG9YvL-b4AtZmfv4yuMIfKFkOnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+Single+strand+binding+protein%E2%80%93RecG+binding%3A+Implications+for+SSB+interactome+function&rft.jtitle=Protein+science&rft.au=Ding%2C+Wenfei&rft.au=Tan%2C+Hui+Yin&rft.au=Zhang%2C+Jia+Xiang&rft.au=Wilczek%2C+Luke+A.&rft.date=2020-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=29&rft.issue=5&rft.spage=1211&rft.epage=1227&rft_id=info:doi/10.1002%2Fpro.3855&rft.externalDBID=10.1002%252Fpro.3855&rft.externalDocID=PRO3855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |