The mechanism of Single strand binding protein–RecG binding: Implications for SSB interactome function

The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein function...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 29; no. 5; pp. 1211 - 1227
Main Authors: Ding, Wenfei, Tan, Hui Yin, Zhang, Jia Xiang, Wilczek, Luke A., Hsieh, Karin R., Mulkin, Jeffrey A., Bianco, Piero R.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-05-2020
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes.
AbstractList The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes.
The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes.
Author Mulkin, Jeffrey A.
Wilczek, Luke A.
Ding, Wenfei
Zhang, Jia Xiang
Hsieh, Karin R.
Tan, Hui Yin
Bianco, Piero R.
AuthorAffiliation 2 Department of Biochemistry University at Buffalo Buffalo New York United States
4 Present address: Department of Chemistry Brown University Providence Rhode Island United States
3 Present address: Department of Chemistry and Biochemistry University of Notre Dame South Bend Indiana United States
1 Center for Single Molecule Biophysics University at Buffalo Buffalo New York United States
AuthorAffiliation_xml – name: 3 Present address: Department of Chemistry and Biochemistry University of Notre Dame South Bend Indiana United States
– name: 4 Present address: Department of Chemistry Brown University Providence Rhode Island United States
– name: 1 Center for Single Molecule Biophysics University at Buffalo Buffalo New York United States
– name: 2 Department of Biochemistry University at Buffalo Buffalo New York United States
Author_xml – sequence: 1
  givenname: Wenfei
  surname: Ding
  fullname: Ding, Wenfei
  organization: University at Buffalo
– sequence: 2
  givenname: Hui Yin
  surname: Tan
  fullname: Tan, Hui Yin
  organization: University at Buffalo
– sequence: 3
  givenname: Jia Xiang
  surname: Zhang
  fullname: Zhang, Jia Xiang
  organization: University at Buffalo
– sequence: 4
  givenname: Luke A.
  surname: Wilczek
  fullname: Wilczek, Luke A.
  organization: University at Buffalo
– sequence: 5
  givenname: Karin R.
  surname: Hsieh
  fullname: Hsieh, Karin R.
  organization: University at Buffalo
– sequence: 6
  givenname: Jeffrey A.
  surname: Mulkin
  fullname: Mulkin, Jeffrey A.
  organization: University at Buffalo
– sequence: 7
  givenname: Piero R.
  orcidid: 0000-0003-2974-7952
  surname: Bianco
  fullname: Bianco, Piero R.
  email: pbianco2014@gmail.com
  organization: University at Buffalo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32196797$$D View this record in MEDLINE/PubMed
BookMark eNp1kdtqFTEUhoNU7G4VfAIJeOPNtDnM5OCFoEVrodDSXcG7kMms6U6ZSXaTGaV3voNv6JOY3ZNa8GqRtT6-rMW_g7ZCDIDQS0r2KCFsf53iHldN8wQtaC10pbT4uoUWRAtaKS7UNtrJ-ZIQUlPGn6FtzqgWUssFWp2vAI_gVjb4POLY46UPFwPgPCUbOtz60JUGLj9M4MOvHz_PwB3et9_io3E9eGcnH0PGfUx4ufyAfZggWTfFEXA_B7eZPkdPeztkeHFXd9GXTx_PDz5XxyeHRwfvjytXlwsqrinpFQOmpeZ917YgFAcrpQSue2e51NB2nbOi1J6LGiRrXNcQ2XTOCeC76N2tdz23I3QOQjlkMOvkR5uuTbTe_DsJfmUu4jcjqaql5EXw5k6Q4tUMeTKjzw6GwQaIczaMKyqYYlwU9PUj9DLOKZTzCqVrqWhNmz9Cl2LOCfqHZSgxm_jKO5pNfAV99ffyD-B9XgWoboHvfoDr_4rM6dnJjfA3NZqpJw
CitedBy_id crossref_primary_10_1016_j_dnarep_2020_102942
crossref_primary_10_1002_pro_4140
crossref_primary_10_1016_j_jmb_2022_167580
crossref_primary_10_3390_genes11050471
crossref_primary_10_1016_j_ijbiomac_2024_131544
crossref_primary_10_3389_fmolb_2022_784451
crossref_primary_10_1021_acsomega_1c00722
crossref_primary_10_1093_nar_gkac1169
crossref_primary_10_3390_ijms23158613
crossref_primary_10_1093_nar_gkad162
crossref_primary_10_1016_j_bbagen_2021_130006
crossref_primary_10_1080_10409238_2024_2330372
crossref_primary_10_1074_jbc_RA120_013013
crossref_primary_10_1016_j_jmb_2024_168590
crossref_primary_10_1016_j_jbc_2023_104773
crossref_primary_10_3390_pharmaceutics15041032
crossref_primary_10_1128_jb_00184_23
crossref_primary_10_3389_fgene_2021_634615
crossref_primary_10_1093_nar_gkab142
Cites_doi 10.1093/bioinformatics/btx584
10.1073/pnas.1809842115
10.1002/pro.3114
10.1016/j.jmb.2014.12.020
10.1038/sj.onc.1209874
10.1093/nar/gkr199
10.1074/jbc.RA118.006870
10.2174/0929866023408760
10.1002/pro.3115
10.1073/pnas.1500851112
10.1073/pnas.1318001111
10.1038/sj.emboj.7601697
10.1074/jbc.M115.655134
10.1073/pnas.0800741105
10.1073/pnas.94.13.6652
10.1046/j.1432-1033.2003.03944.x
10.1074/jbc.M412054200
10.1038/77943
10.1021/bi00349a004
10.1021/acs.biochem.8b00036
10.1016/S0021-9258(18)32867-9
10.7554/eLife.14294
10.1073/pnas.78.7.4274
10.1128/mr.54.4.342-380.1990
10.1016/S0065-3233(02)61006-X
10.1371/journal.pone.0094669
10.1002/1097-0134(20010101)42:1<108::AID-PROT110>3.0.CO;2-O
10.1002/j.1460-2075.1993.tb05627.x
10.2174/1389203033487207
10.1093/emboj/cdg043
10.1021/bi900361r
10.1093/nar/gkx917
10.1002/(SICI)1097-0282(1997)43:5<383::AID-BIP4>3.0.CO;2-R
10.1016/j.pbiomolbio.2016.11.001
10.1111/gtc.12334
10.1080/10409230802341296
10.1016/j.febslet.2012.05.025
10.1038/emboj.2011.305
10.1038/nbt1096-1246
10.1371/journal.pone.0027216
10.1021/acs.biochem.5b01283
10.1007/978-1-4939-2425-7_15
10.1038/sj.emboj.7601848
10.1007/s12551-012-0081-z
10.1385/1-59259-890-0:571
10.1016/j.str.2017.07.017
10.1093/nar/gkh980
10.1016/j.cell.2009.11.043
10.1002/pro.633
10.1073/pnas.092547099
10.1111/gtc.12729
10.1074/jbc.M110.118273
10.1016/j.str.2015.03.009
10.1038/srep09625
10.1073/pnas.1010243107
10.1038/81978
10.1016/j.febslet.2015.03.014
10.1016/j.jmb.2008.12.065
10.3109/10409238.2010.488216
10.1021/bi100069s
10.1016/0092-8674(94)90367-0
10.1093/nar/gkt107
10.1128/JB.00267-17
10.2174/1389203053545444
10.1093/nar/24.14.2706
10.1038/nprot.2006.202
10.1042/BJ20050411
10.1186/1472-6807-1-5
10.1093/nar/25.19.3875
10.1016/j.str.2004.09.004
10.1039/C8RA07306F
10.1093/nar/gkn795
10.1093/nar/gkt1238
10.1007/s11033-018-4232-6
10.1016/S0092-8674(01)00501-3
10.1002/pro.3072
10.1074/jbc.M109.096487
10.1016/j.febslet.2012.04.042
10.1021/bi5001867
10.1016/j.jmb.2007.01.007
10.3389/fgene.2018.00390
10.1016/j.sbi.2004.01.001
ContentType Journal Article
Copyright 2020 The Protein Society
2020 The Protein Society.
Copyright_xml – notice: 2020 The Protein Society
– notice: 2020 The Protein Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.3855
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Ding et al
EISSN 1469-896X
EndPage 1227
ExternalDocumentID 10_1002_pro_3855
32196797
PRO3855
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: GM100156
– fundername: NIGMS NIH HHS
  grantid: R01 GM144414
– fundername: NIGMS NIH HHS
  grantid: R01 GM100156
– fundername: NIH HHS
  grantid: GM100156
– fundername: ;
  grantid: GM100156
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4385-3910f82e29793fdbbe683ea777e39fca379ebddca69ebf364e725cd5075dcc6e3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:25:36 EDT 2024
Sat Aug 17 05:42:49 EDT 2024
Tue Nov 19 04:59:26 EST 2024
Thu Nov 21 22:26:18 EST 2024
Sat Nov 02 12:25:30 EDT 2024
Sat Aug 24 01:07:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DNA helicase
SH3 domain
SSB interactome
RecG
single-strand binding protein
OB-fold
PXXP motif
Language English
License 2020 The Protein Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4385-3910f82e29793fdbbe683ea777e39fca379ebddca69ebf364e725cd5075dcc6e3
Notes Funding information
National Institutes of Health, Grant/Award Number: GM100156
Wenfei Ding and Hui Yin Tan contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information National Institutes of Health, Grant/Award Number: GM100156
ORCID 0000-0003-2974-7952
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.3855
PMID 32196797
PQID 2394781415
PQPubID 1016442
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184773
proquest_miscellaneous_2381628236
proquest_journals_2394781415
crossref_primary_10_1002_pro_3855
pubmed_primary_32196797
wiley_primary_10_1002_pro_3855_PRO3855
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Bethesda
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1990; 54
2010; 107
2015; 589
1997; 43
2000; 7
2017; 45
2002; 99
2008; 36
2015; 1278
2008; 105
2015; 427
2018; 45
2017; 199
2001; 107
2013; 5
2009; 48
2001; 42
2004; 32
2018; 9
2018; 8
2015; 290
1997; 94
2019; 24
2006; 25
2011; 20
1986
2003; 4
2014; 9
2018; 34
1996; 24
2017; 127
2007; 26
1981; 78
1994; 76
2014; 53
2007; 367
1983; 258
2005; 390
2015; 5
2012; 586
2017; 26
2002; 9
2017; 25
1997; 25
2013; 41
2011; 30
2010; 285
2005
2006; 1
2011; 39
1996; 14
2014; 111
2011; 6
2014; 42
2016; 55
2009; 139
2010; 45
2016; 5
2015; 23
2005; 280
1993; 12
2010; 49
2002; 61
2004; 14
2015; 112
2004; 12
2018; 115
2004; 271
1986; 25
2019; 47
2016; 21
2009; 386
2005; 6
2008; 43
2001; 1
2019; 294
2003; 22
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
Shinn MK (e_1_2_8_21_1) 2019; 47
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Dawson RMC (e_1_2_8_83_1) 1986
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
Williams KR (e_1_2_8_7_1) 1983; 258
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 112
  start-page: E3095
  year: 2015
  end-page: E3103
  article-title: Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 227
  year: 2017
  end-page: 241
  article-title: The IDL of . SSB links ssDNA and protein binding by mediating protein‐protein interactions
  publication-title: Protein Sci
– volume: 111
  start-page: 1373
  year: 2014
  end-page: 1378
  article-title: Structural mechanisms of PriA‐mediated DNA replication restart
  publication-title: Proc Natl Acad Sci U S A
– volume: 199
  start-page: e00267
  year: 2017
  end-page: e00217
  article-title: A priA mutant expressed in two pieces has almost full activity in K‐12
  publication-title: J Bacteriol
– volume: 4
  start-page: 195
  year: 2003
  end-page: 206
  article-title: OB‐fold: Growing bigger with functional consistency
  publication-title: Curr Protein Pept Sci
– volume: 6
  year: 2011
  article-title: Chimeras of and single‐stranded DNA binding proteins: Characterization and function in
  publication-title: PLoS One
– volume: 139
  start-page: 1279
  year: 2009
  end-page: 1289
  article-title: Structural insight into translesion synthesis by DNA Pol II
  publication-title: Cell
– volume: 43
  start-page: 289
  year: 2008
  end-page: 318
  article-title: SSB as an organizer/mobilizer of genome maintenance complexes
  publication-title: Crit Rev Biochem Mol Biol
– volume: 55
  start-page: 1784
  year: 2016
  end-page: 1800
  article-title: Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 2. The model of encounter complex involving the double mutant of the c‐Crk N‐SH3 domain and peptide Sos
  publication-title: Biochemistry
– volume: 258
  start-page: 3346
  year: 1983
  end-page: 3355
  article-title: Limited proteolysis studies on the single‐stranded DNA binding protein: Evidence for a functionally homologous domain in both the and T4 DNA binding proteins
  publication-title: J Biol Chem
– volume: 14
  start-page: 1246
  year: 1996
  end-page: 1251
  article-title: The molecular structure of green fluorescent protein
  publication-title: Nat Biotechnol
– volume: 26
  start-page: 700
  year: 2017
  end-page: 717
  article-title: The intrinsically disordered linker of . SSB is critical for the release from single‐stranded DNA
  publication-title: Protein Sci
– volume: 367
  start-page: 647
  year: 2007
  end-page: 664
  article-title: Characterization of the ATPase activity of the RecG protein reveals that the preferred cofactor is negatively supercoiled DNA
  publication-title: J Mol Biol
– volume: 99
  start-page: 5908
  year: 2002
  end-page: 5912
  article-title: The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity
  publication-title: Proc Natl Acad Sci U S A
– volume: 271
  start-page: 439
  year: 2004
  end-page: 449
  article-title: Crystal structure of the chi:psi sub‐assembly of the DNA polymerase clamp‐loader complex
  publication-title: Eur J Biochem
– volume: 280
  start-page: 13921
  year: 2005
  end-page: 13927
  article-title: DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity
  publication-title: J Biol Chem
– year: 1986
– volume: 5
  year: 2016
  article-title: Structural basis for DNA 5‐end resection by RecJ
  publication-title: Elife
– volume: 45
  start-page: 12125
  year: 2017
  end-page: 12139
  article-title: Molecular mechanism of DNA association with single‐stranded DNA binding protein
  publication-title: Nucleic Acids Res
– volume: 39
  start-page: 6305
  year: 2011
  end-page: 6314
  article-title: Mechanism of RecO recruitment to DNA by single‐stranded DNA binding protein
  publication-title: Nucleic Acids Res
– volume: 105
  start-page: 9169
  year: 2008
  end-page: 9174
  article-title: Structural basis of single‐stranded DNA‐binding protein stimulation of exonuclease I
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  start-page: 893
  year: 2015
  end-page: 902
  article-title: The SH3 domain acts as a scaffold for the N‐terminal intrinsically disordered regions of c‐Src
  publication-title: Structure
– volume: 8
  start-page: 35280
  year: 2018
  end-page: 35288
  article-title: The glycine‐rich flexible region in SSB is crucial for PriA stimulation
  publication-title: RSC Adv
– volume: 9
  start-page: 185
  year: 2002
  end-page: 193
  article-title: Promiscuous binding nature of SH3 domains to their target proteins
  publication-title: Protein Pept Lett
– volume: 107
  start-page: 79
  year: 2001
  end-page: 89
  article-title: Structural analysis of DNA replication fork reversal by RecG
  publication-title: Cell
– volume: 94
  start-page: 6652
  year: 1997
  end-page: 6657
  article-title: Crystal structure of the homo‐tetrameric DNA binding domain of single‐stranded DNA‐binding protein determined by multiwavelength x‐ray diffraction on the selenomethionyl protein at 2.9‐A resolution
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: 5
  year: 2001
  article-title: Functional evolution of two subtly different (similar) folds
  publication-title: BMC Struct Biol
– volume: 22
  start-page: 724
  year: 2003
  end-page: 734
  article-title: A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins
  publication-title: EMBO J
– volume: 30
  start-page: 4236
  year: 2011
  end-page: 4247
  article-title: Structure of the SSB‐DNA polymerase III interface and its role in DNA replication
  publication-title: EMBO J
– volume: 47
  start-page: 8581
  year: 2019
  end-page: 8594
  article-title: Are the intrinsically disordered linkers involved in SSB binding to accessory proteins?
  publication-title: Nucleic Acids Res
– volume: 586
  start-page: 2609
  year: 2012
  end-page: 2614
  article-title: SH3 domain ligand binding: What's the consensus and where's the specificity?
  publication-title: FEBS Lett
– volume: 24
  start-page: 814
  year: 2019
  end-page: 826
  article-title: Super‐resolution imaging reveals changes in SSB localization in response to DNA damage
  publication-title: Genes Cells
– volume: 1
  start-page: 2876
  year: 2006
  end-page: 2890
  article-title: Using circular dichroism spectra to estimate protein secondary structure
  publication-title: Nat Protoc
– start-page: 571
  year: 2005
  end-page: 607
– volume: 25
  start-page: 21
  year: 1986
  end-page: 25
  article-title: Large‐scale overproduction and rapid purification of the ssb gene product. Expression of the ssb gene under lambda PL control
  publication-title: Biochemistry
– volume: 586
  start-page: 2606
  year: 2012
  end-page: 2608
  article-title: SH3 domains come of age
  publication-title: FEBS Lett
– volume: 32
  start-page: 6378
  year: 2004
  end-page: 6387
  article-title: PriA helicase and SSB interact physically and functionally
  publication-title: Nucleic Acids Res
– volume: 76
  start-page: 933
  year: 1994
  end-page: 945
  article-title: Structural basis for the binding of proline‐rich peptides to SH3 domains
  publication-title: Cell
– volume: 14
  start-page: 36
  year: 2004
  end-page: 42
  article-title: From RPA to BRCA2: Lessons from single‐stranded DNA binding by the OB‐fold
  publication-title: Curr Opin Struct Biol
– volume: 7
  start-page: 1125
  year: 2000
  end-page: 1128
  article-title: Structure of exonuclease I suggests how processivity is achieved
  publication-title: Nat Struct Biol
– volume: 9
  year: 2014
  article-title: A genetic analysis of the functional interactions within single‐stranded DNA binding protein
  publication-title: PLoS One
– volume: 25
  start-page: 5864
  year: 2006
  end-page: 5874
  article-title: The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability
  publication-title: Oncogene
– volume: 25
  start-page: 3875
  year: 1997
  end-page: 3880
  article-title: DNA binding and helicase domains of the recombination protein RecG
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: 459
  year: 2018
  end-page: 468
  article-title: Protein‐protein interaction specificity is captured by contact preferences and interface composition
  publication-title: Bioinformatics
– volume: 42
  start-page: 108
  year: 2001
  end-page: 124
  article-title: Protein‐protein interfaces: Analysis of amino acid conservation in homodimers
  publication-title: Proteins
– volume: 5
  start-page: 29
  year: 2013
  end-page: 39
  article-title: SH3 domains: Modules of protein‐protein interactions
  publication-title: Biophys Rev
– volume: 36
  start-page: 7029
  year: 2008
  end-page: 7042
  article-title: RecG interacts directly with SSB: Implications for stalled replication fork regression
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 1967
  year: 2004
  end-page: 1975
  article-title: Crystal structure of PriB, a component of the replication restart primosome
  publication-title: Structure
– volume: 290
  start-page: 14626
  year: 2015
  end-page: 14636
  article-title: Interaction with single‐stranded DNA‐binding protein stimulates ribonuclease HI enzymatic activity
  publication-title: J Biol Chem
– volume: 53
  start-page: 1925
  year: 2014
  end-page: 1934
  article-title: Bound or free: Interaction of the C‐terminal domain of single‐stranded DNA‐binding protein (SSB) with the tetrameric core of SSB
  publication-title: Biochemistry
– volume: 61
  start-page: 211
  year: 2002
  end-page: 268
  article-title: How SH3 domains recognize proline
  publication-title: Adv Protein Chem
– volume: 427
  start-page: 763
  year: 2015
  end-page: 774
  article-title: Intrinsically disordered C‐terminal tails of . single‐stranded DNA binding protein regulate cooperative binding to single‐stranded DNA
  publication-title: J Mol Biol
– volume: 41
  start-page: 4507
  year: 2013
  end-page: 4517
  article-title: The helicase‐binding domain of DnaG primase interacts with the highly conserved C‐terminal region of single‐stranded DNA‐binding protein
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 865
  year: 2018
  end-page: 870
  article-title: AlkB interacts with single‐stranded DNA binding protein SSB by an intrinsically disordered region of SSB
  publication-title: Mol Biol Rep
– volume: 26
  start-page: 638
  year: 2017
  end-page: 649
  article-title: SSB and the RecG DNA helicase: An intimate association to rescue a stalled replication fork
  publication-title: Protein Sci
– volume: 285
  start-page: 17246
  year: 2010
  end-page: 17252
  article-title: Regulation of single‐stranded DNA binding by the C termini of single‐stranded DNA‐binding (SSB) protein
  publication-title: J Biol Chem
– volume: 9
  start-page: 390
  year: 2018
  article-title: Processing of DNA ends in the maintenance of genome stability
  publication-title: Front Genet
– volume: 115
  start-page: E9075
  year: 2018
  end-page: E9084
  article-title: Structure‐specific DNA replication‐fork recognition directs helicase and replication restart activities of the PriA helicase
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 1005
  year: 2011
  end-page: 1020
  article-title: Novel, fluorescent, SSB protein chimeras with broad utility
  publication-title: Protein Sci
– volume: 589
  start-page: 1156
  year: 2015
  end-page: 1163
  article-title: A single PXXP motif in the C‐terminal region of srGAP3 mediates binding to multiple SH3 domains
  publication-title: FEBS Lett
– volume: 127
  start-page: 111
  year: 2017
  end-page: 118
  article-title: The tale of SSB
  publication-title: Prog Biophys Mol Biol
– volume: 26
  start-page: 2584
  year: 2007
  end-page: 2593
  article-title: Structural basis of the 3′‐end recognition of a leading strand in stalled replication forks by PriA
  publication-title: EMBO J
– volume: 78
  start-page: 4274
  year: 1981
  end-page: 4278
  article-title: Sequences of the ssb gene and protein
  publication-title: Proc Natl Acad Sci U S A
– volume: 107
  start-page: 21743
  year: 2010
  end-page: 21748
  article-title: Recognition of tandem PxxP motifs as a unique Src homology 3‐binding mode triggers pathogen‐driven actin assembly
  publication-title: Proc Natl Acad Sci U S A
– volume: 1278
  start-page: 239
  year: 2015
  end-page: 265
  article-title: Circular dichroism (CD) analyses of protein‐protein interactions
  publication-title: Methods Mol Biol
– volume: 285
  start-page: 9762
  year: 2010
  end-page: 9769
  article-title: Structure of RecJ exonuclease defines its specificity for single‐stranded DNA
  publication-title: J Biol Chem
– volume: 26
  start-page: 4239
  year: 2007
  end-page: 4251
  article-title: Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks
  publication-title: EMBO J
– volume: 386
  start-page: 612
  year: 2009
  end-page: 625
  article-title: Identification of the SSB binding site on . RecQ reveals a conserved surface for binding SSB's C terminus
  publication-title: J Mol Biol
– volume: 57
  start-page: 2084
  year: 2018
  end-page: 2093
  article-title: Structures of the catalytic domain of bacterial primase DnaG in complexes with DNA provide insight into key priming events
  publication-title: Biochemistry
– volume: 49
  start-page: 3555
  year: 2010
  end-page: 3566
  article-title: Binding specificity of single‐stranded DNA binding protein for the chi subunit of DNA pol III holoenzyme and PriA helicase
  publication-title: Biochemistry
– volume: 12
  start-page: 17
  year: 1993
  end-page: 22
  article-title: Dissociation of synthetic Holliday junctions by . RecG protein
  publication-title: EMBO J
– volume: 390
  start-page: 641
  year: 2005
  end-page: 653
  article-title: Specificity and versatility of SH3 and other proline‐recognition domains: Structural basis and implications for cellular signal transduction
  publication-title: Biochem J
– volume: 43
  start-page: 383
  year: 1997
  end-page: 400
  article-title: SH3 domains and drug design: Ligands, structure, and biological function
  publication-title: Biopolymers
– volume: 7
  start-page: 648
  year: 2000
  end-page: 652
  article-title: Structure of the DNA binding domain of . SSB bound to ssDNA
  publication-title: Nat Struct Biol
– volume: 294
  start-page: 2801
  year: 2019
  end-page: 2814
  article-title: Function of a strand‐separation pin element in the PriA DNA replication restart helicase
  publication-title: J Biol Chem
– volume: 54
  start-page: 342
  year: 1990
  end-page: 380
  article-title: The single‐stranded DNA‐binding protein of
  publication-title: Microbiol Rev
– volume: 48
  start-page: 6764
  year: 2009
  end-page: 6771
  article-title: Peptide inhibitors identify roles for SSB C‐terminal residues in SSB/exonuclease I complex formation
  publication-title: Biochemistry
– volume: 6
  start-page: 143
  year: 2005
  end-page: 150
  article-title: SH3‐like fold proteins are structurally conserved and functionally divergent
  publication-title: Curr Protein Pept Sci
– volume: 42
  start-page: 2750
  year: 2014
  end-page: 2757
  article-title: Intramolecular binding mode of the C‐terminus of single‐stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 163
  year: 2016
  end-page: 184
  article-title: SSB binds to the RecG and PriA helicases in vivo in the absence of DNA
  publication-title: Genes Cells
– volume: 24
  start-page: 2706
  year: 1996
  end-page: 2711
  article-title: In vitro and in vivo function of the C‐terminus of single‐stranded DNA binding protein
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 9625
  year: 2015
  article-title: Remodeling of RecG helicase at the DNA replication fork by SSB protein
  publication-title: Sci Rep
– volume: 25
  start-page: 1598
  year: 2017
  end-page: 1610
  article-title: Comprehensive analysis of the human SH3 domain family reveals a wide variety of non‐canonical specificities
  publication-title: Structure
– volume: 45
  start-page: 266
  year: 2010
  end-page: 275
  article-title: Oligonucleotide/oligosaccharide‐binding fold proteins: A growing family of genome guardians
  publication-title: Crit Rev Biochem Mol Biol
– ident: e_1_2_8_62_1
  doi: 10.1093/bioinformatics/btx584
– ident: e_1_2_8_69_1
  doi: 10.1073/pnas.1809842115
– ident: e_1_2_8_10_1
  doi: 10.1002/pro.3114
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jmb.2014.12.020
– ident: e_1_2_8_79_1
  doi: 10.1038/sj.onc.1209874
– volume: 47
  start-page: 8581
  year: 2019
  ident: e_1_2_8_21_1
  article-title: Are the intrinsically disordered linkers involved in SSB binding to accessory proteins?
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Shinn MK
– ident: e_1_2_8_34_1
  doi: 10.1093/nar/gkr199
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.RA118.006870
– ident: e_1_2_8_75_1
  doi: 10.2174/0929866023408760
– ident: e_1_2_8_47_1
  doi: 10.1002/pro.3115
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.1500851112
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.1318001111
– ident: e_1_2_8_68_1
  doi: 10.1038/sj.emboj.7601697
– ident: e_1_2_8_20_1
  doi: 10.1074/jbc.M115.655134
– volume-title: Data for biochemical research
  year: 1986
  ident: e_1_2_8_83_1
  contributor:
    fullname: Dawson RMC
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.0800741105
– ident: e_1_2_8_65_1
  doi: 10.1073/pnas.94.13.6652
– ident: e_1_2_8_72_1
  doi: 10.1046/j.1432-1033.2003.03944.x
– ident: e_1_2_8_48_1
  doi: 10.1074/jbc.M412054200
– ident: e_1_2_8_8_1
  doi: 10.1038/77943
– ident: e_1_2_8_85_1
  doi: 10.1021/bi00349a004
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.biochem.8b00036
– volume: 258
  start-page: 3346
  year: 1983
  ident: e_1_2_8_7_1
  article-title: Limited proteolysis studies on the Escherichia coli single‐stranded DNA binding protein: Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)32867-9
  contributor:
    fullname: Williams KR
– ident: e_1_2_8_31_1
  doi: 10.7554/eLife.14294
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.78.7.4274
– ident: e_1_2_8_9_1
  doi: 10.1128/mr.54.4.342-380.1990
– ident: e_1_2_8_78_1
  doi: 10.1016/S0065-3233(02)61006-X
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pone.0094669
– ident: e_1_2_8_23_1
  doi: 10.1002/1097-0134(20010101)42:1<108::AID-PROT110>3.0.CO;2-O
– ident: e_1_2_8_84_1
  doi: 10.1002/j.1460-2075.1993.tb05627.x
– ident: e_1_2_8_74_1
  doi: 10.2174/1389203033487207
– ident: e_1_2_8_46_1
  doi: 10.1093/emboj/cdg043
– ident: e_1_2_8_17_1
  doi: 10.1021/bi900361r
– ident: e_1_2_8_63_1
  doi: 10.1093/nar/gkx917
– ident: e_1_2_8_51_1
  doi: 10.1002/(SICI)1097-0282(1997)43:5<383::AID-BIP4>3.0.CO;2-R
– ident: e_1_2_8_22_1
  doi: 10.1016/j.pbiomolbio.2016.11.001
– ident: e_1_2_8_12_1
  doi: 10.1111/gtc.12334
– ident: e_1_2_8_2_1
  doi: 10.1080/10409230802341296
– ident: e_1_2_8_28_1
  doi: 10.1016/j.febslet.2012.05.025
– ident: e_1_2_8_15_1
  doi: 10.1038/emboj.2011.305
– ident: e_1_2_8_60_1
  doi: 10.1038/nbt1096-1246
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pone.0027216
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.biochem.5b01283
– ident: e_1_2_8_56_1
  doi: 10.1007/978-1-4939-2425-7_15
– ident: e_1_2_8_3_1
  doi: 10.1038/sj.emboj.7601848
– ident: e_1_2_8_24_1
  doi: 10.1007/s12551-012-0081-z
– ident: e_1_2_8_58_1
  doi: 10.1385/1-59259-890-0:571
– ident: e_1_2_8_73_1
  doi: 10.1016/j.str.2017.07.017
– ident: e_1_2_8_54_1
  doi: 10.1093/nar/gkh980
– ident: e_1_2_8_71_1
  doi: 10.1016/j.cell.2009.11.043
– ident: e_1_2_8_53_1
  doi: 10.1002/pro.633
– ident: e_1_2_8_66_1
  doi: 10.1073/pnas.092547099
– ident: e_1_2_8_82_1
  doi: 10.1111/gtc.12729
– ident: e_1_2_8_26_1
  doi: 10.1074/jbc.M110.118273
– ident: e_1_2_8_36_1
  doi: 10.1016/j.str.2015.03.009
– ident: e_1_2_8_43_1
  doi: 10.1038/srep09625
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1010243107
– ident: e_1_2_8_67_1
  doi: 10.1038/81978
– ident: e_1_2_8_77_1
  doi: 10.1016/j.febslet.2015.03.014
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jmb.2008.12.065
– ident: e_1_2_8_42_1
  doi: 10.3109/10409238.2010.488216
– ident: e_1_2_8_19_1
  doi: 10.1021/bi100069s
– ident: e_1_2_8_49_1
  doi: 10.1016/0092-8674(94)90367-0
– ident: e_1_2_8_61_1
  doi: 10.1093/nar/gkt107
– ident: e_1_2_8_45_1
  doi: 10.1128/JB.00267-17
– ident: e_1_2_8_76_1
  doi: 10.2174/1389203053545444
– ident: e_1_2_8_6_1
  doi: 10.1093/nar/24.14.2706
– ident: e_1_2_8_55_1
  doi: 10.1038/nprot.2006.202
– ident: e_1_2_8_29_1
  doi: 10.1042/BJ20050411
– ident: e_1_2_8_30_1
  doi: 10.1186/1472-6807-1-5
– ident: e_1_2_8_44_1
  doi: 10.1093/nar/25.19.3875
– ident: e_1_2_8_64_1
  doi: 10.1016/j.str.2004.09.004
– ident: e_1_2_8_38_1
  doi: 10.1039/C8RA07306F
– ident: e_1_2_8_13_1
  doi: 10.1093/nar/gkn795
– ident: e_1_2_8_25_1
  doi: 10.1093/nar/gkt1238
– ident: e_1_2_8_41_1
  doi: 10.1007/s11033-018-4232-6
– ident: e_1_2_8_33_1
  doi: 10.1016/S0092-8674(01)00501-3
– ident: e_1_2_8_4_1
  doi: 10.1002/pro.3072
– ident: e_1_2_8_32_1
  doi: 10.1074/jbc.M109.096487
– ident: e_1_2_8_52_1
  doi: 10.1016/j.febslet.2012.04.042
– ident: e_1_2_8_27_1
  doi: 10.1021/bi5001867
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jmb.2007.01.007
– ident: e_1_2_8_80_1
  doi: 10.3389/fgene.2018.00390
– ident: e_1_2_8_81_1
  doi: 10.1016/j.sbi.2004.01.001
SSID ssj0004123
Score 2.466043
Snippet The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds...
The Escherichia coli single-strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds...
The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1211
SubjectTerms Binding Sites
Biological activity
Deoxyribonucleic acid
DNA
DNA helicase
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
Domains
E coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Genomes
Models, Molecular
Mutation
OB‐fold
Oligonucleotides
Oligonucleotides - chemistry
Oligosaccharides
Oligosaccharides - chemistry
Point Mutation
Prokaryotes
Protein structure
Proteins
PXXP motif
RecG
SH3 domain
single‐strand binding protein
SSB interactome
SummonAdditionalLinks – databaseName: Wiley-Blackwell
  dbid: 33P
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXuBCoQUaKMiVUG-hWdvxT2-ltJQLVCxI3KIknqgrdZOqyx648Q59wz4JM85m21WFhMQpSsZRLHvG83ni-QbgLRKK8GgxzdBnqQ7Spc64LK1pM-JKbcsKY-hibD__cB-OmSbnYMiF6fkhlgE3toy4XrOBl9Vs_5Y0lBaYd8rlnF9Om4SYvaHOblMiR7KvIm9GqVPGDbyzmdwfXlz1RPfg5f1TknfRa3Q_Jxv_0_En8HgBOsVhryVPYQ3bTdg6bGnDPf0l9kQ8Bhrj65vw8GgoAbcF56REYoqcHDyZTUXXiDF5ugsUHB9pg6gmMSdGRLKHSXvz-5pQ6Mfh8YH4dOe4uiB0LMbj94IJKjg1q5uiYK_K0mfw_eT429FpuijNkNaa-p4qQhmNkyg92XcTKppRp7C01qLyTV0q67EKoS4NXRtlNFqZ14HAZx7q2qB6Dutt1-I2iDwzpSfwjOganVfaB61Ib5zS6KvgqwR2h2kqLnsGjqLnWpZ03xU8lAnsDPNXLGxwVnDRdyb0GpF4dymmEeRfImWL3ZzbuJGRXPQ9gRf9dC8_omgxN9bbBOyKIiwbMDP3qqSdnEeGbnL42lqVwF5UhL_2uzj7-oWvL_-14St4JHnDH09c7sD6z6s5voYHszB_E_X_D6jWC9E
  priority: 102
  providerName: Wiley-Blackwell
Title The mechanism of Single strand binding protein–RecG binding: Implications for SSB interactome function
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.3855
https://www.ncbi.nlm.nih.gov/pubmed/32196797
https://www.proquest.com/docview/2394781415
https://search.proquest.com/docview/2381628236
https://pubmed.ncbi.nlm.nih.gov/PMC7184773
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xvcAFQctPoFSuhHrLbjZOYptbWVp-JMqKgMQtSuKJGqlJKpY9cOMdeEOehBlnvdqq4sIlVjKWYnnG8TfOzDcAL5FQhEGFYYQmChMb61BnOgprckZ0maiyQnd0kauLb_rNGdPkpD4XxgXt11U77a-6ad9eutjK666e-Tix2fLjgr6niVJyNoEJYUPvovtkyHk81o_P5qGWmfaMs1HMyW1TqVOuViNppWaKqZ52t6NbGPN2qOQuhHV70PkDuL8Bj-J0HORDuIP9Phyc9uQ4dz_FiXDhnO6cfB_uLnwptwO4JGMQHXKSb7vqxNCInHasKxR8ztFbUbUut0U40oa2__PrN6HJt_7xK_F-J-xcEMoVef5aMNEEp1gNHQreHVn6CL6en31ZvAs3JRbCOqGZCCWhhUbHGBtap42tSDNaYqmUQmmaupTKYGVtXWbUNjJLUMVpbQlEprauM5SPYa8fenwKIo2y0hAIRtRNklaJsYkk_WuZoKmsqQI49jNdXI9MGsXImRzT_VCwYgI49CooNmtpVXDxdibmmpP4eCumGeRfG2WPw5r76HkWc_H2AJ6MGtu-xKs6AHVDl9sOzLB9U0KG55i2N4YWwInT-j_HXSw_f-L22X-_4jnci9mTd6GUh7D34_saX8BkZddHMJFyeeSMnK75h4u_Jb4Dqw
link.rule.ids 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RcigXfloogQKuhHoLzcaOf9pTKS2tKKVii8QtSuKJuhKbIJY9cOMdeMM-SWeczbarCgmJU5TYUSx7xvN5MvMNwGskFOHQYJygS2LlUxtbbZO4osOILZQpSgyui6E5_WrfHTBNzm6fC9PxQ8wdbqwZYb9mBWeH9PY1ayjtMG-kzbIluKs0ySHnb8iz66TIQdrVkdeD2Epte-bZJN3u31y0RbcA5u04yZv4NRigwwf_NfSHcH-GO8VeJyiP4A42q7C219CZe_xLbIkQCRpc7Kuwst9XgVuDC5IjMUbODx5NxqKtxZCM3TcU7CJpvChHIS1GBL6HUXP5-w8B0ff94x1xfCNiXRBAFsPhW8EcFZyd1Y5RsGHl1sfw5fDgfP8onlVniCtFY48lAY3appg6UvHal7SoVmJhjEHp6qqQxmHpfVVoutZSKzRpVnnCn5mvKo3yCSw3bYNPQWSJLhzhZ0Rbq6xUzitJomOlQld6V0aw2a9T_r0j4cg7uuWU7tucpzKCjX4B85kaTnKu-86cXgNq3pw30wzyX5GiwXbKfexAp1z3PYL1br3nH5G0n2vjTARmQRLmHZice7GlGV0Ekm6y-coYGcFWkIS_jjs_-_yJr8_-teMrWDk6_3iSnxyffngO91I-_4cAzA1Y_vljii9gaeKnL4MyXAFyXA_5
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RIgEXfloKgQKuhHoLzdpObPdW2i5UoLJiQeIWJfFEXYlNqm73wI134A15EmaczbarCgmJU5SMo1ieGc9nx_MNwGskFOHQYJygS2LtpY1tZpO4osWILbQpSgxbF2Nz-s0eHTNNzn6fC9PxQyw33NgzwnzNDn7u670r0lCaYN4om6ZrcFsTCmfefKVGVzmRA9mVkc8GsVWZ7YlnE7nXv7kaim7gy5vHJK_D1xB_hg_-p-cP4f4CdYqDzkwewS1sNmDzoKEV9_SH2BXhHGjYYN-Au4d9DbhNOCMrElPk7ODJbCraWowp1H1HwRskjRflJCTFiMD2MGl-__xFMPRd_3hfnFw7ry4IHovx-K1ghgrOzWqnKDissvQxfB0efzl8Hy9qM8SVpr7HimBGbSVKRw5e-5JUahUWxhhUrq4KZRyW3ldFRtdaZRqNTCtP6DP1VZWh2oL1pm3wKYg0yQpH6BnR1jottfNakeFYpdGV3pUR7PRqys87Co68I1uWdN_mPJQRbPf6yxdOOMu56jszeg1IvLMU0wjyP5GiwXbObewgk1z1PYInnbqXH1E0m2fGmQjMiiEsGzA196qkmZwFim6K-NoYFcFuMIS_9jsfff7E12f_2vAV3BkdDfOPJ6cfnsM9yYv_cPpyG9YvL-b4AtZmfv4yuMIfKFkOnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+Single+strand+binding+protein%E2%80%93RecG+binding%3A+Implications+for+SSB+interactome+function&rft.jtitle=Protein+science&rft.au=Ding%2C+Wenfei&rft.au=Tan%2C+Hui+Yin&rft.au=Zhang%2C+Jia+Xiang&rft.au=Wilczek%2C+Luke+A.&rft.date=2020-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=29&rft.issue=5&rft.spage=1211&rft.epage=1227&rft_id=info:doi/10.1002%2Fpro.3855&rft.externalDBID=10.1002%252Fpro.3855&rft.externalDocID=PRO3855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon